Exploring the Role of Phytochemicals as Potent Natural Photosensitizers in Photodynamic Therapy

Author(s): Giftson J. Senapathy, Blassan P. George, Heidi Abrahamse*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 15 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Cancer is still considered a deadly disease worldwide due to difficulties in diagnosis, painful treatment procedures, costly therapies, side effects, and cancer relapse. Cancer treatments using conventional methods like chemotherapy and radiotherapy were not convincing due to its post-treatment toxicity in the host. In Photodynamic Therapy (PDT), three individual non-toxic components including a photosensitizer, light source and oxygen cause damage to the cells and tissues when they are combined.

Objective: In recent years, phytochemicals are being increasingly recognized as potent complementary drugs for cancer because of its natural availability, less toxicity and therapeutic efficiency in par with commercial drugs. Hence, the idea of using phytochemicals as natural photosensitizers in PDT resulted in a multiple pool of research studies with promising results in preclinical and clinical investigations.

Methods: In this review, the potential of phytochemicals to act as natural photosensitizers for PDT, their mode of action, drawbacks, challenges and possible solutions are discussed in detail.

Results: In PDT, natural photosensitizers, when used alone or in combination with other photosensitizers, induced cell death by apoptosis and necrosis, increased oxidative stress, altered cancer cell death signaling pathways, increased cytotoxicity and DNA damage in cancer cells. The pro-oxidant nature of certain antioxidant polyphenols, hormesis phenomenon, Warburg effect and DNA damaging potential plays a significant role in the photosensitizing mechanism of phytochemicals in PDT.

Conclusion: This review explores the role of phytochemicals that can act as photosensitizers alone or in combination with PDT and its mechanism of action on different cancers.

Keywords: Phytochemicals, photodynamic therapy, antioxidants, cancer therapy, photosensitizer, Warburg effect.

WHO. International Agency for Research on Cancer, Press Release,. 2018.https://www.who.int/cancer/PRGlobocanFinal.pdf (Accessed November 21, 2019).
Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. August. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol.,, 2019. Ahead of Print.
Baghdan, E.; Duse, L.; Schüer, J.J.; Pinnapireddy, S.R.; Pourasghar, M.; Schäfer, J.; Schneider, M.; Bakowsky, U. Development of inhalable curcumin loaded nano-in-microparticles for bronchoscopic photodynamic therapy. Eur. J. Pharm. Sci., 2019, 132, 63-71.
[http://dx.doi.org/10.1016/j.ejps.2019.02.025 ] [PMID: 30797026]
Ahn, J.C.; Kang, J.W.; Shin, J.I.; Chung, P.S. Combination treatment with photodynamic therapy and curcumin induces mitochondria-dependent apoptosis in AMC-HN3 cells. Int. J. Oncol., 2012, 41(6), 2184-2190.
[http://dx.doi.org/10.3892/ijo.2012.1661 ] [PMID: 23064512]
De Rosa, F.S.; Bentley, M.V.L.B. Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharm. Res., 2000, 17(12), 1447-1455.
[http://dx.doi.org/10.1023/A:1007612905378 ] [PMID: 11303952]
Manoto, S.; Houreld, N.; Hodgkinson, N.; Abrahamse, H. Modes of cell death induced by photodynamic therapy using zinc phthalocyanine in lung cancer cells grown as a monolayer and three-dimensional multicellular spheroids. Molecules, 2017, 22(5), 791.
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic Therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001 ] [PMID: 19406659]
Diamond, I.; Mcdonagh, A.; Wilson, C.; Granelli, S.; Nielsen, S.; Jaenicke, R.J.T.L. Photodynamic therapy of malignant tumours. Prelim. Commun., 1972, 300, 1175-1177.
Naidoo, C.; Kruger, C.A.; Abrahamse, H. Photodynamic therapy for metastatic melanoma treatment: A review. Technol. Cancer Res. Treatm., 2018, 17, 1-15.
Qi, H.; Abe, N.; Zhu, B.; Murata, Y.; Nakamura, Y. (-)-Epigallocatechin-3-gallate ameliorates photodynamic therapy responses in an in vitro T lymphocyte model. Phytother. Res., 2014, 28(10), 1486-1491.
