Natural Products: Implication in Cancer Prevention and Treatment through Modulating Various Biological Activities

Author(s): Shehwaz Anwar, Ahmad Almatroudi, Mohammed A. Alsahli, Masood A. Khan, Amjad A. Khan, Arshad H. Rahmani*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 17 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Cancer is one of the most leading causes of death worldwide. It is one of the primary global diseases that cause morbidity and mortality in millions of people. It is usually caused by different carcinogenic agents that damage the genetic material and alter the cell signaling pathways. Carcinogens are classified into two groups as genotoxic and non-genotoxic agents. Genotoxic carcinogens are capable of directly altering the genetic material, while the non-genotoxic carcinogens are capable of producing cancer by some secondary mechanisms not related to direct gene damage. There is undoubtedly the greatest need to utilize some novel natural products as anticancer agents, as these are within reach everywhere. Interventions by some natural products aimed at decreasing the levels and conditions of these risk factors can reduce the frequency of cancer incidences. Cancer is conventionally treated by surgery, radiation therapy and chemotherapy, but such treatments may be fast-acting and causes adverse effects on normal tissues. Alternative and innovative methods of cancer treatment with the least side effects and improved efficiency are being encouraged. In this review, we discuss the different risk factors of cancer development, conventional and innovative strategies of its management and provide a brief review of the most recognized natural products used as anticancer agents globally.

Keywords: Carcinogens, DNA damage, risk factors, anticancer agents, natural products, genotoxic.

[1]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[2]
Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci., 2017, 18(3), 656.
[http://dx.doi.org/10.3390/ijms18030656] [PMID: 28304343]
[3]
Prakash, O.; Kumar, A.; Kumar, P. Ajeet. Anticancer potential of plants and natural products: A review. Am. J. Pharmacol. Sci., 2013, 1, 104-115.
[http://dx.doi.org/10.12691/ajps-1-6-1]
[4]
American cancer society, Cancer Facts and Figures 2019, Atlanta: American Cancer Society,, 2019.https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html
[5]
Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: a global perspective. Pharmacol. Ther., 2003, 99(1), 1-13.
[http://dx.doi.org/10.1016/S0163-7258(03)00042-1] [PMID: 12804695]
[6]
Liu, Y.; Yin, T.; Feng, Y.; Cona, M.M.; Huang, G.; Liu, J.; Song, S.; Jiang, Y.; Xia, Q.; Swinnen, J.V.; Bormans, G.; Himmelreich, U.; Oyen, R.; Ni, Y. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant. Imaging Med. Surg., 2015, 5(5), 708-729.
[PMID: 26682141]
[7]
Sugimura, T. Nutrition and dietary carcinogens. Carcinogenesis, 2000, 21(3), 387-395.
[http://dx.doi.org/10.1093/carcin/21.3.387] [PMID: 10688859]
[8]
Hernández, L.G.; van Steeg, H.; Luijten, M.; van Benthem, J. Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat. Res., 2009, 682(2-3), 94-109.
[http://dx.doi.org/10.1016/j.mrrev.2009.07.002] [PMID: 19631282]
[9]
Nohmi, T. Thresholds of genotoxic and non-genotoxic carcinogens. Toxicol. Res., 2018, 34(4), 281-290.
[http://dx.doi.org/10.5487/TR.2018.34.4.281] [PMID: 30370002]
[10]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[11]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[12]
Devi, P. Basics of carcinogenesis. Health Adm., 2004, 17, 16-24.
[13]
Mathur, G.; Nain, S.; Sharma, P.K. Cancer: An overview. Acad. J. Cancer Res. (AJCR), 2015, 8, 01-09.
[14]
Vineis, P.; Fecht, D. Environment, cancer and inequalities-The urgent need for prevention. Eur. J. Cancer, 2018, 103, 317-326.
[http://dx.doi.org/10.1016/j.ejca.2018.04.018] [PMID: 29903684]
[15]
Wu, S.; Zhu, W.; Thompson, P.; Hannun, Y.A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun., 2018, 9(1), 3490-3500.
[http://dx.doi.org/10.1038/s41467-018-05467-z] [PMID: 30154431]
[16]
Saeki, H.; Sugimachi, K. Carcinogenic risk factors. Japan Med. Assoc. J., 2001, 3, 297-300.
[17]
Li, Y.; Schoufour, J.; Wang, D.D.; Dhana, K.; Pan, A.; Liu, X.; Song, M.; Liu, G.; Shin, H.J.; Sun, Q.; Al-Shaar, L.; Wang, M.; Rimm, E.B.; Hertzmark, E.; Stampfer, M.J.; Willett, W.C.; Franco, O.H.; Hu, F.B. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: Prospective cohort study. BMJ, 2020, 368, l6669.
[http://dx.doi.org/10.1136/bmj.l6669] [PMID: 31915124]
[18]
Pitot, H.C.; Dragan, Y.P. Facts and theories concerning the mechanisms of carcinogenesis. FASEB J., 1991, 5(9), 2280-2286.
[http://dx.doi.org/10.1096/fasebj.5.9.1860619] [PMID: 1860619]
[19]
Barrett, J.C.; Anderson, M. Molecular mechanisms of carcinogenesis in humans and rodents. Mol. Carcinog., 1993, 7(1), 1-13.
[http://dx.doi.org/10.1002/mc.2940070102] [PMID: 8094618]
[20]
Farmer, P.B. Carcinogen adducts: Use in diagnosis and risk assessment. Clin. Chem., 1994, 40(7 Pt 2), 1438-1443.
[http://dx.doi.org/10.1093/clinchem/40.7.1438] [PMID: 8013133]
[21]
Oliveira, P.A.; Colaço, A.; Chaves, R.; Guedes-Pinto, H.; De-La-Cruz, P. L.F.; Lopes, C.; Lopes, C. Chemical carcinogenesis. An. Acad. Bras. Cienc., 2007, 79(4), 593-616.
[http://dx.doi.org/10.1590/S0001-37652007000400004] [PMID: 18066431]
[22]
Stein, C.J.; Colditz, G.A. Modifiable risk factors for cancer. Br. J. Cancer, 2004, 90(2), 299-303.
[http://dx.doi.org/10.1038/sj.bjc.6601509] [PMID: 14735167]
[23]
Parsa, N. Environmental factors inducing human cancers. Iran. J. Public Health, 2012, 41(11), 1-9.
