Skin Permeation of Nanoparticles: Mechanisms Involved and Critical Factors Governing Topical Drug Delivery

Author(s): Taha Umair Wani, Roohi Mohi-ud-Din*, Asmat Majeed, Shabnam Kawoosa, Faheem Hyder Pottoo*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 36 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Transdermal route has been an ever sought-after means of drug administration, regarded as being the most convenient and patient compliant. However, skin poses a great barrier to the entry of the external particles including bacteria, viruses, allergens, and drugs as well (mostly hydrophilic or high molecular weight drugs), consequent to its complex structure and composition. Among the various means of enhancing drug permeation through the skin, e.g. chemical permeation enhancers, electroporation, thermophoresis, etc. drug delivery through nanoparticles has been of great interest. Current literature reports a vast number of nanoparticles that have been implicated for drug delivery through the skin. However, a precise account of critical factors involved in drug delivery and mechanisms concerning the permeation of nanoparticles through the skin is necessary. The purpose of this review is to enumerate the factors crucial in governing the prospect of drug delivery through skin and classify the skin permeation mechanisms of nanoparticles. Among the various mechanisms discussed are the ones governed by principles of kinetics, osmotic gradient, adhesion, hydration, diffusion, occlusion, electrostatic interaction, thermodynamics, etc. Among the most common factors affecting skin permeation of nanoparticles that are discussed include size, shape, surface charge density, composition of nanoparticles, mechanical stress, pH, etc.

Keywords: Nanoparticles, drug delivery, permeation, skin, electrostatic interaction, thermodynamics.

[1]
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008; 26(11): 1261-8.
[http://dx.doi.org/10.1038/nbt.1504 ] [PMID: 18997767]
[2]
Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 2004; 3(2): 115-24.
[http://dx.doi.org/10.1038/nrd1304 ] [PMID: 15040576]
[3]
Wang W, Wat E, Hui PC, et al. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment. Sci Rep 2016; 6(24): 24112.
[http://dx.doi.org/10.1038/srep24112 ] [PMID: 27090158]
[4]
Guy RH. Transdermal drug delivery. Drug delivery.Springer 2010; 399-410.
[http://dx.doi.org/10.1007/978-3-642-00477-3_13]
[5]
Cevc G, Gebauer D. Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophys J 2003; 84(2 Pt 1): 1010-24.
[http://dx.doi.org/10.1016/S0006-3495(03)74917-0 ] [PMID: 12547782]
[6]
Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1992; 1104(1): 226-32.
[http://dx.doi.org/10.1016/0005-2736(92)90154-E ] [PMID: 1550849]
[7]
Buchwald P, Bodor N. A simple, predictive, structure-based skin permeability model. J Pharm Pharmacol 2001; 53(8): 1087-98.
[http://dx.doi.org/10.1211/0022357011776478 ] [PMID: 11518018]
[8]
Han T, Das DB. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. J Pharm Sci 2013; 102(10): 3614-22.
[http://dx.doi.org/10.1002/jps.23662 ] [PMID: 23873449]
[9]
Zatz J, Lee B. Skin penetration enhancement by surfactants. Surfactants in cosmetics. Routledge 2017; 521-38.
[10]
Baji S, Hegde AR, Kulkarni M, et al. Skin permeation of gemcitabine hydrochloride by passive diffusion, iontophoresis and sonophoresis: In vitro and in vivo evaluations. J Drug Deliv Sci Technol 2018; (47): 49-54.
[http://dx.doi.org/10.1016/j.jddst.2018.06.019]
[11]
Iqbal N, Vitorino C, Taylor KM. How can lipid nanocarriers improve transdermal delivery of olanzapine? Pharm Dev Technol 2017; 22(4): 587-96.
[http://dx.doi.org/10.1080/10837450.2016.1200615 ] [PMID: 27876425]
[12]
Sharma S, Javed MN, Pottoo FH, et al. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm Nanotechnol 2019; 7(3): 220-33.
[http://dx.doi.org/10.2174/2211738507666190429103814 ] [PMID: 31486751]
[13]
Wani TU, Rashid M, Kumar M, et al. Targeting aspects of nanogels: An overview. Int J Pharm Sci Nanotechnol 2014; 7(4): 2612-30.