[http://dx.doi.org/10.1002/ptr.5152 ] [PMID: 24700514]
Hodgkinson, N.; Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol., 2017, 39(10), 1010428317734691
[http://dx.doi.org/10.1177/1010428317734691] [PMID: 28990490]
Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer. In: Multidisciplinary Colorectal Cancer; Intech Open, 2019.
Raish, M.; Husain, S.Z.; Bae, S.M.; Han, S.J.; Park, C.H.; Shin, J.C.; Ahn, W.S. Photodynamic therapy in combination with green tea polyphenol EGCG enhances antitumor efficacy in human papillomavirus 16 (E6/E7) immortalized tumor cells. Prevention, 2010, 1, 19-24.
NCBI Resources. Pubmed.gov: Photodynamic therapy and canner. . https://www.ncbi.nlm.nih.gov/pubmed/?term=photodynamic+therapy+-+cancer (Accessed November 19, 2019).
Tsai, W.H.; Yu, K.H.; Huang, Y.C.; Lee, C.I. EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles. Int. J. Nanomedicine, 2018, 13, 903-916.
[http://dx.doi.org/10.2147/IJN.S148305 ] [PMID: 29445279]
Gyenge, E.B.; Lüscher, D.; Forny, P.; Antoniol, M.; Geisberger, G.; Walt, H.; Patzke, G.; Maake, C. Photodynamic mechanisms induced by a combination of hypericin and a chlorin based-photosensitizer in head and neck squamous cell carcinoma cells. Photochem. Photobiol., 2013, 89(1), 150-162.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01217.x ] [PMID: 22882495]
Ahn, J.C.; Biswas, R.; Chung, P.S. Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells. Lasers Surg. Med., 2012, 44(10), 840-849.
[http://dx.doi.org/10.1002/lsm.22095 ] [PMID: 23143780]
Ion, R.M.; Suica-Bunghez, I.R. Oxidative stress-based photodynamic therapy with synthetic sensitizers and/or natural antioxidants. In: Basic Principles and Clinical Significance of Oxidative Stress; InTech: Zagreb, 2015, pp. 283-318.
Moan, J. Properties for optimal PDT sensitizers. J. Photochem. Photobiol. B, 1990, 5(3-4), 521-524.
[http://dx.doi.org/10.1016/1011-1344(90)85064-4 ] [PMID: 2115921]
Oniszczuk, A.; Wojtunik-Kulesza, K.A.; Oniszczuk, T.; Kasprzak, K. The potential of photodynamic therapy (PDT)-Experimental investigations and clinical use. Biomed. Pharmacother., 2016, 83, 912-929.
[http://dx.doi.org/10.1016/j.biopha.2016.07.058 ] [PMID: 27522005]
Kuzyniak, W.; Schmidt, J.; Glac, W.; Berkholz, J.; Steinemann, G.; Hoffmann, B.; Ermilov, E.A.; Gürek, A.G.; Ahsen, V.; Nitzsche, B.; Höpfner, M. Novel zinc phthalocyanine as a promising photosensitizer for photodynamic treatment of esophageal cancer. Int. J. Oncol., 2017, 50(3), 953-963.
[http://dx.doi.org/10.3892/ijo.2017.3854 ] [PMID: 28098886]
Velazquez, F.N.; Miretti, M.; Baumgartner, M.T.; Caputto, B.L.; Tempesti, T.C.; Prucca, C.G. Effectiveness of ZnPc and of an amine derivative to inactivate glioblastoma cells by photodynamic therapy: An in vitro comparative study. Sci. Rep., 2019, 9(1), 3010.
[http://dx.doi.org/10.1038/s41598-019-39390-0 ] [PMID: 30816179]
Manoto, S.L.; Abrahamse, H. Effect of a newly synthesized Zn sulfophthalocyanine derivative on cell morphology, viability, proliferation, and cytotoxicity in a human lung cancer cell line (A549). Lasers Med. Sci., 2011, 26(4), 523-530.
[http://dx.doi.org/10.1007/s10103-011-0887-0 ] [PMID: 21279402]
Mfouo-Tynga, I.; Houreld, N.N.; Abrahamse, H. Induced cell death pathway post photodynamic therapy using a metallophthalocyanine photosensitizer in breast cancer cells. Photomed. Laser Surg., 2014, 32(4), 205-211.
