Therapeutic Monoclonal Antibodies in Clinical Practice against Cancer

Author(s): Navgeet Kaur*, Anju Goyal, Rakesh K. Sindhu

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 16 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The importance of monoclonal antibodies in oncology has increased drastically following the discovery of Milstein and Kohler. Since the first approval of the monoclonal antibody, i.e. Rituximab in 1997 by the FDA, there was a decline in further applications but this number has significantly increased over the last three decades for various therapeutic applications due to the lesser side effects in comparison to the traditional chemotherapy methods. Presently, numerous monoclonal antibodies have been approved and many are in queue for approval as a strong therapeutic agent for treating hematologic malignancies and solid tumors. The main target checkpoints for the monoclonal antibodies against cancer cells include EGFR, VEGF, CD and tyrosine kinase which are overexpressed in malignant cells. Other immune checkpoints like CTLA-4, PD-1 and PD-1 receptors targeted by the recently developed antibodies increase the capability of the immune system in destroying the cancerous cells. Here, in this review, the mechanism of action, uses and target points of the approved mAbs against cancer have been summarized.

Keywords: Monoclonal antibodies (mAbs), therapeutic application, FDA approvals, EGFR, VEGF, CD, CTLA-4, PD-1, cancer.

[1]
Kohn, E.C.; Liotta, L.A. Molecular insights into cancer invasion: Strategies for prevention and intervention. Cancer Res., 1995, 55(9), 1856-1862.
[PMID: 7728753]
[2]
Pento, J.T. Monoclonal antibodies for the treatment of cancer. Anticancer Res., 2017, 37(11), 5935-5939.
[PMID: 29061772]
[3]
Dienstmann, R.; Markman, B.; Tabernero, J. Application of monoclonal antibodies as cancer therapy in solid tumors. Curr. Clin. Pharmacol., 2012, 7(2), 137-145.
[http://dx.doi.org/10.2174/157488412800228929 ] [PMID: 22432839]
[4]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9 ] [PMID: 10647931]
[5]
Sharma, P.; Allison, J.P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell, 2015, 161(2), 205-214.
[http://dx.doi.org/10.1016/j.cell.2015.03.030 ] [PMID: 25860605]
[6]
Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256(5517), 495-497.
[http://dx.doi.org/10.1038/256495a0 ] [PMID: 1172191]
[7]
Yoon, S.; Kim, Y.S.; Shim, H.; Chung, J. Current perspectives on therapeutic antibodies. Biotechnol. Bioprocess Eng.; BBE, 2010, 15, 709-715.
[http://dx.doi.org/10.1007/s12257-009-3113-1]
[8]
Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov., 2010, 9(4), 325-338.
[http://dx.doi.org/10.1038/nrd3003 ] [PMID: 20305665]
[9]
Hamid, O. Emerging treatments in oncology: Focus on tyrosine kinase (erbB) receptor inhibitors. J. Am. Pharm. Assoc (2003), 2004, 44(1), 52-58.
[http://dx.doi.org/10.1331/154434504322713237] [PMID: 14965154]
[10]
Chamuleau, M.E.; van de Loosdrecht, A.A.; Huijgens, P.C. Monoclonal antibody therapy in haematological malignancies. Curr. Clin. Pharmacol., 2010, 5(3), 148-159.
[http://dx.doi.org/10.2174/157488410791498752 ] [PMID: 20406175]
[11]
Thompson, C.B.; Allison, J.P. The emerging role of CTLA-4 as an immune attenuator. Immunity, 1997, 7(4), 445-450.
[http://dx.doi.org/10.1016/S1074-7613(00)80366-0 ] [PMID: 9354465]
[12]
Ribas, A.; Hanson, D.C.; Noe, D.A.; Millham, R.; Guyot, D.J.; Bernstein, S.H.; Canniff, P.C.; Sharma, A.; Gomez-Navarro, J. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist, 2007, 12(7), 873-883.
[http://dx.doi.org/10.1634/theoncologist.12-7-873 ] [PMID: 17673618]
[13]
Beck, K.E.; Blansfield, J.A.; Tran, K.Q.; Feldman, A.L.; Hughes, M.S.; Royal, R.E.; Kammula, U.S.; Topalian, S.L.; Sherry, R.M.; Kleiner, D.; Quezado, M.; Lowy, I.; Yellin, M.; Rosenberg, S.A.; Yang, J.C. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol., 2006, 24(15), 2283-2289.