[14]
Rashid M, Wani TU, Mishra N, et al. Development and characterization of drug-loaded self-solid nano-emulsified drug delivery system for treatment of diabetes. Material Science Research India 2018; 15(1): 01-11.
[15]
Wani TU, Raza SN, Khan NA. Rosmarinic acid loaded chitosan nanoparticles for wound healing in rats. IJPSR 2019; 10: 3.
[16]
Mishra S, Sharma S, Javed MN, et al. Bioinspired nanocomposites: Applications in disease diagnosis and treatment. Pharm Nanotechnol 2019; 7(3): 206-19.
[http://dx.doi.org/10.2174/2211738507666190425121509 ] [PMID: 31030662]
[17]
Barkat MA. Harshita, Pottoo FH, Singh SP, Ahmad FJ. Therapeutic intervention of aloe gel containing nano-sized and micron-sized silver sulfadiazine gel on second-degree burn: A comparative study. Int J Low Extrem Wounds 2018; 17(3): 176-83.
[http://dx.doi.org/10.1177/1534734618791860 ] [PMID: 30111204]
[18]
Alam MS, Javed MN, Pottoo FH, et al. Qbd approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nirto‐dye. Appl Organomet Chem 2019; 33(9)e5071
[http://dx.doi.org/10.1002/aoc.5071]
[19]
Harshita, Barkat MA, Das SS, Pottoo FH, Beg S, Rahman Z. Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications. Curr Pharm Des 2020; 26(11): 1167-80.
[http://dx.doi.org/10.2174/1381612826666200206094529 ] [PMID: 32026769]
[20]
Barkat MA, Harshita, Ahmad I, et al. Nanosuspension-based aloe vera gel of silver sulfadiazine with improved wound healing activity. AAPS PharmSciTech 2017; 18(8): 3274-85.
[http://dx.doi.org/10.1208/s12249-017-0817-y ] [PMID: 28584900]
[21]
Ahmad N, Ahmad R, Al-Qudaihi A, et al. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Advances 2019; 9(35): 20192-206.
[http://dx.doi.org/10.1039/C9RA03102B]
[22]
Ashtikar M, Nagarsekar K, Fahr A. Transdermal delivery from liposomal formulations-evolution of the technology over the last three decades. J Controlled Rel 2016; 242: 126-40.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.008]
[23]
Ita K. Current status of ethosomes and elastic liposomes in dermal and transdermal drug delivery. Curr Pharm Des 2016; 22(33): 5120-6.
[http://dx.doi.org/10.2174/1381612822666160511150228 ] [PMID: 27165164]
[24]
Lee MH, Shin GH, Park HJ. Solid lipid nanoparticles loaded thermoresponsive pluronic–xanthan gum hydrogel as a transdermal delivery system. J Appl Polym Sci 2018; 135(11): 46004.
[http://dx.doi.org/10.1002/app.46004]
[25]
Mendes M, Nunes SCC, Sousa JJ, Pais AACC, Vitorino C. Expanding transdermal delivery with lipid nanoparticles: A new drug-in-nlc-in-adhesive design. Mol Pharm 2017; 14(6): 2099-115.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00211 ] [PMID: 28475834]
[26]
Mocan L, Xayprasith-Mays S, Orza A. Novel method for preparing ph dependent ultra small polymeric nanoparticles for topical and/or transdermal delivery In: Google Patents. 2017.
[27]
Wang M, Marepally S, Vemula P, Xu C. Inorganic nanoparticles for transdermal drug delivery and topical application. Nanoscience in dermatology. Elsevier 2016; 57-72.
[http://dx.doi.org/10.1016/B978-0-12-802926-8.00005-7]
[28]
Wani TU, Raza SN, Khan NA. Nanoparticle opsonization: Forces involved and protection by long chain polymers. Polym Bull 2019; 77: 3865-89.
[29]
Venugopal V. Transdermal delivery of insulin by biodegradable chitosan nanoparticles: Ex vivo and in vivo studies. Indian J Pharm Sci 2012; 8(1): 315-21.
[30]
Jana S, Manna S, Nayak AK, Sen KK, Basu SK. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces 2014; 114(114): 36-44.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.045 ] [PMID: 24161504]
[31]
Bhaskar K, Anbu J, Ravichandiran V, Venkateswarlu V, Rao YM. Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies. Lipids Health Dis 2009; 8(1): 6.