[http://dx.doi.org/10.1089/pho.2013.3650 ] [PMID: 24661060]
Yao, L.; Xiao, S.; Dan, F. Boron-fluorine photosensitizers for photodynamic therapy. J. Chem., 2013, 2013,Article ID 697850
Naidoo, C.; Kruger, C.A.; Abrahamse, H. Simultaneous photodiagnosis and photodynamic treatment of metastatic melanoma. Molecules, 2019, 24(17), 3153.
[http://dx.doi.org/10.3390/molecules24173153 ] [PMID: 31470637]
Allison, R.R.; Downie, G.H.; Cuenca, R.; Hu, X.H.; Childs, C.J.; Sibata, C.H. Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther., 2004, 1(1), 27-42.
[http://dx.doi.org/10.1016/S1572-1000(04)00007-9 ] [PMID: 25048062]
Mansoori, B.; Mohammadi, A.; Amin Doustvandi, M.; Mohammadnejad, F.; Kamari, F.; Gjerstorff, M.F.; Baradaran, B.; Hamblin, M.R. Photodynamic therapy for cancer: Role of natural products. Photodiagn. Photodyn. Ther., 2019, 26, 395-404.
[http://dx.doi.org/10.1016/j.pdpdt.2019.04.033 ] [PMID: 31063860]
Siewert, B.; Stuppner, H. The photoactivity of natural products - An overlooked potential of phytomedicines? Phytomedicine, 2019, 60, 152985
[http://dx.doi.org/10.1016/j.phymed.2019.152985] [PMID: 31257117]
George, B.P.; Abrahamse, H.; Hemmaragala, N.M. Anticancer effects elicited by combination of Rubus extract with phthalocyanine photosensitiser on MCF-7 human breast cancer cells. Photodiagn. Photodyn. Ther., 2017, 19, 266-273.
[http://dx.doi.org/10.1016/j.pdpdt.2017.06.014 ] [PMID: 28662924]
Ullrich, C.I.; Aloni, R.; Saeed, M.E.M.; Ullrich, W.; Efferth, T. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. Phytomedicine, 2019, 64, 153081
[http://dx.doi.org/10.1016/j.phymed.2019.153081] [PMID: 31568956]
Giftson, J.S.; Jayanthi, S.; Nalini, N. Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat colon carcinogenesis. Invest. New Drugs, 2010, 28(3), 251-259.
[http://dx.doi.org/10.1007/s10637-009-9241-9 ] [PMID: 19300909]
Ferenc, P.; Solár, P.; Kleban, J.; Mikeš, J.; Fedoročko, P. Down-regulation of Bcl-2 and Akt induced by combination of photoactivated hypericin and genistein in human breast cancer cells. J. Photochem. Photobiol. B, 2010, 98(1), 25-34.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.10.004 ] [PMID: 19932626]
Zhang, S.J.; Sun, D.; Hao, J.B.; Wei, Y.F.; Yin, L.F.; Liu, X. The effect of dietary soyabean isoflavones on photodynamic therapy in K562 leukemia cells. J. Photochem. Photobiol. B, 2012, 110, 28-33.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.02.006 ] [PMID: 22424954]
Gándara, L.; Sandes, E.; Di Venosa, G.; Prack Mc Cormick, B.; Rodriguez, L.; Mamone, L.; Batlle, A.; Eiján, A.M.; Casas, A. The natural flavonoid silybin improves the response to photodynamic therapy of bladder cancer cells. J. Photochem. Photobiol. B, 2014, 133, 55-64.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.03.006 ] [PMID: 24705371]
Koon, H.; Leung, A.W.; Yue, K.K.; Mak, N.K. Photodynamic effect of curcumin on NPC/CNE2 cells. J. Environ. Pathol. Toxicol. Oncol., 2006, 25(1-2), 205-215.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i1-2.120 ] [PMID: 16566718]
Lin, H.Y.; Lin, J.N.; Ma, J.W.; Yang, N.S.; Ho, C.T.; Kuo, S.C.; Way, T.D. Demethoxycurcumin induces autophagic and apoptotic responses on breast cancer cells in photodynamic therapy. J. Funct. Foods, 2015, 12, 439-449.
Santezi, C.; Reina, B.D.; Dovigo, L.N. Curcumin-mediated photodynamic therapy for the treatment of oral infections-A review. Photodiagn. Photodyn. Ther., 2018, 21, 409-415.