[http://dx.doi.org/10.1200/JCO.2005.04.5716 ] [PMID: 16710025]
[14]
Willett, C.G.; Boucher, Y.; di Tomaso, E.; Duda, D.G.; Munn, L.L.; Tong, R.T.; Chung, D.C.; Sahani, D.V.; Kalva, S.P.; Kozin, S.V.; Mino, M.; Cohen, K.S.; Scadden, D.T.; Hartford, A.C.; Fischman, A.J.; Clark, J.W.; Ryan, D.P.; Zhu, A.X.; Blaszkowsky, L.S.; Chen, H.X.; Shellito, P.C.; Lauwers, G.Y.; Jain, R.K. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med., 2004, 10(2), 145-147.
[http://dx.doi.org/10.1038/nm988 ] [PMID: 14745444]
[15]
Singh, S.; Kumar, N.K.; Dwiwedi, P.; Charan, J.; Kaur, R.; Sidhu, P.; Chugh, V.K. Monoclonal antibodies: A review. Curr. Clin. Pharmacol., 2018, 13(2), 85-99.
[http://dx.doi.org/10.2174/1574884712666170809124728 ] [PMID: 28799485]
[16]
Seimetz, D. Novel monoclonal antibodies for cancer treatment: The trifunctional antibody catumaxomab (removab). J. Cancer, 2011, 2, 309-316.
[http://dx.doi.org/10.7150/jca.2.309 ] [PMID: 21716847]
[17]
Reichert, J.M.; Rosensweig, C.J.; Faden, L.B.; Dewitz, M.C. Monoclonal antibody successes in the clinic. Nat. Biotechnol., 2005, 23(9), 1073-1078.
[http://dx.doi.org/10.1038/nbt0905-1073 ] [PMID: 16151394]
[18]
Lonberg, N. Human monoclonal antibodies from transgenic mice. Therapeutic Anti-Bodies. In: Handbook of experimental pharmacology Chernajovsky, Y.; Nissim, A., Eds.; SpringerVerlag Berlin, Heidelberg 2008; Vol., 181, pp. 69-97.
[http://dx.doi.org/10.1007/978-3-540-73259-4_4]
[19]
Steiner, M.; Neri, D. Antibody-radionuclide conjugates for cancer therapy: Historical considerations and new trends. Clin. Cancer Res., 2011, 17(20), 6406-6416.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0483 ] [PMID: 22003068]
[20]
Flygare, J.A.; Pillow, T.H.; Aristoff, P. Antibody-drug conjugates for the treatment of cancer. Chem. Biol. Drug Des., 2013, 81(1), 113-121.
[http://dx.doi.org/10.1111/cbdd.12085 ] [PMID: 23253133]
[21]
World Health Organization Programme on International Nonproprietary Names. Guidelines on the Use of International Nonproprietary Names (INNs) for Pharmaceutical Substances. (PDF); , 1997.
[22]
Parren, P.W.H.I.; Carter, P.J.; Plückthun, A. Changes to International Nonproprietary Names for antibody therapeutics 2017 and beyond: Of mice, men and more. MAbs, 2017, 9(6), 898-906.
[http://dx.doi.org/10.1080/19420862.2017.1341029 ] [PMID: 28621572]
[23]
Revised_mAb_nomenclature_scheme.2017.pdf https://www.who.int/medicines/services/inn/Revised_mAb_nomenclature_scheme.pdf (Accessed: September 24, 2019)
[24]
Fox, N.L.; Humphreys, R.; Luster, T.A.; Klein, J.; Gallant, G. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) receptor-1 and receptor-2 agonists for cancer therapy. Expert Opin. Biol. Ther., 2010, 10(1), 1-18.
[http://dx.doi.org/10.1517/14712590903319656 ] [PMID: 19857186]
[25]
Van den Eynde, B.J.; Scott, A.M. Tumor Antigens.Encyclopedia of Immunology; Roitt, I.; Delves, P.J. In: Elsevier; , 1998, pp. 2424-2431.
[http://dx.doi.org/10.1006/rwei.1999.0608]
[26]
Weiner, L.M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol., 2010, 10(5), 317-327.
[http://dx.doi.org/10.1038/nri2744 ] [PMID: 20414205]
[27]
Chan, A.C.; Carter, P.J. Therapeutic antibodies for autoimmunity and inflammation. Nat. Rev. Immunol., 2010, 10(5), 301-316.
[http://dx.doi.org/10.1038/nri2761 ] [PMID: 20414204]
[28]
Cheson, B.D.; Leonard, J.P. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N. Engl. J. Med., 2008, 359(6), 613-626.
[http://dx.doi.org/10.1056/NEJMra0708875 ] [PMID: 18687642]
[29]
Van Cutsem, E.; Köhne, C.H.; Hitre, E.; Zaluski, J.; Chang, Chien C.R.; Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; Roh, J.K.; Folprecht, G.; Ruff, P.; Stroh, C.; Tejpar, S.; Schlichting, M.; Nippgen, J.; Rougier, P. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med., 2009, 360(14), 1408-1417.