[http://dx.doi.org/10.1186/1476-511X-8-6 ] [PMID: 19243632]
[32]
Shim J, Seok Kang H, Park W-S, Han SH, Kim J, Chang IS. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release 2004; 97(3): 477-84.
[http://dx.doi.org/10.1016/S0168-3659(04)00167-1 ] [PMID: 15212879]
[33]
Khalil SK, El-Feky GS, El-Banna ST, Khalil WA. Preparation and evaluation of warfarin-β-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohydr Polym 2012; 90(3): 1244-53.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.056 ] [PMID: 22939337]
[34]
Gönüllü Ü, Üner M, Yener G, Karaman EF, Aydoğmuş Z. Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery. Acta Pharm 2015; 65(1): 1-13.
[http://dx.doi.org/10.1515/acph-2015-0009 ] [PMID: 25781700]
[35]
Liu D, Ge Y, Tang Y, et al. Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: preparation, characterization and in vitro studies. J Microencapsul 2010; 27(8): 726-34.
[http://dx.doi.org/10.3109/02652048.2010.513456 ] [PMID: 21034365]
[36]
Al-Kassas R, Wen J, Cheng AE-M, Kim AM, Liu SSM, Yu J. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym 2016; 153(153): 176-86.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.096 ] [PMID: 27561485]
[37]
Tian J, Wong KK, Ho CM, et al. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2007; 2(1): 129-36.
[http://dx.doi.org/10.1002/cmdc.200600171 ] [PMID: 17075952]
[38]
Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 2008; 13(6)064031
[http://dx.doi.org/10.1117/1.3041492 ] [PMID: 19123677]
[39]
Garg NK, Singh B, Tyagi RK, Sharma G, Katare OP. Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids Surf B Biointerfaces 2016; 147(147): 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.046 ] [PMID: 27478959]
[40]
El-Houssiny AS, Ward AA, Mostafa DM, et al. Sodium alginate nanoparticles as a new transdermal vehicle of glucosamine sulfate for treatment of osteoarthritis. Eur J Nanomed 2017; 9(3-4): 105-14.
[http://dx.doi.org/10.1515/ejnm-2017-0008]
[41]
Jain SK, Chourasia MK, Masuriha R, et al. Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery. Drug Deliv 2005; 12(4): 207-15.
[http://dx.doi.org/10.1080/10717540590952591 ] [PMID: 16036715]
[42]
Rao YF, Chen W, Liang XG, et al. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: cancer therapy by circumventing the skin barrier. Small 2015; 11(2): 239-47.
[http://dx.doi.org/10.1002/smll.201400775 ] [PMID: 24925046]
[43]
Zeb A, Arif ST, Malik M, et al. Potential of nanoparticulate carriers for improved drug delivery via skin. J Pharm Investig 2018; 49: 485-517.
[44]
Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6(4): 328-40.
[http://dx.doi.org/10.1038/nrm1619 ] [PMID: 15803139]
[45]
Woo WM. Skin structure and biology. Imaging Technologies and Transdermal Delivery in Skin Disorders 2019; 1-14.
[46]
Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 2010; 27(7): 247-59.
[http://dx.doi.org/10.3109/09687688.2010.522203 ] [PMID: 21028936]
[47]
Foldvari M, Gharagozloo M, Li C. Nanoparticles for dermal and transdermal delivery: Permeation pathways and applicationsHandbook of nanobiomedical research: Fundamentals, applications and recent developments: Applications in therapy. World Scientific 2014; 2: 231-60.
[48]
Kasting GB, Miller MA, LaCount TD, Jaworska J. A composite model for the transport of hydrophilic and lipophilic compounds across the skin: Steady-state behavior. J Pharm Sci 2019; 108(1): 337-49.
[http://dx.doi.org/10.1016/j.xphs.2018.09.007 ] [PMID: 30244009]
[49]
Mäe M, Langel U. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 2006; 6(5): 509-14.
[http://dx.doi.org/10.1016/j.coph.2006.04.004 ] [PMID: 16860608]
[50]
Hou YW, Chan MH, Hsu HR, et al. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp Dermatol 2007; 16(12): 999-1006.