[http://dx.doi.org/10.1016/j.pdpdt.2018.01.016 ] [PMID: 29378256]
Şueki, F.; Ruhi, M.K.; Gülsoy, M. The effect of curcumin in antitumor photodynamic therapy: In vitro experiments with Caco-2 and PC-3 cancer lines. Photodiagn. Photodyn. Ther., 2019, 27, 95-99.
[http://dx.doi.org/10.1016/j.pdpdt.2019.05.012 ] [PMID: 31100447]
Šemeláková, M.; Mikeš, J.; Jendželovský, R.; Fedoročko, P. The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells. J. Photochem. Photobiol. B, 2012, 117, 115-125.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.09.003 ] [PMID: 23099482]
Majerník, M.; Jendželovský, R.; Babinčák, M.; Košuth, J.; Ševc, J.; Tonelli Gombalová, Z.; Jendželovská, Z.; Buríková, M.; Fedoročko, P. Novel Insights into the effect of hyperforin and photodynamic therapy with hypericin on chosen angiogenic factors in colorectal micro-tumors created on chorioallantoic membrane. Int. J. Mol. Sci., 2019, 20(12), 3004.
[http://dx.doi.org/10.3390/ijms20123004 ] [PMID: 31248208]
Theodossiou, T.A.; Ali, M.; Grigalavicius, M.; Grallert, B.; Dillard, P.; Schink, K.O.; Olsen, C.E.; Wälchli, S.; Inderberg, E.M.; Kubin, A.; Peng, Q.; Berg, K. Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT-tamoxifen hybrid therapy. NPJ Breast Cancer, 2019, 10, 5-13.
Yonar, D.; Kılıç Süloğlu, A.; Selmanoğlu, G.; Sünnetçioğlu, M.M. An Electron Paramagnetic Resonance (EPR) spin labeling study in HT-29 Colon adenocarcinoma cells after Hypericin-mediated photodynamic therapy. BMC Mol. Cell Biol., 2019, 20(1), 16.
[http://dx.doi.org/10.1186/s12860-019-0205-4 ] [PMID: 31221093]
Ferrario, A.; Luna, M.; Rucker, N.; Wong, S.; Gomer, C.J. Pro-apoptotic and anti-inflammatory properties of the green tea constituent epigallocatechin gallate increase photodynamic therapy responsiveness. Lasers Surg. Med., 2011, 43(7), 644-650.
[http://dx.doi.org/10.1002/lsm.21081 ] [PMID: 22057492]
Mun, S.T.; Bae, D.H.; Ahn, W.S. Epigallocatechin gallate with photodynamic therapy enhances anti-tumor effects in vivo and in vitro. Photodiagn. Photodyn. Ther., 2014, 11(2), 141-147.
[http://dx.doi.org/10.1016/j.pdpdt.2014.03.003 ] [PMID: 24632332]
Teerakapong, A.; Damrongrungruang, T.; Sattayut, S.; Morales, N.P.; Tantananugool, S. Efficacy of erythrosine and cyanidin-3-glucoside mediated photodynamic therapy on Porphyromonas gingivalis biofilms using green light laser. Photodiagn. Photodyn. Ther., 2017, 20, 154-158.
[http://dx.doi.org/10.1016/j.pdpdt.2017.09.001 ] [PMID: 28887223]
Sun, D.; Lu, Y.; Zhang, S.J.; Wang, K.G.; Sun, Z. Research on the effect of formononetin on photodynamic therapy in K562 cells. Gen. Physiol. Biophys., 2017, 36(4), 423-430.
[http://dx.doi.org/10.4149/gpb_2017004 ] [PMID: 28836497]
Gheewala, T.; Skwor, T.; Munirathinam, G. Photodynamic therapy using pheophorbide and 670nm LEDs exhibits anti-cancer effects in vitro in androgen dependent prostate cancer. Photodiagn. Photodyn. Ther., 2018, 21, 130-137.
[http://dx.doi.org/10.1016/j.pdpdt.2017.10.026 ] [PMID: 29102652]
Liu, L.Y.; Man, X.X.; Yao, H.X.; Tan, Y.Y. Effects of pheophorbide a-mediated photodynamic therapy on proliferation and metastasis of human prostate cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(24), 5571-5579.