[PMID: 23304670]
[24]
Nourazarian, A.R.; Kangari, P.; Salmaninejad, A. Roles of oxidative stress in the development and progression of breast cancer. Asian Pac. J. Cancer Prev., 2014, 15(12), 4745-4751.
[http://dx.doi.org/10.7314/APJCP.2014.15.12.4745] [PMID: 24998536]
[25]
Wogan, G.N.; Hecht, S.S.; Felton, J.S.; Conney, A.H.; Loeb, L.A. Environmental and chemical carcinogenesis. Semin. Cancer Biol., 2004, 14(6), 473-486.
[http://dx.doi.org/10.1016/j.semcancer.2004.06.010] [PMID: 15489140]
[26]
Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[27]
Ames, B.N.; Gold, L.S. The causes and prevention of cancer: The role of environment. Biotherapy, 1998, 11(2-3), 205-220.
[http://dx.doi.org/10.1023/A:1007971204469] [PMID: 9677052]
[28]
Rim, K-T. Occupational cancers with chemical exposure and their prevention in Korea: a literature review. Asian Pac. J. Cancer Prev., 2013, 14(6), 3379-3391.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3379] [PMID: 23886117]
[29]
World Health Organization. WHO global report on trends in prevalence of tobacco smoking 2000-2025, second edition. Geneva:[Accessed: 31 May, 2018]; World Health Organization,, 2018.http://www.who.int/tobacco/publications/surveillance/trends-tobacco-smoking-second-edition/
[30]
Siemiatycki, J.; Krewski, D.; Franco, E.; Kaiserman, M. Associations between cigarette smoking and each of 21 types of cancer: A multi-site case-control study. Int. J. Epidemiol., 1995, 24(3), 504-514.
[http://dx.doi.org/10.1093/ije/24.3.504] [PMID: 7672889]
[31]
Shiels, M.S.; Gibson, T.; Sampson, J.; Albanes, D.; Andreotti, G.; Beane Freeman, L.; Berrington de Gonzalez, A.; Caporaso, N.; Curtis, R.E.; Elena, J.; Freedman, N.D.; Robien, K.; Black, A.; Morton, L.M. Cigarette smoking prior to first cancer and risk of second smoking-associated cancers among survivors of bladder, kidney, head and neck, and stage I lung cancers. J. Clin. Oncol., 2014, 32(35), 3989-3995.
[http://dx.doi.org/10.1200/JCO.2014.56.8220] [PMID: 25385740]
[32]
Florou, A.N.; Gkiozos, I.C.; Tsagouli, S.K.; Souliotis, K.N.; Syrigos, K.N. Clinical significance of smoking cessation in subjects with cancer: a 30-year review. Respir. Care, 2014, 59(12), 1924-1936.
[http://dx.doi.org/10.4187/respcare.02559] [PMID: 25185148]
[33]
Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Altieri, A.; Cogliano, V. WHO International Agency for Research on Cancer Monograph Working Group Carcinogenicity of alcoholic beverages. Lancet Oncol., 2007, 8(4), 292-293.
[http://dx.doi.org/10.1016/S1470-2045(07)70099-2] [PMID: 17431955]
[34]
Xie, F.; Feng, S.; Mao, Y. Alcohol consumption as a cause of cancer: urging for more mechanism study. Hepatobiliary Surg. Nutr., 2019, 8(3), 318-320.
[http://dx.doi.org/10.21037/hbsn.2019.01.20] [PMID: 31245426]
[35]
Secretan, B.; Straif, K.; Baan, R.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; Cogliano, V. WHO International Agency for Research on Cancer Monograph Working Group A review of human carcinogens--Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol., 2009, 10(11), 1033-1034.
[http://dx.doi.org/10.1016/S1470-2045(09)70326-2] [PMID: 19891056]
[36]
Horn-Ross, P.L.; Canchola, A.J.; West, D.W.; Stewart, S.L.; Bernstein, L.; Deapen, D.; Pinder, R.; Ross, R.K.; Anton-Culver, H.; Peel, D.; Ziogas, A.; Reynolds, P.; Wright, W. Patterns of alcohol consumption and breast cancer risk in the California Teachers Study cohort. Cancer Epidemiol. Biomarkers Prev., 2004, 13(3), 405-411.
[PMID: 15006916]
[37]
Poynter, J.N.; Haile, R.W.; Siegmund, K.D.; Campbell, P.T.; Figueiredo, J.C.; Limburg, P.; Young, J.; Le Marchand, L.; Potter, J.D.; Cotterchio, M.; Casey, G.; Hopper, J.L.; Jenkins, M.A.; Thibodeau, S.N.; Newcomb, P.A.; Baron, J.A. Colon Cancer Family Registry. Associations between smoking, alcohol consumption, and colorectal cancer, overall and by tumor microsatellite instability status. Cancer Epidemiol. Biomarkers Prev., 2009, 18(10), 2745-2750.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0517] [PMID: 19755657]
[38]
Aly, H.F. Dietary habits and relation to cancer disease in different population. Arch. Cancer Res., 2012, 1, 1-26.
[39]
Ito, N.; Hasegawa, R.; Sano, M.; Tamano, S.; Esumi, H.; Takayama, S.; Sugimura, T. A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Carcinogenesis, 1991, 12(8), 1503-1506.
[http://dx.doi.org/10.1093/carcin/12.8.1503] [PMID: 1860171]
[40]
Rizwan Khan, M.; Naushad, M.; Abdullah Alothman, Z. Presence of heterocyclic amine carcinogens in home-cooked and fast-food camel meat burgers commonly consumed in Saudi Arabia. Sci. Rep., 2017, 7(1), 1707.
[http://dx.doi.org/10.1038/s41598-017-01968-x] [PMID: 28490740]
[41]
Shirai, T.; Sano, M.; Tamano, S.; Takahashi, S.; Hirose, M.; Futakuchi, M.; Hasegawa, R.; Imaida, K.; Matsumoto, K.; Wakabayashi, K.; Sugimura, T.; Ito, N. The prostate: A target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) derived from cooked foods. Cancer Res., 1997, 57(2), 195-198.
[PMID: 9000552]
[42]
Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz. Gastroenterol., 2019, 14(1), 26-38.