[http://dx.doi.org/10.1111/j.1600-0625.2007.00622.x ] [PMID: 18031459]
[51]
Touitou E, Godin B, Dayan N, Weiss C, Piliponsky A, Levi-Schaffer F. Intracellular delivery mediated by an ethosomal carrier. Biomaterials 2001; 22(22): 3053-9.
[http://dx.doi.org/10.1016/S0142-9612(01)00052-7 ] [PMID: 11575480]
[52]
Desai PR, Shah PP, Patlolla RR, Singh M. Dermal microdialysis technique to evaluate the trafficking of surface-modified lipid nanoparticles upon topical application. Pharm Res 2012; 29(9): 2587-600.
[http://dx.doi.org/10.1007/s11095-012-0789-2 ] [PMID: 22644591]
[53]
Zhu S, Chen S, Gao Y, et al. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv 2016; 23(6): 1980-91.
[http://dx.doi.org/10.3109/10717544.2015.1043472 ] [PMID: 26181841]
[54]
Wang Y, Su W, Li Q, et al. Preparation and evaluation of lidocaine hydrochloride-loaded TAT-conjugated polymeric liposomes for transdermal delivery. Int J Pharm 2013; 441(1-2): 748-56.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.019 ] [PMID: 23089577]
[55]
Patlolla RR, Desai PR, Belay K, Singh MS. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials 2010; 31(21): 5598-607.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.010 ] [PMID: 20413152]
[56]
Shah PP, Desai PR, Channer D, Singh M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release 2012; 161(3): 735-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.011 ] [PMID: 22617521]
[57]
Chen C, You P. A novel local anesthetic system: transcriptional transactivator peptide-decorated nanocarriers for skin delivery of ropivacaine. Drug Des Devel Ther 2017; 11(11): 1941-9.
[http://dx.doi.org/10.2147/DDDT.S135916 ] [PMID: 28721013]
[58]
Pepe D, Carvalho VF, McCall M, de Lemos DP, Lopes LB. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel. Int J Nanomedicine 2016; 11(11): 2009-19.
[PMID: 27274232]
[59]
Wang S, Zeng D, Niu J, et al. Development of an efficient transdermal drug delivery system with TAT-conjugated cationic polymeric lipid vesicles. J Mater Chem B Mater Biol Med 2014; 2(7): 877-84.
[http://dx.doi.org/10.1039/C3TB21353F ] [PMID: 32261319]
[60]
Petrilli R, Eloy JO, Praça FS, et al. Liquid crystalline nanodispersions functionalized with cell-penetrating peptides for topical delivery of short-interfering RNAs: A proposal for silencing a pro-inflammatory cytokine in cutaneous diseases. J Biomed Nanotechnol 2016; 12(5): 1063-75.
[http://dx.doi.org/10.1166/jbn.2016.2211 ] [PMID: 27305826]
[61]
Lee W-R, Shen S-C, Al-Suwayeh SA, Yang H-H, Li Y-C, Fang J-Y. Skin permeation of small-molecule drugs, macromolecules, and nanoparticles mediated by a fractional carbon dioxide laser: the role of hair follicles. Pharm Res 2013; 30(3): 792-802.
[http://dx.doi.org/10.1007/s11095-012-0920-4 ] [PMID: 23138262]
[62]
Wosicka H, Cal K. Targeting to the hair follicles: current status and potential. J Dermatol Sci 2010; 57(2): 83-9.
[http://dx.doi.org/10.1016/j.jdermsci.2009.12.005 ] [PMID: 20060268]
[63]
Liu X, Grice JE, Lademann J, et al. Hair follicles contribute significantly to penetration through human skin only at times soon after application as a solvent deposited solid in man. Br J Clin Pharmacol 2011; 72(5): 768-74.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04022.x ] [PMID: 21599723]
[64]
Blume-Peytavi U, Massoudy L, Patzelt A, et al. Follicular and percutaneous penetration pathways of topically applied minoxidil foam. Eur J Pharm Biopharm 2010; 76(3): 450-3.
[http://dx.doi.org/10.1016/j.ejpb.2010.06.010 ] [PMID: 20600888]
[65]
Changez M, Varshney M, Chander J, Dinda AK. Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: in vitro. Colloids Surf B Biointerfaces 2006; 50(1): 18-25.