[PMID: 29271988]
Chen, Q.; Li, K.T.; Tian, S.; Yu, T.H.; Yu, L.H.; Lin, H.D.; Bai, D.Q. Photodynamic therapy mediated by aloe-emodin inhibited angiogenesis and cell metastasis through activating MAPK signaling pathway on HUVECs. Technol. Cancer Res. Treat., 2018, 17, 1533033818785512
[http://dx.doi.org/10.1177/1533033818785512] [PMID: 30068242]
Liu, Y.Q.; Meng, P.S.; Zhang, H.C.; Liu, X.; Wang, M.X.; Cao, W.W.; Hu, Z.; Zhang, Z.G. Inhibitory effect of aloe emodin mediated photodynamic therapy on human oral mucosa carcinoma in vitro and in vivo. Biomed. Pharmacother., 2018, 97, 697-707.
[http://dx.doi.org/10.1016/j.biopha.2017.10.080 ] [PMID: 29102913]
Lin, H.D.; Li, K.T.; Duan, Q.Q.; Chen, Q.; Tian, S.; Chu, E.S.M.; Bai, D.Q. The effect of aloe-emodin-induced photodynamic activity on the apoptosis of human gastric cancer cells: A pilot study. Oncol. Lett., 2017, 13(5), 3431-3436.
[http://dx.doi.org/10.3892/ol.2017.5915 ] [PMID: 28521449]
Li, K.T.; Duan, Q.Q.; Chen, Q.; He, J.W.; Tian, S.; Lin, H.D.; Gao, Q.; Bai, D.Q. The effect of aloe emodin-encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells. Cancer Med., 2016, 5(2), 361-369.
[http://dx.doi.org/10.1002/cam4.584 ] [PMID: 26686868]
Li, K.T.; Chen, Q.; Wang, D.W.; Duan, Q.Q.; Tian, S.; He, J.W.; Ou, Y.S.; Bai, D.Q. Mitochondrial pathway and endoplasmic reticulum stress participate in the photosensitizing effectiveness of AE-PDT in MG63 cells. Cancer Med., 2016, 5(11), 3186-3193.
[http://dx.doi.org/10.1002/cam4.895 ] [PMID: 27700017]
Tu, P.; Huang, Q.; Ou, Y.; Du, X.; Li, K.; Tao, Y.; Yin, H. Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG-63 through the ROS/JNK signaling pathway. Oncol. Rep., 2016, 35(6), 3209-3215.
[http://dx.doi.org/10.3892/or.2016.4703 ] [PMID: 27035222]
Chen, Q.; Tian, S.; Zhu, J.; Li, K.T.; Yu, T.H.; Yu, L.H.; Bai, D.Q. Exploring a novel target treatment on breast cancer: Aloe-emodin mediated photodynamic therapy induced cell apoptosis and inhibited cell metastasis. Anticancer. Agents Med. Chem., 2016, 16(6), 763-770.
[http://dx.doi.org/10.2174/1871520615666150821093323 ] [PMID: 26295333]
Chang, W.T.; You, B.J.; Yang, W.H.; Wu, C.Y.; Bau, D.T.; Lee, H.Z. Protein kinase C delta-mediated cytoskeleton remodeling is involved in aloe-emodin-induced photokilling of human lung cancer cells. Anticancer Res., 2012, 32(9), 3707-3713.
[PMID: 22993309]
Lee, H.Z.; Yang, W.H.; Hour, M.J.; Wu, C.Y.; Peng, W.H.; Bao, B.Y.; Han, P.H.; Bau, D.T. Photodynamic activity of aloe-emodin induces resensitization of lung cancer cells to anoikis. Eur. J. Pharmacol., 2010, 648(1-3), 50-58.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.033 ] [PMID: 20840846]
Morlière, P.; Mazière, J.C.; Santus, R.; Smith, C.D.; Prinsep, M.R.; Stobbe, C.C.; Fenning, M.C.; Golberg, J.L.; Chapman, J.D. Tolyporphin: A natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo. Cancer Res., 1998, 58(16), 3571-3578.
[PMID: 9721863]
Zhuo, Z.; Song, Z.; Ma, Z.; Zhang, Y.; Xu, G.; Chen, G. Chlorophyllin e6mediated photodynamic therapy inhibits proliferation and induces apoptosis in human bladder cancer cells. Oncol. Rep., 2019, 41(4), 2181-2193.