[http://dx.doi.org/10.1056/NEJMoa0805019 ] [PMID: 19339720]
[30]
Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.; Lutz, R.J.; Wong, W.L.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776 ] [PMID: 19010901]
[31]
Schoeberl, B.; Pace, E.A.; Fitzgerald, J.B.; Harms, B.D.; Xu, L.; Nie, L.; Linggi, B.; Kalra, A.; Paragas, V.; Bukhalid, R.; Grantcharova, V.; Kohli, N.; West, K.A.; Leszczyniecka, M.; Feldhaus, M.J.; Kudla, A.J.; Nielsen, U.B. Therapeutically targeting ErbB3: A key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci. Signal., 2009, 2(77), ra31.
[http://dx.doi.org/10.1126/scisignal.2000352 ] [PMID: 19567914]
[32]
Cañadas, I.; Rojo, F.; Arumí-Uría, M.; Rovira, A.; Albanell, J.; Arriola, E. C-MET as a new therapeutic target for the development of novel anticancer drugs. Clin. Transl. Oncol., 2010, 12(4), 253-260.
[http://dx.doi.org/10.1007/s12094-010-0501-0 ] [PMID: 20462834]
[33]
Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer, 2008, 8(8), 579-591.
[http://dx.doi.org/10.1038/nrc2403 ] [PMID: 18596824]
[34]
Deckert, P.M. Current constructs and targets in clinical development for antibody-based cancer therapy. Curr. Drug Targets, 2009, 10(2), 158-175.
[http://dx.doi.org/10.2174/138945009787354502 ] [PMID: 19199912]
[35]
Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer, 2012, 12(4), 278-287.
[http://dx.doi.org/10.1038/nrc3236 ] [PMID: 22437872]
[36]
Schliemann, C.; Neri, D. Antibody-based targeting of the tumor vasculature. Biochim. Biophys. Acta, 2007, 1776(2), 175-192.
[PMID: 17920773]
[37]
Hudis, C.A. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med., 2007, 357(1), 39-51.
[http://dx.doi.org/10.1056/NEJMra043186 ] [PMID: 17611206]
[38]
Hofmeister, V.; Vetter, C.; Schrama, D.; Bröcker, E.B.; Becker, J.C. Tumor stroma-associated antigens for anti-cancer immunotherapy. Cancer Immunol. Immunother., 2006, 55(5), 481-494.
[http://dx.doi.org/10.1007/s00262-005-0070-1 ] [PMID: 16220326]
[39]
Kaminski, M.S.; Estes, J.; Zasadny, K.R.; Francis, I.R.; Ross, C.W.; Tuck, M.; Regan, D.; Fisher, S.; Gutierrez, J.; Kroll, S.; Stagg, R.; Tidmarsh, G.; Wahl, R.L. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood, 2000, 96(4), 1259-1266.
[http://dx.doi.org/10.1182/blood.V96.4.1259 ] [PMID: 10942366]
[40]
Nguyen, T.H.; Havari, E.; McLaren, R.; Zhang, M.; Jiang, Y.; Madden, S.L.; Roberts, B.; Kaplan, J.; Shankara, S. Alemtuzumab induction of intracellular signaling and apoptosis in malignant B lymphocytes. Leuk. Lymphoma, 2012, 53(4), 699-709.
[http://dx.doi.org/10.3109/10428194.2011.623253 ] [PMID: 21916527]
[41]
Vaklavas, C.; Forero-Torres, A. Safety and efficacy of brentuximab vedotin in patients with Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Ther. Adv. Hematol., 2012, 3(4), 209-225.
[http://dx.doi.org/10.1177/2040620712443076 ] [PMID: 23606932]
[42]
Weiner, G.J. Rituximab: Mechanism of action. Semin. Hematol., 2010, 47(2), 115-123.
[http://dx.doi.org/10.1053/j.seminhematol.2010.01.011 ] [PMID: 20350658]
[43]
Hörl, S.; Banki, Z.; Huber, G.; Ejaz, A.; Müllauer, B.; Willenbacher, E.; Steurer, M.; Stoiber, H. Complement factor H-derived short consensus repeat 18-20 enhanced complement-dependent cytotoxicity of ofatumumab on chronic lymphocytic leukemia cells. Haematologica, 2013, 98(12), 1939-1947.
[http://dx.doi.org/10.3324/haematol.2013.089615 ] [PMID: 23850806]
[44]
Yang, J.C.; Hughes, M.; Kammula, U.; Royal, R.; Sherry, R.M.; Topalian, S.L.; Suri, K.B.; Levy, C.; Allen, T.; Mavroukakis, S.; Lowy, I.; White, D.E.; Rosenberg, S.A. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother., 2007, 30(8), 825-830.