[http://dx.doi.org/10.1016/j.colsurfb.2006.03.018 ] [PMID: 16690263]
[66]
Abd E, Yousef SA, Pastore MN, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol 2016; 8: 163-76.
[http://dx.doi.org/10.2147/CPAA.S64788 ] [PMID: 27799831]
[67]
Baumann KY, Church MK, Clough GF, et al. Skin microdialysis: methods, applications and future opportunities-an EAACI position paper. Clin Transl Allergy 2019; 9(1): 24.
[http://dx.doi.org/10.1186/s13601-019-0262-y ] [PMID: 31007896]
[68]
Gompper G, Kroll DM. Driven transport of fluid vesicles through narrow pores. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1995; 52(4): 4198-208.
[http://dx.doi.org/10.1103/PhysRevE.52.4198 ] [PMID: 9963891]
[69]
Cevc G. Material transport across permeability barriers by means of lipid vesicles. Handbook of Biological Physics Elsevier. 1995; 1: 465-90.
[http://dx.doi.org/10.1016/S1383-8121(06)80026-6]
[70]
Foldvari M, Faulkner GT, Mezei M. Imaging liposomes at electron microscopic level: encapsulated colloidal iron as an electrondense marker for liposome-cell interactions. J Microencapsul 1988; 5(3): 231-41.
[http://dx.doi.org/10.3109/02652048809064168 ] [PMID: 3199308]
[71]
Abdellatif AA, Tawfeek HM. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS PharmSciTech 2016; 17(5): 1067-74.
[http://dx.doi.org/10.1208/s12249-015-0441-7 ] [PMID: 26511937]
[72]
Ascenso A, Raposo S, Batista C, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine 2015; 10: 5837-51.
[http://dx.doi.org/10.2147/IJN.S86186 ] [PMID: 26425085]
[73]
Marto J, Vitor C, Guerreiro A, et al. Ethosomes for enhanced skin delivery of griseofulvin. Colloids Surf B Biointerfaces 2016; 146: 616-23.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.021 ] [PMID: 27429295]
[74]
Marto J, Vitor C, Guerreiro A, et al. Ethosomes for enhanced skin delivery of griseofulvin b. Biointerfaces 2016; 146: 616-23.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.021]
[75]
Kirjavainen M, Mönkkönen J, Saukkosaari M, Valjakka-Koskela R, Kiesvaara J, Urtti A. Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J Control Release 1999; 58(2): 207-14.
[http://dx.doi.org/10.1016/S0168-3659(98)00152-7 ] [PMID: 10053193]
[76]
Duangjit S, Pamornpathomkul B, Opanasopit P, et al. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int J Nanomedicine 2014; 9: 2005-17.
[http://dx.doi.org/10.2147/IJN.S60674 ] [PMID: 24851047]
[77]
Subongkot T, Wonglertnirant N, Songprakhon P, Rojanarata T, Opanasopit P, Ngawhirunpat T. Visualization of ultradeformable liposomes penetration pathways and their skin interaction by confocal laser scanning microscopy. Int J Pharm 2013; 441(1-2): 151-61.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.003 ] [PMID: 23247017]
[78]
Bommannan D, Potts RO, Guy RH. Examination of the effect of ethanol on human stratum corneum in vivo using infrared spectroscopy. J Control Release 1991; 16(3): 299-304.
[http://dx.doi.org/10.1016/0168-3659(91)90006-Y]
[79]
Lewis EN, Levin IW, Steer CJ. Infrared spectroscopic study of ethanol-induced changes in rat liver plasma membrane. Biochim Biophys Acta 1989; 986(1): 161-6.
[http://dx.doi.org/10.1016/0005-2736(89)90286-1 ] [PMID: 2819093]
[80]
Bodde HE, Verhoef JC, Ponec M. Transdermal peptide delivery. Biochem Soc Trans 1989; 17(5): 943-5.
[http://dx.doi.org/10.1042/bst0170943 ] [PMID: 2533571]
[81]
Kadir R, Stempler D, Liron Z, Cohen S. Delivery of theophylline into excised human skin from alkanoic acid solutions: a “push-pull” mechanism. J Pharm Sci 1987; 76(10): 774-9.