[http://dx.doi.org/10.5114/pg.2018.80001] [PMID: 30944675]
[43]
Tsugane, S.; Akabane, M.; Inami, T.; Matsushima, S.; Ishibashi, T.; Ichinowatari, Y.; Miyajima, Y.; Watanabe, S. Urinary salt excretion and stomach cancer mortality among four Japanese populations. Cancer Causes Control, 1991, 2(3), 165-168.
[http://dx.doi.org/10.1007/BF00056209] [PMID: 1873446]
[44]
Kazan, M.; Karalti, I. The association between obesity and cancer. Endocrinol. Metab. Syndr., 2015, 4, 4.
[http://dx.doi.org/10.4172/2161-1017.1000196]
[45]
Colditz, G.A.; Peterson, L.L. Obesity and cancer: Evidence, impact, and future directions. Clin. Chem., 2018, 64(1), 154-162.
[http://dx.doi.org/10.1373/clinchem.2017.277376] [PMID: 29038151]
[46]
Irigaray, P.; Newby, J.A.; Lacomme, S.; Belpomme, D. Overweight/obesity and cancer genesis: More than a biological link. Biomed. Pharmacother., 2007, 61(10), 665-678.
[http://dx.doi.org/10.1016/j.biopha.2007.10.008] [PMID: 18035514]
[47]
Louie, S.M.; Roberts, L.S.; Nomura, D.K. Mechanisms linking obesity and cancer. Biochim. Biophys. Acta, 2013, 1831(10), 1499-1508.
[http://dx.doi.org/10.1016/j.bbalip.2013.02.008] [PMID: 23470257]
[48]
Bianchini, F.; Kaaks, R.; Vainio, H. Overweight, obesity, and cancer risk. Lancet Oncol., 2002, 3(9), 565-574.
[http://dx.doi.org/10.1016/S1470-2045(02)00849-5] [PMID: 12217794]
[49]
van Tong, H.; Brindley, P.J.; Meyer, C.G.; Velavan, T.P. Parasite infection, carcinogenesis and human malignancy. EBioMedicine, 2017, 15, 12-23.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.034] [PMID: 27956028]
[50]
Samaras, V.; Rafailidis, P.I.; Mourtzoukou, E.G.; Peppas, G.; Falagas, M.E. Chronic bacterial and parasitic infections and cancer: A review. J. Infect. Dev. Ctries., 2010, 4(5), 267-281.
[http://dx.doi.org/10.3855/jidc.819] [PMID: 20539059]
[51]
Kuper, H.E.; Tzonou, A.; Kaklamani, E.; Hadziyannis, S.; Tasopoulos, N.; Lagiou, P.; Trichopoulos, D.; Stuver, S. Hepatitis B and C viruses in the etiology of hepatocellular carcinoma; a study in Greece using third-generation assays. Cancer Causes Control, 2000, 11(2), 171-175.
[http://dx.doi.org/10.1023/A:1008951901148] [PMID: 10710202]
[52]
Caygill, C.P.; Hill, M.J.; Braddick, M.; Sharp, J.C. Cancer mortality in chronic typhoid and paratyphoid carriers. Lancet, 1994, 343(8889), 83-84.
[http://dx.doi.org/10.1016/S0140-6736(94)90816-8] [PMID: 7903779]
[53]
Shukla, V.K.; Singh, H.; Pandey, M.; Upadhyay, S.K.; Nath, G. Carcinoma of the gallbladder--is it a sequel of typhoid? Dig. Dis. Sci., 2000, 45(5), 900-903.
[http://dx.doi.org/10.1023/A:1005564822630] [PMID: 10795752]
[54]
Di Domenico, E.G.; Cavallo, I.; Pontone, M.; Toma, L.; Ensoli, F. Biofilm producing Salmonella typhi: Chronic colonization and development of gallbladder cancer. Int. J. Mol. Sci., 2017, 18(9), 1887.
[http://dx.doi.org/10.3390/ijms18091887] [PMID: 28858232]
[55]
Dutta, U.; Garg, P.K.; Kumar, R.; Tandon, R.K. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am. J. Gastroenterol., 2000, 95(3), 784-787.
[http://dx.doi.org/10.1111/j.1572-0241.2000.01860.x] [PMID: 10710075]
[56]
IARC Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr. Eval. Carcinog. Risks Hum., 1994, 61, 1-241.
[PMID: 7715068]
[57]
Correa, M.E.; Finol, H.J.; Marquez, A.; Sosa, L.; Diaz, N.L. Ultrastructure of hepatocyte abnormalities in perimetastatic areas. J. Submicrosc. Cytol. Pathol., 1998, 30(3), 371-377.
[PMID: 9723197]
[58]
Thompson, M.P.; Kurzrock, R. Epstein-Barr virus and cancer. Clin. Cancer Res., 2004, 10(3), 803-821.
[http://dx.doi.org/10.1158/1078-0432.CCR-0670-3] [PMID: 14871955]
[59]
Chang, Y.; Cesarman, E.; Pessin, M.S.; Lee, F.; Culpepper, J.; Knowles, D.M.; Moore, P.S. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science, 1994, 266(5192), 1865-1869.
[http://dx.doi.org/10.1126/science.7997879] [PMID: 7997879]
[60]
zur Hausen, H. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer, 2002, 2(5), 342-350.
[http://dx.doi.org/10.1038/nrc798] [PMID: 12044010]
[61]
Feng, H.; Shuda, M.; Chang, Y.; Moore, P.S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science, 2008, 319(5866), 1096-1100.
[http://dx.doi.org/10.1126/science.1152586] [PMID: 18202256]
[62]
Beasley, R.P.; Hwang, L.Y.; Lin, C.C.; Chien, C.S. Hepatocellular carcinoma and Hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet, 1981, 2(8256), 1129-1133.
[http://dx.doi.org/10.1016/S0140-6736(81)90585-7] [PMID: 6118576]
[63]
Choo, Q.L.; Kuo, G.; Weiner, A.J.; Overby, L.R.; Bradley, D.W.; Houghton, M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science, 1989, 244(4902), 359-362.
[http://dx.doi.org/10.1126/science.2523562] [PMID: 2523562]
[64]
Poiesz, B.J.; Ruscetti, F.W.; Gazdar, A.F.; Bunn, P.A.; Minna, J.D.; Gallo, R.C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci. USA, 1980, 77(12), 7415-7419.