[http://dx.doi.org/10.1097/CJI.0b013e318156e47e ] [PMID: 18049334]
[45]
RITUXAN (rituximab)Label-103705s5311lbl.pdf http:/www.accessdata.fda.gov/drugsatfda_docs/label/2010/103705s5311lbl.pdf (Accessed on: September 29, 2019)
[46]
van Meerten, T.; Rozemuller, H.; Hol, S. HuMab-7D8, a monoclonal antibody directed against the membrane-proximal small loop epitope of CD20 can effectively eliminate CD20 low expressing tumor cells that resist rituximab-mediated lysis. Haematologica, 2010, 95, 2063-2071.
[47]
Tazi, I.; Nafil, H.; Mahmal, L. Monoclonal antibodies in hematological malignancies: Past, present and future. J. Cancer Res. Ther., 2011, 7(4), 399-407.
[http://dx.doi.org/10.4103/0973-1482.91999 ] [PMID: 22269399]
[48]
Ryman, J.T.; Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(9), 576-588.
[http://dx.doi.org/10.1002/psp4.12224 ] [PMID: 28653357]
[49]
Bang, Y.J. Advances in the management of HER2-positive advanced gastric and gastroesophageal junction cancer. J. Clin. Gastroenterol., 2012, 46(8), 637-648.
[http://dx.doi.org/10.1097/MCG.0b013e3182557307 ] [PMID: 22751336]
[50]
Vu, T.; Claret, F.X. Trastuzumab: Updated mechanisms of action and resistance in breast cancer. Front. Oncol., 2012, 2, 62.
[http://dx.doi.org/10.3389/fonc.2012.00062 ] [PMID: 22720269]
[51]
Hurvitz, S.A.; Hu, Y.; O’Brien, N.; Finn, R.S. Current approaches and future directions in the treatment of HER2-positive breast cancer. Cancer Treat. Rev., 2013, 139(3), 219-229.
[http://dx.doi.org/10.1016/j.ctrv.2012.04.008]
[52]
Herceptin(trastuzumab)103792s5256lbl.pdf http://www. accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5256lbl.pdf (Accessed on: September 29,
[53]
Baselga, J.; Cortés, J.; Kim, S.B. Im, S.A.; Hegg, R.; Im, Y.H.; Roman, L.; Pedrini, J.L.; Pienkowski, T.; Knott, A.; Clark, E.; Benyunes, M.C.; Ross, G.; Swain, S.M.; CLEOPATRA Study Group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med., 2012, 366(2), 109-119.
[http://dx.doi.org/10.1056/NEJMoa1113216 ] [PMID: 22149875]
[54]
MYLOTARG(GemtuzumabOzogamicin)21174lbl21174lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2000/21174lbl.pdf (Accessed on: October 2, 2019).
[55]
Buckwalter, M.; Dowell, J.A.; Korth-Bradley, J.; Gorovits, B.; Mayer, P.R. Pharmacokinetics of gemtuzumab ozogamicin as a single-agent treatment of pediatric patients with refractory or relapsed acute myeloid leukemia. J. Clin. Pharmacol., 2004, 44(8), 873-880.
[http://dx.doi.org/10.1177/0091270004267595 ] [PMID: 15286091]
[56]
LEMTRADA(Alemtuzumab)103948s5139lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/103948s5139lbl.pdf (Accessed on: October 2, 2019).
[57]
Waldmann, H. A personal history of the CAMPATH-1H antibody. Med. Oncol., 2002, 19(Suppl.), S3-S9.
[http://dx.doi.org/10.1385/MO:19:2S:S03 ] [PMID: 12180490]
[58]
Witzig, T.E. Yttrium-90-ibritumomab tiuxetan radioimmunotherapy: A new treatment approach for B-cell non-Hodgkin’s lymphoma. Drugs Today (Barc), 2004, 40(2), 111-119.
[http://dx.doi.org/10.1358/dot.2004.40.2.799423 ] [PMID: 15045033]
[59]
ZEVALIN (IbritumomabTiuxetan IDECPharmaceuticalsCorpibriid e021902LB.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2002/ibriide021902LB.pdf (Accessed on: October 2, 2019).
[60]
ERBITUX(Cetuximab)125084lbl.pdf. http://www.accessdata.fda.gov/drugsatfda_docs/label/2004/125084lbl.pdf (Accessed on: October 4, 2019).
[61]
Bardelli, A.; Siena, S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J. Clin. Oncol., 2010, 28(7), 1254-1261.
[http://dx.doi.org/10.1200/JCO.2009.24.6116 ] [PMID: 20100961]
[62]
Esposito, C.; Rachiglio, A.M.; La Porta, M.L.; Sacco, A.; Roma, C.; Iannaccone, A.; Tatangelo, F.; Forgione, L.; Pasquale, R.; Barbaro, A.; Botti, G.; Ciardiello, F.; Normanno, N. The S492R EGFR ectodomain mutation is never detected in KRAS wild-type colorectal carcinoma before exposure to EGFR monoclonal antibodies. Cancer Biol. Ther., 2013, 14(12), 1143-1146.