[http://dx.doi.org/10.1002/jps.2600761004 ] [PMID: 3430340]
[82]
Fang J-Y, Hong C-T, Chiu W-T, Wang Y-Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm 2001; 219(1-2): 61-72.
[http://dx.doi.org/10.1016/S0378-5173(01)00627-5 ] [PMID: 11337166]
[83]
Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: Dermal and transdermal drug delivery. J Control Release 1994; 30(1): 1-15.
[http://dx.doi.org/10.1016/0168-3659(94)90039-6]
[84]
Verma DD, Fahr A. Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporin A. J Control Release 2004; 97(1): 55-66.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.028 ] [PMID: 15147804]
[85]
Ogunsola OA, Kraeling ME, Zhong S, et al. Structural analysis of “flexible” liposome formulations: New insights into the skin-penetrating ability of soft nanostructures. Soft Matter 2012; 8(40): 10226-32.
[http://dx.doi.org/10.1039/c2sm26614h]
[86]
Honari G. Skin structure and function.Sensitive skin syndrome. 2nd ed. CRC Press 2017; 26-32.
[http://dx.doi.org/10.1201/9781315121048-3]
[87]
Honari G, Andersen R, Maibach HL. Sensitive skin syndrome. CRC Press 2017.
[http://dx.doi.org/10.1201/9781315121048]
[88]
Jenning V, Schäfer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release 2000; 66(2-3): 115-26.
[http://dx.doi.org/10.1016/S0168-3659(99)00223-0 ] [PMID: 10742573]
[89]
Jenning V, Gysler A, Schäfer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 2000; 49(3): 211-8.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2 ] [PMID: 10799811]
[90]
Kang MJ, Eum JY, Jeong MS, et al. Facilitated skin permeation of oregonin by elastic liposomal formulations and suppression of atopic dermatitis in NC/Nga mice. Biol Pharm Bull 2010; 33(1): 100-6.
[http://dx.doi.org/10.1248/bpb.33.100 ] [PMID: 20045944]
[91]
Larese FF, D’Agostin F, Crosera M, et al. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 2009; 255(1-2): 33-7.
[http://dx.doi.org/10.1016/j.tox.2008.09.025 ] [PMID: 18973786]
[92]
Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces 2008; 65(1): 1-10.
[http://dx.doi.org/10.1016/j.colsurfb.2008.02.013 ] [PMID: 18499408]
[93]
Filon FL, Crosera M, Adami G, Bovenzi M, Rossi F, Maina G. Human skin penetration of gold nanoparticles through intact and damaged skin. Nanotoxicology 2011; 5(4): 493-501.
[http://dx.doi.org/10.3109/17435390.2010.551428 ] [PMID: 21319954]
[94]
Labouta HI, Liu DC, Lin LL, et al. Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm Res 2011; 28(11): 2931-44.
[http://dx.doi.org/10.1007/s11095-011-0561-z ] [PMID: 21833791]
[95]
Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 2007; 127(7): 1701-12.
[http://dx.doi.org/10.1038/sj.jid.5700733 ] [PMID: 17380118]
[96]
Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997; 14(11): 1568-73.
[http://dx.doi.org/10.1023/A:1012126301290 ] [PMID: 9434276]
[97]
Dhote V, Bhatnagar P, Mishra PK, Mahajan SC, Mishra DK. Iontophoresis: a potential emergence of a transdermal drug delivery system. Sci Pharm 2012; 80(1): 1-28.
[http://dx.doi.org/10.3797/scipharm.1108-20 ] [PMID: 22396901]
[98]
Park C-W, Son D-D, Kim J-Y, et al. Investigation of formulation factors affecting in vitro and in vivo characteristics of a galantamine transdermal system. Int J Pharm 2012; 436(1-2): 32-40.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.057 ] [PMID: 22771734]
[99]
Walters KA. Dermatological and transdermal formulations. CRC Press 2002; 119.
[http://dx.doi.org/10.1201/9780824743239]
[100]
van der Merwe D, Brooks JD, Gehring R, Baynes RE, Monteiro-Riviere NA, Riviere JE. A physiologically based pharmacokinetic model of organophosphate dermal absorption. Toxicol Sci 2006; 89(1): 188-204.