[http://dx.doi.org/10.1073/pnas.77.12.7415] [PMID: 6261256]
[65]
IARC Hepatitis viruses. IARC monographs on the evaluation of carcinogenic risks to humans, Lyon, France, 1994. IARC Monogr. Eval. Carcinog. Risks Hum., 1994, 59, 1-255.
[66]
IARC Proceedings of the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Epstein-Barr Virus and Kaposi’s Sarcoma Herpesvirus/Human Herpesvirus 8. Lyon, France, 17-24 June 1997. IARC Monogr. Eval. Carcinog. Risks Hum., 1997, 70, 1-492.
[PMID: 9705682]
[67]
Murai, T.; Mori, S.; Machino, S.; Hosono, M.; Takeuchi, Y.; Ohara, T.; Makino, S.; Takeda, R.; Hayashi, Y.; Iwata, H.; Yamamoto, S.; Ito, H.; Fukushima, S. Induction of renal pelvic carcinoma by phenacetin in hydronephrosis-bearing rats of the SD/cShi strain. Cancer Res., 1993, 53(18), 4218-4223.
[PMID: 8364917]
[68]
Brusselaers, N.; Tamimi, R.M.; Konings, P.; Rosner, B.; Adami, H.O.; Lagergren, J. Different menopausal hormone regimens and risk of breast cancer. Ann. Oncol., 2018, 29(8), 1771-1776.
[http://dx.doi.org/10.1093/annonc/mdy212] [PMID: 29917061]
[69]
Titus, L.; Hatch, E.E.; Drake, K.M.; Parker, S.E.; Hyer, M.; Palmer, J.R.; Strohsnitter, W.C.; Adam, E.; Herbst, A.L.; Huo, D.; Hoover, R.N.; Troisi, R. Reproductive and hormone-related outcomes in women whose mothers were exposed in utero to diethylstilbestrol (DES): A report from the US National Cancer Institute DES Third Generation Study. Reprod. Toxicol., 2019, 84, 32-38.
[http://dx.doi.org/10.1016/j.reprotox.2018.12.008] [PMID: 30594671]
[70]
Han, W.; Soltani, K.; Ming, M.; He, Y-Y. Deregulation of XPC and CypA by Cyclosporin A: An immunosuppression-independent mechanism of skin carcinogenesis. Cancer Prev. Res. (Phila.), 2012, 5(9), 1155-1162.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0185-T] [PMID: 22846842]
[71]
Sgarbieri, V.C.; Pacheco, M.T.B. Healthy human aging: Intrinsic and environmental factors. Braz. J. Food. Technol., 2017, 20e2017007
[http://dx.doi.org/10.1590/1981-6723.00717]
[72]
Gundu, G.; Fiskin, K. Aging and cancer: Molecular facts and awareness for Turkey. Turk. J. Biol., 2014, 38, 708-719.
[http://dx.doi.org/10.3906/biy-1405-9]
[73]
Adams, J.M.; White, M. Biological aging. Eur. J. Public Health, 2004, 14, 331-334.
[http://dx.doi.org/10.1093/eurpub/14.3.331] [PMID: 15369043]
[74]
Hipkiss, A.R. Biological aspects of ageing. Psychiatry, 2007, 6, 476-479.
[http://dx.doi.org/10.1016/j.mppsy.2007.09.003]
[75]
de Magalhães, J.P. How ageing processes influence cancer. Nat. Rev. Cancer, 2013, 13(5), 357-365.
[http://dx.doi.org/10.1038/nrc3497] [PMID: 23612461]
[76]
Serrano, M. Unraveling the links between cancer and aging. Carcinogenesis, 2016, 37(2), 107.
[http://dx.doi.org/10.1093/carcin/bgv100] [PMID: 26717994]
[77]
Aunan, J.R.; Cho, W.C.; Søreide, K. The biology of aging and cancer: A brief overview of shared and divergent molecular hallmarks. Aging Dis., 2017, 8(5), 628-642.
[http://dx.doi.org/10.14336/AD.2017.0103] [PMID: 28966806]
[78]
von Zglinicki, T.; Bürkle, A.; Kirkwood, T.B. Stress, DNA damage and ageing -- an integrative approach. Exp. Gerontol., 2001, 36(7), 1049-1062.
[http://dx.doi.org/10.1016/S0531-5565(01)00111-5] [PMID: 11404050]
[79]
Kawanishi, S.; Hiraku, Y.; Oikawa, S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat. Res., 2001, 488(1), 65-76.
[http://dx.doi.org/10.1016/S1383-5742(00)00059-4] [PMID: 11223405]
[80]
Yaghoobi, M.; Rakhshani, N.; Sadr, F.; Bijarchi, R.; Joshaghani, Y.; Mohammadkhani, A.; Attari, A.; Akbari, M.R.; Hormazdi, M.; Malekzadeh, R. Hereditary risk factors for the development of gastric cancer in younger patients. BMC Gastroenterol., 2004, 4, 28.
[http://dx.doi.org/10.1186/1471-230X-4-28] [PMID: 15509297]
[81]
Weiss, F.U. Pancreatic cancer risk in hereditary pancreatitis. Front. Physiol., 2014, 5, 70.
[http://dx.doi.org/10.3389/fphys.2014.00070] [PMID: 24600409]
[82]
Rajput, S.; Wilber, A. Roles of inflammation in cancer initiation, progression, and metastasis. Front. Biosci. (Schol. Ed.), 2010, 2, 176-183.
[PMID: 20036938]
[83]
Moore, M.M.; Chua, W.; Charles, K.A.; Clarke, S.J. Inflammation and cancer: Causes and consequences. Clin. Pharmacol. Ther., 2010, 87(4), 504-508.
[http://dx.doi.org/10.1038/clpt.2009.254] [PMID: 20147899]
[84]
Key, T.J.; Allen, N.E.; Verkasalo, P.K.; Banks, E. Energy balance and cancer: The role of sex hormones. Proc. Nutr. Soc., 2001, 60(1), 81-89.
[http://dx.doi.org/10.1079/PNS200068] [PMID: 11310427]
[85]
Henderson, B.E.; Feigelson, H.S. Hormonal carcinogenesis. Carcinogenesis, 2000, 21(3), 427-433.
[http://dx.doi.org/10.1093/carcin/21.3.427] [PMID: 10688862]
[86]
Wingo, P.A.; Tong, T.; Bolden, S. Cancer statistics, 1995. CA Cancer J. Clin., 1995, 45(1), 8-30.