[http://dx.doi.org/10.4161/cbt.26340 ] [PMID: 24025416]
[63]
AVASTIN(Bevacizumab)125085s301lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125085s301lbl.pdf (Accessed on: October 4, 2019).
[64]
Mésange, P.; Poindessous, V.; Sabbah, M.; Escargueil, A.E.; de Gramont, A.; Larsen, A.K. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget, 2014, 5(13), 4709-4721.
[http://dx.doi.org/10.18632/oncotarget.1671 ] [PMID: 25015210]
[65]
VECTIBIX(Panitumumab)125147s0000lbl.pdf. http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/125147s0000lbl.pdf (Accessed on: October 4, 2019).
[66]
Peeters, M.; Cohn, A.; Köhne, C.H.; Douillard, J.Y. Panitumumab in combination with cytotoxic chemotherapy for the treatment of metastatic colorectal carcinoma. Clin. Colorectal Cancer, 2012, 11(1), 14-23.
[http://dx.doi.org/10.1016/j.clcc.2011.06.010 ] [PMID: 21925954]
[67]
Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Oliner, K.S.; Wolf, M.; Gansert, J. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: The PRIME study. J. Clin. Oncol., 2010, 28(31), 4697-4705.
[http://dx.doi.org/10.1200/JCO.2009.27.4860 ] [PMID: 20921465]
[68]
ARZERRA (ofatumumab)125326s062lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125326s062lbl.pdf (Accessed on: October 5, 2019).
[69]
Baig, N.A.; Taylor, R.P.; Lindorfer, M.A.; Church, A.K.; LaPlant, B.R.; Pettinger, A.M.; Shanafelt, T.D.; Nowakowski, G.S.; Zent, C.S. Induced resistance to ofatumumab-mediated cell clearance mechanisms, including complement-dependent cytotoxicity, in chronic lymphocytic leukemia. J. Immunol., 2014, 192(4), 1620-1629.
[http://dx.doi.org/10.4049/jimmunol.1302954 ] [PMID: 24431228]
[70]
YERVOY (ipilimumab)Label125377s055lbl.pdf. http://www.accessdata. fda.gov/drugsatfda_docs/label/2013/125377s055lbl.pdf (Accessed on: October 5, 2019).
[71]
Johnson, D.B.; Peng, C.; Abramson, R.G.; Ye, F.; Zhao, S.; Wolchok, J.D.; Sosman, J.A.; Carvajal, R.D.; Ariyan, C.E. Clinical activity of ipilimumab in acral melanoma: A retrospective review. Oncologist, 2015, 20(6), 648-652.
[http://dx.doi.org/10.1634/theoncologist.2014-0468 ] [PMID: 25964307]
[72]
ADCETRIS (brentuximabvedotin) Label125388s084lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125388s084lbl.pdf (Accessed on: October 5, 2019).
[73]
Eichenauer, D.A.; Plütschow, A.; Kreissl, S.; Sökler, M.; Hellmuth, J.C.; Meissner, J.; Mathas, S.; Topp, M.S.; Behringer, K.; Klapper, W.; Kuhnert, G.; Dietlein, M.; Kobe, C.; Fuchs, M.; Diehl, V.; Engert, A.; Borchmann, P. Incorporation of brentuximab vedotin into first-line treatment of advanced classical Hodgkin’s lymphoma: Final analysis of a phase 2 randomised trial by the German Hodgkin Study Group. Lancet Oncol., 2017, 18(12), 1680-1687.
[http://dx.doi.org/10.1016/S1470-2045(17)30696-4 ] [PMID: 29133014]
[74]
Chen, R.; Hou, J.; Newman, E.; Kim, Y.; Donohue, C.; Liu, X.; Thomas, S.H.; Forman, S.J.; Kane, S.E. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol. Cancer Ther., 2015, 14(6), 1376-1384.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0036 ] [PMID: 25840583]
[75]
PERJETA® (pertuzumab) Label - 125409s051lbl.pdf. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125409s051lbl.pdf (Accessed on: October 5, 2019).
[76]
Wuerkenbieke, D.; Wang, J.; Li, Y.; Ma, C. miRNA-150 downregulation promotes pertuzumab resistance in ovarian cancer cells via AKT activation. Arch. Gynecol. Obstet., 2015, 292(5), 1109-1116.
[http://dx.doi.org/10.1007/s00404-015-3742-x ] [PMID: 25986891]
[77]
de Melo Gagliato, D.; Jardim, D.L.F.; Marchesi, M.S.P.; Hortobagyi, G.N. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget, 2016, 7(39), 64431-64446.