[http://dx.doi.org/10.3892/or.2019.7013 ] [PMID: 30816498]
Rady, M.; Gomaa, I.; Afifi, N.; Abdel-Kader, M. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model. Int. J. Pharm., 2018, 548(1), 480-490.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.057 ] [PMID: 29959090]
Du, L.; Jiang, N.; Wang, G.; Chu, Y.; Lin, W.; Qian, J.; Zhang, Y.; Zheng, J.; Chen, G. Autophagy inhibition sensitizes bladder cancer cells to the photodynamic effects of the novel photosensitizer chlorophyllin e4. J. Photochem. Photobiol. B, 2014, 133, 1-10.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.02.010 ] [PMID: 24650577]
Lihuan, D.; Jingcun, Z.; Ning, J.; Guozeng, W.; Yiwei, C.; Wei, L.; Jing, Q.; Yuanfang, Z.; Gang, C. Photodynamic therapy with the novel photosensitizer Chlorophyllin F induces apoptosis and autophagy in human bladder cancer cells. Lasers Surg. Med., 2014, 46(4), 319-334.
[http://dx.doi.org/10.1002/lsm.22225 ] [PMID: 24464873]
de Paula Rodrigues, R.; Tini, I.R.; Soares, C.P.; da Silva, N.S. Effect of photodynamic therapy supplemented with quercetin in HEp-2 cells. Cell Biol. Int., 2014, 38(6), 716-722.
[http://dx.doi.org/10.1002/cbin.10251 ] [PMID: 24470266]
Zhang, X.; Liu, X.; Kang, S.; Liu, C.; Hao, Y. Resveratrol enhances the effects of ALA-PDT on skin squamous cells A431 through p38/MAPK signaling pathway. Cancer Biomark., 2018, 21(4), 797-803.
[http://dx.doi.org/10.3233/CBM-170495 ] [PMID: 29286920]
Tosato, M.G.; Schilardi, P.L.; de Mele, M.F.L.; Thomas, A.H.; Miñán, A.; Lorente, C. Resveratrol enhancement staphylococcus aureus survival under levofloxacin and photodynamic treatments. Int. J. Antimicrob. Agents, 2018, 51(2), 255-259.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.10.006 ] [PMID: 29107093]
Matlou, G.G.; Managa, M.; Nyokong, T. Effect of symmetry and metal nanoparticles on the photophysicochemical and photodynamic therapy properties of cinnamic acid zinc phthalocyanine. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 214, 49-57.
[http://dx.doi.org/10.1016/j.saa.2019.02.005 ] [PMID: 30763918]
Panneerselvam, L.; Subbiah, K.; Arumugam, A.; Senapathy, J.G. Ferulic acid modulates fluoride-induced oxidative hepatotoxicity in male Wistar rats. Biol. Trace Elem. Res., 2013, 151(1), 85-91.
[http://dx.doi.org/10.1007/s12011-012-9534-2 ] [PMID: 23149809]
Milani, M.; Hashtroody, B.; Piacentini, M.; Celleno, L. Skin protective effects of an antipollution, antioxidant serum containing Deschampsia antartica extract, ferulic acid and vitamin C: A controlled single-blind, prospective trial in women living in urbanized, high air pollution area. Clin. Cosmet. Investig. Dermatol., 2019, 12, 393-399.
[http://dx.doi.org/10.2147/CCID.S204905 ] [PMID: 31213870]
Gorduk, S. Ferulic acid substituted Zn (II) phthalocyanine: Synthesis, characterization and investigation of photophysical and photochemical properties. J. Turk. Chem. Soc., Section A. Chemistry, 2018, 5(2), 903-918.
Giftson Senapathy, J.; Jayanthi, S.; Viswanathan, P.; Umadevi, P.; Nalini, N. Effect of gallic acid on xenobiotic metabolizing enzymes in 1,2-dimethyl hydrazine induced colon carcinogenesis in Wistar rats--a chemopreventive approach. Food Chem. Toxicol., 2011, 49(4), 887-892.
[http://dx.doi.org/10.1016/j.fct.2010.12.012 ] [PMID: 21172399]
de Paulo Farias, D.; Neri-Numa, I.A.; de Araújo, F.F.; Pastore, G.M. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem., 2020, 306, 125630
[http://dx.doi.org/10.1016/j.foodchem.2019.125630] [PMID: 31593892]
Ghorbani, F.; Imanparast, A.; Hataminia, F.; Sazgarnia, A. A novel nano-superparamagnetic agent for photodynamic and photothermal therapies: An in vitro study. Photodiagn. Photodyn. Ther., 2018, 23, 314-324.