[http://dx.doi.org/10.3322/canjclin.45.1.8] [PMID: 7528632]
[87]
Sponholtz, T.R.; Palmer, J.R.; Rosenberg, L.A.; Hatch, E.E.; Adams-Campbell, L.L.; Wise, L.A. Exogenous hormone use and endometrial cancer in U.S. black women. Cancer Epidemiol. Biomarkers Prev., 2018, 27(5), 558-565.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0722] [PMID: 29475971]
[88]
Hilakivi-Clarke, L.; de Assis, S.; Warri, A. Exposures to synthetic estrogens at different times during the life, and their effect on breast cancer risk. J. Mammary Gland Biol. Neoplasia, 2013, 18(1), 25-42.
[http://dx.doi.org/10.1007/s10911-013-9274-8] [PMID: 23392570]
[89]
Byers, T.; Graham, S.; Rzepka, T.; Marshall, J. Lactation and breast cancer. Evidence for a negative association in premenopausal women. Am. J. Epidemiol., 1985, 121(5), 664-674.
[http://dx.doi.org/10.1093/aje/121.5.664] [PMID: 4014158]
[90]
Aljohani, A.M. Hormonal imbalance and ovarian cancer. Int. J. Sci. Eng. Res., 2017, 8, 282-286.
[91]
Klutstein, M.; Moss, J.; Kaplan, T.; Cedar, H. Contribution of epigenetic mechanisms to variation in cancer risk among tissues. Proc. Natl. Acad. Sci. USA, 2017, 114(9), 2230-2234.
[http://dx.doi.org/10.1073/pnas.1616556114] [PMID: 28193856]
[92]
Kakde, D.; Jain, D.; Shrivastava, V.; Kakde, R. Cancer therapeutics-opportunities, challenges and advances in drug delivery. J. App. Pharma., 2011, 01, 01-10.
[93]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[94]
Phalon, C.; Rao, D.D.; Nemunaitis, J. Potential use of RNA interference in cancer therapy. Expert Rev. Mol. Med., 2010, 12e26
[http://dx.doi.org/10.1017/S1462399410001584] [PMID: 20716384]
[95]
Behrouzkia, Z.; Joveini, Z.; Keshavarzi, B.; Eyvazzadeh, N.; Aghdam, R.Z. Hyperthermia: How can it be used? Oman Med. J., 2016, 31(2), 89-97.
[http://dx.doi.org/10.5001/omj.2016.19] [PMID: 27168918]
[96]
Amaral, R.G.; dos Santos, S.A.; Andrade, L.N.; Severino, P.; Carvalho, A.A. Natural products as treatment against cancer: A historical and current vision. Clin. Oncol. (R. Coll. Radiol.), 2019, 4, 1562.
[97]
Rahman, H.S. Natural products for cancer therapy. Dual Diagn. Open Acc., 2016, 1, 15.
[http://dx.doi.org/10.21767/2472-5048.100015]
[98]
Ouyang, L.; Luo, Y.; Tian, M.; Zhang, S-Y.; Lu, R.; Wang, J-H.; Kasimu, R.; Li, X. Plant natural products: From traditional compounds to new emerging drugs in cancer therapy. Cell Prolif., 2014, 47(6), 506-515.
[http://dx.doi.org/10.1111/cpr.12143] [PMID: 25377084]
[99]
Cragg, G.M.; Newman, D.J.; Weiss, R.B. Coral reefs, forests, and thermal vents: the worldwide exploration of nature for novel antitumor agents. Semin. Oncol., 1997, 24(2), 156-163.
[PMID: 9129686]
[100]
Elrayess, R.A.; El-Hak, H.N.G. Anticancer natural products: A review. Cancer Stud. Mol. Med., 2019, 5, 11-22.
[http://dx.doi.org/10.17140/CSMMOJ-5-127]
[101]
Xu, Y.; Li, X.; Su, X. iTRAQbased proteomics analysis of the therapeutic effects of combined anticancer bioactive peptides and oxaliplatin on gastric cancer cells. Oncol. Rep., 2020, 43(1), 201-217.
[http://dx.doi.org/10.3892/or.2019.7406] [PMID: 31746436]
[102]
Pal, P.; Roy, S.; Chattopadhyay, S.; Pal, T.K. Medicinal value of animal venom for treatment of cancer in humans - A review. W.S.N., 2015, 22, 128-144.
[103]
Debnath, A.; Chatterjee, U.; Das, M.; Vedasiromoni, J.R.; Gomes, A. Venom of Indian monocellate cobra and Russell’s viper show anticancer activity in experimental models. J. Ethnopharmacol., 2007, 111(3), 681-684.
[http://dx.doi.org/10.1016/j.jep.2006.12.027] [PMID: 17258413]
[104]
Yang, S.H.; Chien, C.M.; Lu, M.C.; Lin, Y.H.; Hu, X.W.; Lin, S.R. Up-regulation of Bax and endonuclease G, and down-modulation of Bcl-XL involved in cardiotoxin III-induced apoptosis in K562 cells. Exp. Mol. Med., 2006, 38(4), 435-444.
[http://dx.doi.org/10.1038/emm.2006.51] [PMID: 16953123]
[105]
Osipov, A.V.; Utkin, Y.N. Antiproliferative effects of snake venom phospholipases A2 and their perspectives for cancer treatment.In:Toxins and Drug Discovery; Gopalakrishnakone, P.; Cruz, L.; Luo, S., Eds.; Springer: Dordrecht, 2017, Vol. 1, pp. 129-146.
[http://dx.doi.org/10.1007/978-94-007-6452-1_13]
[106]
Cedro, R.C.A.; Menaldo, D.L.; Costa, T.R.; Zoccal, K.F.; Sartim, M.A.; Santos-Filho, N.A.; Faccioli, L.H.; Sampaio, S.V. Cytotoxic and inflammatory potential of a phospholipase A2 from Bothrops jararaca snake venom. J. Venom. Anim. Toxins Incl. Trop. Dis., 2018, 24, 33.
[http://dx.doi.org/10.1186/s40409-018-0170-y] [PMID: 30498509]
[107]
Possani, L.D.; Merino, E.; Corona, M.; Bolivar, F.; Becerril, B. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie, 2000, 82(9-10), 861-868.