[http://dx.doi.org/10.18632/oncotarget.7043 ] [PMID: 26824988]
[78]
KADCYLA(AdoTrastuzumabemtansine)Label125427s033lbl.pdf. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125427s033lbl.pdf
[79]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. EMILIA Study Group Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124 ] [PMID: 23020162]
[80]
Li, G.; Guo, J.; Shen, B-Q.; Yadav, D.B.; Sliwkowski, M.X.; Crocker, L.M.; Lacap, J.A.; Phillips, G.D.L. Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells. Mol. Cancer Ther., 2018, 17(7), 1441-1453.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0296 ] [PMID: 29695635]
[81]
Hunter, F.W.; Barker, H.R.; Lipert, B.; Rothé, F.; Gebhart, G.; Piccart-Gebhart, M.J.; Sotiriou, C.; Jamieson, S.M. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br. J. Cancer, 2020, 122(5), 603-612.
[PMID: 31839676]
[82]
GAZYVATM (obinutuzumab)label125486_s008lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125486_s008lbl.pdf (Accessed on: October 7, 2019).
[83]
O’Nions, J.; Townsend, W. The role of obinutuzumab in the management of follicular lymphoma. Future Oncol., 2019, 15(31), 3565-3578.
[http://dx.doi.org/10.2217/fon-2019-0193 ] [PMID: 31538821]
[84]
CYRAMZA (ramucirumab)injectionLabel125477s002lbl.pdf. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125477s002lbl.pdf (Accessed on: October 7, 2019).
[85]
Casak, S.J.; Fashoyin-Aje, I.; Lemery, S.J.; Zhang, L.; Jin, R.; Li, H.; Zhao, L.; Zhao, H.; Zhang, H.; Chen, H.; He, K.; Dougherty, M.; Novak, R.; Kennett, S.; Khasar, S.; Helms, W.; Keegan, P.; Pazdur, R. FDA approval summary: Ramucirumab for gastric cancer. Clin. Cancer Res., 2015, 21(15), 3372-3376.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0600 ] [PMID: 26048277]
[86]
KEYTRUDA(Pembrolizumab)Label-125514s004s006lbl.pdf. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125514s004s006lbl.pdf (Accessed on: October 7, 2019).
[87]
Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A.N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A.J.; Grogan, T.R.; Mateus, C.; Tomasic, G.; Glaspy, J.A.; Emerson, R.O.; Robins, H.; Pierce, R.H.; Elashoff, D.A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528), 568-571.
[http://dx.doi.org/10.1038/nature13954 ] [PMID: 25428505]
[88]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017 ] [PMID: 28187290]
[89]
BEXXAR (Tositumomab and Iodine I 131 Tositumomab) Label, Corixa Corporation-tosicor062703LB.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2003/tosicor062703LB.pdf (Accessed on: October 7, 2019).
[90]
Guo, L.; Zhang, H.; Chen, B. Nivolumab as Programmed Death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J. Cancer, 2017, 8(3), 410-416.
[http://dx.doi.org/10.7150/jca.17144 ] [PMID: 28261342]
[91]
Lee, K.W.; Lee, D.H.; Kang, J.H.; Park, J.O.; Kim, S.H.; Hong, Y.S.; Kim, S.T.; Oh, D.Y.; Bang, Y.J. Phase I pharmacokinetic study of nivolumab in Korean patients with advanced solid tumors. Oncologist, 2018, 23(2), 155-e17.
[http://dx.doi.org/10.1634/theoncologist.2017-0528 ] [PMID: 29158363]
[92]
OPDIVO (nivolumab) injection Label 125554lbl.pdf. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125554lbl.pdf (Accessed on: October 8, 2019).
[93]
] UNITUXIN (Dinutuximab) Label - 125516s000lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125516s000lbl.pdf
[94]
Mody, R.; Naranjo, A.; Van Ryn, C.; Yu, A.L.; London, W.B.; Shulkin, B.L.; Parisi, M.T.; Servaes, S.E.; Diccianni, M.B.; Sondel, P.M.; Bender, J.G.; Maris, J.M.; Park, J.R.; Bagatell, R. Irinotecan-temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): An open-label, randomised, phase 2 trial. Lancet Oncol., 2017, 18(7), 946-957.
[http://dx.doi.org/10.1016/S1470-2045(17)30355-8 ] [PMID: 28549783]
[95]
DARZALEX (Daratumumab) Label761036Orig1s000lbledt.pdf. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/761036Orig1s000lbledt.pdf (Accessed on: October 8, 2019).
[96]
Nijhof, I.S.; Casneuf, T.; van Velzen, J.; van Kessel, B.; Axel, A.E.; Syed, K.; Groen, R.W.; van Duin, M.; Sonneveld, P.; Minnema, M.C.; Zweegman, S.; Chiu, C.; Bloem, A.C.; Mutis, T.; Lokhorst, H.M.; Sasser, A.K.; van de Donk, N.W. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood, 2016, 128(7), 959-970.