[http://dx.doi.org/10.1016/j.pdpdt.2018.07.008 ] [PMID: 30016753]
Mohd Hassan, N.; Yusof, N.A.; Yahaya, A.F.; Mohd Rozali, N.N.; Othman, R. Carotenoids of Capsicum fruits: Pigment profile and health-promoting functional attributes. Antioxidants, 2019, 8(10), E469
[http://dx.doi.org/10.3390/antiox8100469] [PMID: 31600964]
Phuong, P.T.T.; Lee, S.; Lee, C.; Seo, B.; Park, S.; Oh, K.T.; Lee, E.S.; Choi, H.G.; Shin, B.S.; Youn, Y.S. Beta-carotene-bound albumin nanoparticles modified with chlorin e6 for breast tumor ablation based on photodynamic therapy. Colloids Surf. B Biointerfaces, 2018, 171, 123-133.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.016 ] [PMID: 30025374]
Gutheil, W.G.; Reed, G.; Ray, A.; Anant, S.; Dhar, A. Crocetin: An agent derived from saffron for prevention and therapy for cancer. Curr. Pharm. Biotechnol., 2012, 13(1), 173-179.
[http://dx.doi.org/10.2174/138920112798868566 ] [PMID: 21466430]
Menichini, G.; Alfano, C.; Provenzano, E.; Marrelli, M.; Statti, G.A.; Menichini, F.; Conforti, F. Cachrys pungens Jan inhibits human melanoma cell proliferation through photo-induced cytotoxic activity. Cell Prolif., 2012, 45(1), 39-47.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00791.x ] [PMID: 22151699]
Conforti, F.; Menichini, G.; Zanfini, L.; Tundis, R.; Statti, G.A.; Provenzano, E.; Menichini, F.; Somma, F.; Alfano, C. Evaluation of phototoxic potential of aerial components of the fig tree against human melanoma. Cell Prolif., 2012, 45(3), 279-285.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00816.x ] [PMID: 22469077]
Gasparetto, A.; Lapinski, T.F.; Zamuner, S.R.; Khouri, S.; Alves, L.P.; Munin, E.; Salvador, M.J. Extracts from Alternanthera maritima as natural photosensitizers in Photodynamic Antimicrobial Chemotherapy (PACT). J. Photochem. Photobiol. B, 2010, 99(1), 15-20.
[http://dx.doi.org/10.1016/j.jphotobiol.2010.01.009 ] [PMID: 20172737]
Villacorta, R.B.; Roque, K.F.J.; Tapang, G.A.; Jacinto, S.D. Plant extracts as natural photosensitizers in photodynamic therapy: In vitro activity against human mammary adenocarcinoma MCF-7 cells. Asian Pac. J. Trop. Biomed., 2017, 7(4), 358-366.
Liao, J.; Li, P.P.; Wu, C.J. Screening new photosensitizers from Chinese medicinal herbs and searching for herbal photodynamic killing effects on human stomach cancer cells. Ch. J. Integ. Traditional Western Med., 1997, 17(12), 726-729.
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071 ] [PMID: 12724736]
Eghbaliferiz, S.; Iranshahi, M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res., 2016, 30(9), 1379-1391.
[http://dx.doi.org/10.1002/ptr.5643 ] [PMID: 27241122]
Akyüz, E.; Şen, F.B.; Bener, M.; Başkan, K.S.; Tütem, E.; Apak, R. Protein-protected gold nanocluster-based biosensor for determining the prooxidant activity of natural antioxidant compounds. ACS Omega, 2019, 4(1), 2455-2462.
[http://dx.doi.org/10.1021/acsomega.8b03286 ] [PMID: 31459484]
Kmet, O.; Filipets, N.; Kmet, T.; Slobodian, X.; Vlasova, K. Enalapril effect on the state of nitrogen oxide system and prooxidant-antioxidant balance in brain under conditions of blockade of central cholinergic system. Georgian Med. News, 2019, 287(287), 128-131.
[PMID: 30958304]
Khan, H.Y.; Zubair, H.; Ullah, M.F.; Ahmad, A.; Hadi, S.M. A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. Curr. Drug Targets, 2012, 13(14), 1738-1749.