[http://dx.doi.org/10.1016/S0300-9084(00)01167-6] [PMID: 11086216]
[108]
Soroceanu, L.; Gillespie, Y.; Khazaeli, M.B.; Sontheimer, H. Use of chlorotoxin for targeting of primary brain tumors. Cancer Res., 1998, 58(21), 4871-4879.
[PMID: 9809993]
[109]
Deshane, J.; Garner, C.C.; Sontheimer, H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem., 2003, 278(6), 4135-4144.
[http://dx.doi.org/10.1074/jbc.M205662200] [PMID: 12454020]
[110]
Gupta, S.D.; Gomes, A.; Debnath, A.; Saha, A.; Gomes, A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian Black scorpion venom: Through mitochondrial pathway and inhibition of Heat Shock Proteins. Chem. Biol. Interact., 2010, 183(2), 293-303.
[http://dx.doi.org/10.1016/j.cbi] [PMID: 19913524]
[111]
Masuda, S.; Jones, G. Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol. Cancer Ther., 2006, 5(4), 797-808.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0539] [PMID: 16648549]
[112]
Zeeb, H.; Greinert, R. The role of vitamin D in cancer prevention: Does UV protection conflict with the need to raise low levels of vitamin D? Dtsch. Arztebl. Int., 2010, 107(37), 638-643.
[PMID: 20959891]
[113]
Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer, 2014, 14, 342-357.
[http://dx.doi.org/10.1038/nrc3691]
[114]
Grant, W.B. Ecological studies of the UVB-vitamin D-cancer hypothesis. Anticancer Res., 2012, 32(1), 223-236.
[PMID: 22213311]
[115]
Zhang, S.; Lei, P.; Liu, X.; Li, X.; Walker, K.; Kotha, L.; Rowlands, C.; Safe, S. The aryl hydrocarbon receptor as a target for estrogen receptor-negative breast cancer chemotherapy. Endocr. Relat. Cancer, 2009, 16(3), 835-844.
[http://dx.doi.org/10.1677/ERC-09-0054] [PMID: 19447902]
[116]
Tsuda, H.; Sekine, K.; Ushida, Y.; Kuhara, T.; Takasuka, N.; Iigo, M.; Han, B.S.; Moore, M.A. Milk and dairy products in cancer prevention: focus on bovine lactoferrin. Mutat. Res., 2000, 462(2-3), 227-233.
[http://dx.doi.org/10.1016/S1383-5742(00)00040-5] [PMID: 10767634]
[117]
Dubey, U.S.; Lal, M.; Mittal, A.; Kapur, S. Therapeutic potential of camel milk. Emir. J. Food Agric., 2016, 28, 164-176.
[http://dx.doi.org/10.9755/ejfa.2015-04-122]
[118]
Svensson, M.; Håkansson, A.; Mossberg, A.K.; Linse, S.; Svanborg, C. Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 4221-4226.
[http://dx.doi.org/10.1073/pnas.97.8.4221] [PMID: 10760289]
[119]
Dai, X.; Zhang, J.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Kumar, A.P.; Ahn, K.S.; Sethi, G. Targeting TNF-Related Apoptosis-Inducing Ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp. Biol. Med. (Maywood), 2015, 240(6), 760-773.
[http://dx.doi.org/10.1177/1535370215579167] [PMID: 25854879]
[120]
Oelkrug, C.; Hartke, M.; Schubert, A. Mode of action of Anticancer Peptides (ACPs) from Amphibian Origin. Anticancer Res., 2015, 35, 635-644.
[121]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[122]
Conlon, J.M.; Demandt, A.; Nielsen, P.F.; Leprince, J.; Vaudry, H.; Woodhams, D.C. The alyteserins: Two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides, 2009, 30(6), 1069-1073.
[http://dx.doi.org/10.1016/j.peptides.2009.03.004] [PMID: 19463738]
[123]
Conlon, J.M.; Mechkarska, M.; Prajeep, M.; Arafat, K.; Zaric, M.; Lukic, M.L.; Attoub, S. Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids, 2013, 44(2), 715-723.
[http://dx.doi.org/10.1007/s00726-012-1395-7] [PMID: 22965637]
[124]
Conlon, J.M.; Galadari, S.; Raza, H.; Condamine, E. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem. Biol. Drug Des., 2008, 72(1), 58-64.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00671.x] [PMID: 18554256]
[125]
Rozek, T.; Wegener, K.L.; Bowie, J.H.; Olver, I.N.; Carver, J.A.; Wallace, J.C.; Tyler, M.J. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2. Eur. J. Biochem., 2000, 267(17), 5330-5341.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01536.x] [PMID: 10951191]
[126]
van Zoggel, H.; Hamma-Kourbali, Y.; Galanth, C.; Ladram, A.; Nicolas, P.; Courty, J.; Amiche, M.; Delbé, J. Antitumor and angiostatic peptides from frog skin secretions. Amino Acids, 2012, 42(1), 385-395.
[http://dx.doi.org/10.1007/s00726-010-0815-9] [PMID: 21132338]
[127]
Conlon, J.M.; Woodhams, D.C.; Raza, H.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; Rollins-Smith, L.A. Peptides with differential cytolytic activity from skin secretions of the lemur leaf frog Hylomantis lemur (Hylidae: Phyllomedusinae). Toxicon, 2007, 50(4), 498-506.
[http://dx.doi.org/10.1016/j.toxicon.2007.04.017] [PMID: 17561225]
[128]
Patathananone, S.; Thammasirirak, S.; Daduang, J.; Chung, J.G.; Temsiripong, Y.; Daduang, S. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells. Environ. Toxicol., 2016, 31(8), 986-997.
[http://dx.doi.org/10.1002/tox.22108] [PMID: 25691005]
[129]
Theansungnoen, T.; Maijaroen, S.; Jangpromma, N.; Yaraksa, N.; Daduang, S.; Temsiripong, T.; Daduang, J.; Klaynongsruang, S.; Aduang, J.; Klaynongsruang, S. Cationic antimicrobial peptides derived from Crocodylus siamensis leukocyte extract, revealing anticancer activity and apoptotic induction on human cervical cancer cells. Protein J., 2016, 35(3), 202-211.
[http://dx.doi.org/10.1007/s10930-016-9662-1] [PMID: 27129462]
[130]
He, S.; Mao, X.; Zhang, T.; Guo, X.; Ge, Y.; Ma, C.; Zhang, X. Separation and nanoencapsulation of antitumor peptides from Chinese three-striped box turtle (Cuora trifasciata). J. Microencapsul., 2016, 33(4), 344-354.