[http://dx.doi.org/10.1182/blood-2016-03-703439 ] [PMID: 27307294]
[97]
Lokhorst, H.M.; Plesner, T.; Laubach, J.P.; Nahi, H.; Gimsing, P.; Hansson, M.; Minnema, M.C.; Lassen, U.; Krejcik, J.; Palumbo, A.; van de Donk, N.W.; Ahmadi, T.; Khan, I.; Uhlar, C.M.; Wang, J.; Sasser, A.K.; Losic, N.; Lisby, S.; Basse, L.; Brun, N.; Richardson, P.G. Targeting CD38 with daratumuab monotherapy in multiple myeloma. N. Engl. J. Med., 2015, 373(13), 1207-1219.
[http://dx.doi.org/10.1056/NEJMoa1506348 ] [PMID: 26308596]
[98]
Garnock-Jones, K.P. Necitumumab: First global approval. Drugs, 2016, 76(2), 283-289.
[http://dx.doi.org/10.1007/s40265-015-0537-0 ] [PMID: 26729188]
[99]
PORTRAZZA (necitumumab) injection, for intravenous use - 125547s000lbl.pdf. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125547s000lbl.pdf (Accessed on: October 9, 2019).
[100]
Markham, A. Elotuzumab: First global approval. Drugs, 2016, 76(3), 397-403.
[http://dx.doi.org/10.1007/s40265-016-0540-0 ] [PMID: 26809244]
[101]
EMPLICITI (Elotuzumab) Label761035s000lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/761035s000lbl.pdf (Accessed on: October 9, 2019).
[102]
TECENTRIQ (atezolizumab) Label61034s010lbl.pdf https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761034s010lbl.pdf (Accessed on: October 9, 2019).
[103]
Thoma, C. Bladder cancer: Mechanisms of anti-PDL1 resistance. Nat. Rev. Urol., 2018, 15(4), 201-201.
[http://dx.doi.org/10.1038/nrurol.2018.28 ] [PMID: 29508844]
[104]
Mann, J. Atezolizumab (Tecentriq). Oncology Times, 2017, 39(4), 31.
[http://dx.doi.org/10.1097/01.COT.0000513325.52233.f1]
[105]
Raschi, E.; Mazzarella, A.; Antonazzo, I.C.; Bendinelli, N.; Forcesi, E.; Tuccori, M.; Moretti, U.; Poluzzi, E.; De Ponti, F. Toxicities with immune checkpoint inhibitors: Emerging priorities from disproportionality analysis of the FDA adverse event reporting system. Target. Oncol., 2019, 14(2), 205-221.
[http://dx.doi.org/10.1007/s11523-019-00632-w ] [PMID: 30927173]
[106]
LARTRUVO (Olaratumab) Label761038lbl.pdf http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761038lbl.pdf (Accessed on: October 9, 2019).
[107]
Heery, C.R.; O’Sullivan-Coyne, G.; Madan, R.A.; Cordes, L.; Rajan, A.; Rauckhorst, M.; Lamping, E.; Oyelakin, I.; Marté, J.L.; Lepone, L.M.; Donahue, R.N.; Grenga, I.; Cuillerot, J.M.; Neuteboom, B.; Heydebreck, A.V.; Chin, K.; Schlom, J.; Gulley, J.L. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): A phase 1a, multicohort, dose-escalation trial. Lancet Oncol., 2017, 18(5), 587-598.
[http://dx.doi.org/10.1016/S1470-2045(17)30239-5 ] [PMID: 28373007]
[108]
BAVENCIO (Avelumab)Label - 761049s000lbl.pdf. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761049s000lbl.pdf (Accessed on: October 9, 2019).
[109]
IMFINZI (Durvalumab)Label761069s002lbl www.accessdata.fda.gov/drugsatfda_docs/label/2018/761069s002lbl.pdf (Accessed on: October 11, 2019).
[110]
Yang, H.; Shen, K.; Zhu, C.; Li, Q.; Zhao, Y.; Ma, X. Safety and efficacy of durvalumab (MEDI4736) in various solid tumors. Drug Des. Devel. Ther., 2018, 12, 2085-2096.
[http://dx.doi.org/10.2147/DDDT.S162214 ] [PMID: 30013326]
[111]
BESPONSA (inotuzumabozogamicin)Label761040s000lbl.pdf. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761040s000lbl.pdf (Accessed on: October 11, 2019).