[http://dx.doi.org/10.2174/138945012804545560 ] [PMID: 23140285]
Xie, J.; Wu, H.; Dai, C.; Pan, Q.; Ding, Z.; Hu, D.; Ji, B.; Luo, Y.; Hu, X. Beyond Warburg effect-dual metabolic nature of cancer cells. Sci. Rep., 2014, 4, 4927.
Raitiere, M.N. Does photoperiodism involve a seasonal and non-pathological Warburg effect? Med. Hypotheses, 2020, 135, 109447
[http://dx.doi.org/10.1016/j.mehy.2019.109447] [PMID: 31733532]
Schwartz, L.; Supuran, C.T.; Alfarouk, K.O. The Warburg effect and the hallmarks of cancer. Anticancer. Agents Med. Chem., 2017, 17(2), 164-170.
[http://dx.doi.org/10.2174/1871520616666161031143301 ] [PMID: 27804847]
André-Lévigne, D.; Modarressi, A.; Pepper, M.S.; Pittet-Cuénod, B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. Int. J. Mol. Sci., 2017, 18(10), 2149.
[http://dx.doi.org/10.3390/ijms18102149 ] [PMID: 29036938]
Vargas, A.J.; Burd, R. Hormesis and synergy: Pathways and mechanisms of quercetin in cancer prevention and management. Nutr. Rev., 2010, 68(7), 418-428.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00301.x ] [PMID: 20591109]
Fernando, W.; Rupasinghe, H.P.V.; Hoskin, D.W. Dietary phytochemicals with anti-oxidant and pro-oxidant activities: A double-edged sword in relation to adjuvant chemotherapy and radiotherapy? Cancer Lett., 2019, 452, 168-177.
[http://dx.doi.org/10.1016/j.canlet.2019.03.022 ] [PMID: 30910593]
San Hipólito-Luengo, Á.; Alcaide, A.; Ramos-González, M.; Cercas, E.; Vallejo, S.; Romero, A.; Talero, E.; Sánchez-Ferrer, C.F.; Motilva, V.; Peiró, C. Dual effects of resveratrol on cell death and proliferation of colon cancer cells. Nutr. Cancer, 2017, 69(7), 1019-1027.
[http://dx.doi.org/10.1080/01635581.2017.1359309 ] [PMID: 28937798]
Bano, S.; Nazir, S.; Nazir, A.; Munir, S.; Mahmood, T.; Afzal, M.; Ansari, F.L.; Mazhar, K. Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: Surface engineering, T 2 relaxometry, and photodynamic treatment potential. Int. J. Nanomedicine, 2016, 11, 3833-3848.
[http://dx.doi.org/10.2147/IJN.S106553 ] [PMID: 27570452]
Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091 ] [PMID: 30205595]
Wamer, W.G.; Vath, P.; Falvey, D.E. In vitro studies on the photobiological properties of aloe emodin and aloin A. Free Radic. Biol. Med., 2003, 34(2), 233-242.
[http://dx.doi.org/10.1016/S0891-5849(02)01242-X ] [PMID: 12521605]
D’Andrea, G.M. Use of antioxidants during chemotherapy and radiotherapy should be avoided. CA Cancer J. Clin., 2005, 55(5), 319-321.
[http://dx.doi.org/10.3322/canjclin.55.5.319 ] [PMID: 16166076]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114 ] [PMID: 21617154]
Fu, P.P.; Chiang, H.M.; Xia, Q.; Chen, T.; Chen, B.H.; Yin, J.J.; Wen, K.C.; Lin, G.; Yu, H. Quality assurance and safety of herbal dietary supplements. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 2009, 27(2), 91-119.
[http://dx.doi.org/10.1080/10590500902885676 ] [PMID: 19412857]
Hart, J. Data support antioxidant use during chemotherapy: An interview with Keith I. Block, MD. Altern. Complement. Ther., 2012, 18, 91-97.
Nakayama, A.; Alladin, K.P.; Igbokwe, O.; White, J.D. Systematic review: Generating evidence-based guidelines on the concurrent use of dietary antioxidants and chemotherapy or radiotherapy. Cancer Invest., 2011, 29(10), 655-667.
[http://dx.doi.org/10.3109/07357907.2011.626479 ] [PMID: 22085269]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 26 October, 2020
Page: [1831 - 1844]
Pages: 14
DOI: 10.2174/1871520620666200703192127
Price: $65

Article Metrics

PDF: 30