[http://dx.doi.org/10.1080/02652048.2016.1194904] [PMID: 27292913]
[131]
Blockley, A.; Elliott, D.R.; Roberts, A.P.; Sweet, M. Symbiotic microbes from marine invertebrates driving a new era of natural product drug discovery. Diversity (Basel), 2017, 9, 49.
[http://dx.doi.org/10.3390/d9040049]
[132]
Hussain, M.S.; Fareed, S.; Ansari, S.; Khan, M.S. Marine natural products: A lead for anticancer. Indian J. Geo-Mar. Sci., 2012, 41, 27-39.
[133]
Schwartsmann, G.; Brondani da Rocha, A.; Berlinck, R.G.; Jimeno, J. Marine organisms as a source of new anticancer agents. Lancet Oncol., 2001, 2(4), 221-225.
[http://dx.doi.org/10.1016/S1470-2045(00)00292-8] [PMID: 11905767]
[134]
Yousaf, M.; Hammond, N.L.; Peng, J.; Wahyuono, S.; McIntosh, K.A.; Charman, W.N.; Mayer, A.M.; Hamann, M.T. New manzamine alkaloids from an Indo-Pacific sponge. Pharmacokinetics, oral availability, and the significant activity of several manzamines against HIV-I, AIDS opportunistic infections, and inflammatory diseases. J. Med. Chem., 2004, 47(14), 3512-3517.
[http://dx.doi.org/10.1021/jm030475b] [PMID: 15214779]
[135]
Ibrahim, S.R.; Min, C.C.; Teuscher, F.; Ebel, R.; Kakoschke, C.; Lin, W.; Wray, V.; Edrada-Ebel, R.; Proksch, P. Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorg. Med. Chem., 2010, 18(14), 4947-4956.
[http://dx.doi.org/10.1016/j.bmc.2010.06.012] [PMID: 20599387]
[136]
Williams, D.E.; Yu, K.; Behrisch, H.W.; Van Soest, R.; Andersen, R.J. Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the Caribbean marine sponge Eurypon laughlini. J. Nat. Prod., 2009, 72(7), 1253-1257.
[http://dx.doi.org/10.1021/np900121m] [PMID: 19583251]
[137]
Odaka, C.; Sanders, M.L.; Crews, P. Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin. Diagn. Lab. Immunol., 2000, 7(6), 947-952.
[http://dx.doi.org/10.1128/CDLI.7.6.947-952.2000] [PMID: 11063504]
[138]
Wang, Y.K.; He, H.L.; Wang, G.F.; Wu, H.; Zhou, B.C.; Chen, X.L.; Zhang, Y.Z. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar. Drugs, 2010, 8(2), 255-268.
[http://dx.doi.org/10.3390/md8020255] [PMID: 20390104]
[139]
Wang, L.; Dong, C.; Li, X.; Han, W.; Su, X. Anticancer potential of bioactive peptides from animal sources. (Review) Oncol. Rep., 2017, 38(2), 637-651.
[http://dx.doi.org/10.3892/or.2017.5778] [PMID: 28677775]
[140]
Harris, J.R.; Markl, J. Keyhole limpet hemocyanin: molecular structure of a potent marine immunoactivator. A review. Eur. Urol., 2000, 37(Suppl. 3), 24-33.
[http://dx.doi.org/10.1159/000052389] [PMID: 10828684]
[141]
Murai, A.; Kitahara, K.; Okumura, S.; Kobayashi, M.; Horio, F. Oral antibiotics enhance antibody responses to keyhole limpet hemocyanin in orally but not muscularly immunized chickens. Anim. Sci. J., 2016, 87(2), 257-265.
[http://dx.doi.org/10.1111/asj.12424] [PMID: 26304689]
[142]
McFadden, D.W.; Riggs, D.R.; Jackson, B.J.; Vona-Davis, L. Keyhole limpet hemocyanin, a novel immune stimulant with promising anticancer activity in Barrett’s esophageal adenocarcinoma. Am. J. Surg., 2003, 186(5), 552-555.
[http://dx.doi.org/10.1016/j.amjsurg.2003.08.002] [PMID: 14599624]
[143]
Pereira, R.B.; Andrade, P.B.; Valentão, P. Chemical diversity and biological properties of secondary metabolites from Sea Hares of Aplysia genus. Mar. Drugs, 2016, 14(2)E39
[http://dx.doi.org/10.3390/md14020039] [PMID: 26907303]
[144]
Poncet, J. The dolastatins, a family of promising antineoplastic agents. Curr. Pharm. Des., 1999, 5(3), 139-162.
[PMID: 10066887]
[145]
Rabiei, S.; Rezaei, M.; Asgharzade, S.; Nikoo, M.; Rafieia-kopai, M. Antioxidant and cytotoxic properties of protein hydrolysates obtained from enzymatic hydrolysis of Klunzinger’s mullet (Liza klunzingeri) muscle. Braz. J. Pharm., 2019, 55e18304
[http://dx.doi.org/10.1590/s2175-97902019000218304]
[146]
Hsu, J.C.; Lin, L.C.; Tzen, J.T.; Chen, J.Y. Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major). Peptides, 2011, 32(5), 900-910.
[http://dx.doi.org/10.1016/j.peptides.2011.02.013] [PMID: 21349308]
[147]
Lee, Y.G.; Lee, K.W.; Kim, J.Y.; Kim, K.H.; Lee, H.J. Induction of apoptosis in a human lymphoma cell line by hydrophobic peptide fraction separated from anchovy sauce. Biofactors, 2004, 21(1-4), 63-67.
[http://dx.doi.org/10.1002/biof.552210112] [PMID: 15630171]
[148]
Dayal, J.S.; Ponniah, A.G.; Khan, H.I.; Madhu Babu, E.P.; Ambasankar, K.; Kumarguru Vasagam, K.P. Shrimps - a nutritional perspective. Curr. Sci., 2013, 104, 1487-1491.