[112]
Bhojwani, D.; Sposto, R.; Shah, N.N.; Rodriguez, V.; Yuan, C.; Stetler-Stevenson, M.; O’Brien, M.M.; McNeer, J.L.; Quereshi, A.; Cabannes, A.; Schlegel, P.; Rossig, C.; Dalla-Pozza, L.; August, K.; Alexander, S.; Bourquin, J.P.; Zwaan, M.; Raetz, E.A.; Loh, M.L.; Rheingold, S.R. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia, 2019, 33(4), 884-892.
[http://dx.doi.org/10.1038/s41375-018-0265-z ] [PMID: 30267011]
[113]
Tirrò, E.; Massimino, M.; Romano, C.; Pennisi, M.S.; Stella, S.; Vitale, S.R.; Fidilio, A.; Manzella, L.; Parrinello, N.L.; Stagno, F.; Palumbo, G.A.; La Cava, P.; Romano, A.; Di Raimondo, F.; Vigneri, P.G. Chk1 inhibition restores inotuzumab ozogamicin citotoxicity in CD22-positive cells expressing mutant p53. Front. Oncol., 2019, 9, 57.
[http://dx.doi.org/10.3389/fonc.2019.00057 ] [PMID: 30834235]
[114]
LIBTAYO (Cemiplimab) label-761097s000lbl.pdf. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761097s000lbl.pdf (Accessed on: October 11, 2019).
[115]
Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; Rabinowits, G.; Thai, A.A.; Dunn, L.A.; Hughes, B.G.M.; Khushalani, N.I.; Modi, B.; Schadendorf, D.; Gao, B.; Seebach, F.; Li, S.; Li, J.; Mathias, M.; Booth, J.; Mohan, K.; Stankevich, E.; Babiker, H.M.; Brana, I.; Gil-Martin, M.; Homsi, J.; Johnson, M.L.; Moreno, V.; Niu, J.; Owonikoko, T.K.; Papadopoulos, K.P.; Yancopoulos, G.D.; Lowy, I.; Fury, M.G. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med., 2018, 379(4), 341-351.
[http://dx.doi.org/10.1056/NEJMoa1805131 ] [PMID: 29863979]
[116]
LUMOXITI (moxetumomab pasudotox-tdfk) Label- 761104s000lbl.pdf. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761104s000lbl.pdf (Accessed on: November 9, 2019).
[117]
Kreitman, R.J.; Pastan, I. Contextualizing the use of moxetumomab pasudotox in the treatment of relapsed or refractory hairy cell leukemia. Oncologist, 2020, 25(1), e170-e177.
[http://dx.doi.org/10.1634/theoncologist.2019-0370 ] [PMID: 31628266]
[118]
POTELIGEO (mogamulizumab-kpkc) Label-761051s000lbl.pdf https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761051s000lbl.pdf (Accessed on: October 9, 2019).
[119]
Doi, T.; Muro, K.; Ishii, H.; Kato, T.; Tsushima, T.; Takenoyama, M.; Oizumi, S.; Gemmoto, K.; Suna, H.; Enokitani, K.; Kawakami, T. A Phase I study of the anti-CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors. Clin. Cancer Res., 2019, 25(22), 6614-6622.
[120]
Tamura, K.; Tsurutani, J.; Takahashi, S.; Iwata, H.; Krop, I.E.; Redfern, C.; Sagara, Y.; Doi, T.; Park, H.; Murthy, R.K.; Redman, R.A.; Jikoh, T.; Lee, C.; Sugihara, M.; Shahidi, J.; Yver, A.; Modi, S. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: A dose-expansion, phase 1 study. Lancet Oncol., 2019, 20(6), 816-826.
[http://dx.doi.org/10.1016/S1470-2045(19)30097-X ] [PMID: 31047803]
[121]
Enhertu (Trastuzumab deruxtecan) label/2019/761139s000lbl.pdf. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761139s000lbl.pdf (Accessed on: Jan 25, 2020).
[122]
Padcev (Enfortumab vedotin) label/2019/761137s000lbl.pdf. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761137s000lbl.pdf (Accessed on: Jan 25, 2020).
[123]
Hanna, K.S. Clinical overview of enfortumab vedotin in the management of locally advanced or metastatic urothelial carcinoma. Drugs, 2020, 80(1), 1-7.
[http://dx.doi.org/10.1007/s40265-019-01241-7 ] [PMID: 31823332]
[124]
McGregor, B.A.; Sonpavde, G. Enfortumab Vedotin, a fully human monoclonal antibody against Nectin 4 conjugated to monomethyl auristatin E for metastatic urothelial carcinoma. Expert Opin. Investig. Drugs, 2019, 28(10), 821-826.
[http://dx.doi.org/10.1080/13543784.2019.1667332 ] [PMID: 31526130]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 16
Year: 2020
Page: [1895 - 1907]
Pages: 13
DOI: 10.2174/1871520620666200703191653
Price: $65

Article Metrics

PDF: 28
HTML: 4