[149]
López-Saiz, C.M.; Hernández, J.; Cinco-Moroyoqui, F.J.; Velázquez, C.; Ocaño-Higuera, V.M.; Plascencia-Jatomea, M.; Robles-Sánchez, M.; Machi-Lara, L.; Burgos-Hernández, A. Antimutagenic Compounds of White Shrimp (Litopenaeus vannamei): Isolation and structural elucidation. Evid. Based Complement. Alternat. Med., 2016, 20168148215
[http://dx.doi.org/10.1155/2016/8148215] [PMID: 27006678]
[150]
López-Saiz, C.M.; Suárez-Jiménez, G.M.; Plascencia-Jatomea, M.; Burgos-Hernández, A. Shrimp lipids: A source of cancer chemopreventive compounds. Mar. Drugs, 2013, 11(10), 3926-3950.
[http://dx.doi.org/10.3390/md11103926] [PMID: 24135910]
[151]
Wilson-Sanchez, G.; Moreno-Félix, C.; Velazquez, C.; Plascencia-Jatomea, M.; Acosta, A.; Machi-Lara, L.; Aldana-Madrid, M.L.; Ezquerra-Brauer, J.M.; Robles-Zepeda, R.; Burgos-Hernandez, A. Antimutagenicity and antiproliferative studies of lipidic extracts from white shrimp (Litopenaeus vannamei). Mar. Drugs, 2010, 8(11), 2795-2809.
[http://dx.doi.org/10.3390/md8112795] [PMID: 21139845]
[152]
Huang, H.N.; Rajanbabu, V.; Pan, C.Y.; Chan, Y.L.; Chen, J.Y.; Wu, C.J. Enhanced control of bladder-associated tumors using Shrimp Anti-Lipopolysaccharide Factor (SALF) antimicrobial peptide as a cancer vaccine adjuvant in mice. Mar. Drugs, 2015, 13(5), 3241-3258.
[http://dx.doi.org/10.3390/md13053241] [PMID: 26006716]
[153]
Somboonwiwat, K.; Marcos, M.; Tassanakajon, A.; Klinbunga, S.; Aumelas, A.; Romestand, B.; Gueguen, Y.; Boze, H.; Moulin, G.; Bachère, E. Recombinant expression and anti-microbial activity of Anti-Lipopolysaccharide Factor (ALF) from the black tiger shrimp Penaeus monodon. Dev. Comp. Immunol., 2005, 29(10), 841-851.
[http://dx.doi.org/10.1016/j.dci.2005.02.004] [PMID: 15978281]
[154]
Taraboletti, G.; Poli, M.; Dossi, R.; Manenti, L.; Borsotti, P.; Faircloth, G.T.; Broggini, M.; D’Incalci, M.; Ribatti, D.; Giavazzi, R. Antiangiogenic activity of aplidine, a new agent of marine origin. Br. J. Cancer, 2004, 90(12), 2418-2424.
[http://dx.doi.org/10.1038/sj.bjc.6601864] [PMID: 15173857]
[155]
Borjan, B.; Steiner, N.; Karbon, S.; Kern, J.; Francesch, A.; Hermann, M.; Willenbacher, W.; Gunsilius, E.; Untergasser, G. The Aplidin analogs PM01215 and PM02781 inhibit angiogenesis in vitro and in vivo. BMC Cancer, 2015, 15, 738.
[http://dx.doi.org/10.1186/s12885-015-1729-4] [PMID: 26483043]
[156]
Liu, G.; Liu, M.; Wei, J.; Huang, H.; Zhang, Y.; Zhao, J.; Xiao, L.; Wu, N.; Zheng, L.; Lin, X. CS5931, a novel polypeptide in Ciona savignyi, represses angiogenesis via inhibiting Vascular Endothelial Growth Factor (VEGF) and Matrix Metalloproteinases (MMPs). Mar. Drugs, 2014, 12(3), 1530-1544.
[http://dx.doi.org/10.3390/md12031530] [PMID: 24633253]
[157]
Łukasiewicz, K.; Fol, M. Microorganisms in the treatment of cancer: Advantages and limitations. J. Immunol. Res., 2018, 20182397808
[http://dx.doi.org/10.1155/2018/2397808] [PMID: 29682586]
[158]
Binaschi, M.; Farinosi, R.; Borgnetto, M.E.; Capranico, G. In vivo site specificity and human isoenzyme selectivity of two topoisomerase II-poisoning anthracyclines. Cancer Res., 2000, 60(14), 3770-3776.
[PMID: 10919649]
[159]
Corremans, R.; Adao, R.; De Keulena, G.W.; Leite-Moreira, A.F.; Bras-Silva, C. Update on pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Clin. Exp. Pharmacol. Physiol., 2019, 46, 206-215.
[http://dx.doi.org/10.1111/1440-1681.13036]
[160]
Patrick, Y. Major microbial diversity initiative recommended. Am. Soc. Microbiol. News, 1997, 63, 417-421.
[161]
Anwar, S.; Almatroudi, A.; Allemailem, K.S.; Joseph, R.J.; Khan, A.A.; Rahmani, A.H. Protective effects of ginger extract against glycation and oxidative stress-induced health complications: An in vitro study. Processes (Basel), 2020, 8, 468.
[http://dx.doi.org/10.3390/pr8040468]
[162]
Song, Y-H.; Sun, H.; Zhang, A-H.; Yan, G-L.; Han, Y.; Wang, X-J. Plant-derived natural products as leads to anti-cancer drugs. J. Med. Plant Herb. Ther. Res., 2014, 2, 6-15.
[163]
Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.N.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids, in the battle against cancer: Overview of molecular mechanisms. Molecules, 2017, 22(2)E250
[http://dx.doi.org/10.3390/molecules22020250] [PMID: 28208712]
[164]
Russo, P.; Del Bufalo, A.; Cesario, A. Flavonoids acting on DNA topoisomerases: Recent advances and future perspectives in cancer therapy. Curr. Med. Chem., 2012, 19(31), 5287-5293.
[http://dx.doi.org/10.2174/092986712803833272] [PMID: 22998568]
[165]
Xu, X.H.; Li, T.; Fong, C.M.; Chen, X.; Chen, X.J.; Wang, Y.T.; Huang, M.Q.; Lu, J.J. Saponins from Chinese medicines as anti-cancer agents. Molecules, 2016, 21(10)E1326
[http://dx.doi.org/10.3390/molecules21101326] [PMID: 27782048]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 17
Year: 2020
Page: [2025 - 2040]
Pages: 16
DOI: 10.2174/1871520620666200705220307
Price: $65

Article Metrics

PDF: 25
HTML: 3
EPUB: 1
PRC: 1