[http://dx.doi.org/10.1093/toxsci/kfj014 ] [PMID: 16221965]
[101]
Reddy MB, Guy RH, Bunge AL. Does epidermal turnover reduce percutaneous penetration? Pharm Res 2000; 17(11): 1414-9.
[http://dx.doi.org/10.1023/A:1007522200422 ] [PMID: 11205736]
[102]
Genotelle N, Lherm T, Gontier O, Le CG, Caen D. Right uncontrollable haemothorax revealing a liver injury with diaphragmatic rupture Abs 23: 831-4.
[103]
Shomaker TS, Zhang J, Ashburn MA. A pilot study assessing the impact of heat on the transdermal delivery of testosterone. J Clin Pharmacol 2001; 41(6): 677-82.
[http://dx.doi.org/10.1177/00912700122010447 ] [PMID: 11402637]
[104]
Petersen KK, Rousing ML, Jensen C, Arendt-Nielsen L, Gazerani P. Effect of local controlled heat on transdermal delivery of nicotine. Int J Physiol Pathophysiol Pharmacol 2011; 3(3): 236-42.
[PMID: 21941614]
[105]
Ngo MA, O’Malley M, Maibach HI. Perspectives on percutaneous penetration of nanomaterials. Nanotechnology in dermatology. Springer 2013; 63-86.
[http://dx.doi.org/10.1007/978-1-4614-5034-4_7]
[106]
Roberts MS, Walters K. Human skin morphology and dermal absorption. Dermal Adsorption and Toxicity Assessment 2008.
[107]
Guy RH, Hadgraft J, Bucks DA. Transdermal drug delivery and cutaneous metabolism. Xenobiotica 1987; 17(3): 325-43.
[http://dx.doi.org/10.3109/00498258709043943 ] [PMID: 3107225]
[108]
Bouwstra JA, Honeywell-Nguyen PL. Skin structure and mode of action of vesicles. Adv Drug Deliv Rev 2002; 54(Suppl. 1): S41-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00114-X ] [PMID: 12460715]
[109]
Ngo MA, O’Malley M, Maibach HI. Percutaneous absorption and exposure assessment of pesticides. J Appl Toxicol 2010; 30(2): 91-114.
[PMID: 20033883]
[110]
Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol 2004; 122(1): 14-9.
[http://dx.doi.org/10.1046/j.0022-202X.2003.22110.x ] [PMID: 14962084]
[111]
Li L, Lishko V, Hoffman RM. Liposome targeting of high molecular weight DNA to the hair follicles of histocultured skin: a model for gene therapy of the hair growth processes. In Vitro Cell Dev Biol Anim 1993; 29A(4): 258-60.
[http://dx.doi.org/10.1007/BF02633949 ] [PMID: 8320176]
[112]
Cornwell PA, Tubek J, van Gompel HA, Little CJ, Wiechers JW. Glyceryl monocaprylate/caprate as a moderate skin penetration enhancer. Int J Pharm 1998; 171(2): 243-55.
[http://dx.doi.org/10.1016/S0378-5173(98)00194-X]
[113]
Wohlrab J, Klapperstück T, Reinhardt H-W, Albrecht M. Interaction of epicutaneously applied lipids with stratum corneum depends on the presence of either emulsifiers or hydrogenated phosphatidylcholine. Skin Pharmacol Physiol 2010; 23(6): 298-305.
[http://dx.doi.org/10.1159/000313515 ] [PMID: 20523109]
[114]
El Maghraby GM, Williams AC, Barry BW. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int J Pharm 2004; 276(1-2): 143-61.
[http://dx.doi.org/10.1016/j.ijpharm.2004.02.024 ] [PMID: 15113622]
[115]
Göppert TM, Müller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 2005; 13(3): 179-87.
[http://dx.doi.org/10.1080/10611860500071292 ] [PMID: 16036306]
[116]
Batheja P, Sheihet L, Kohn J, Singer AJ, Michniak-Kohn B. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies. J Control Release 2011; 149(2): 159-67.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.005 ] [PMID: 20950659]
[117]
Alves MP, Scarrone AL, Santos M, Pohlmann AR, Guterres SS. Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. Int J Pharm 2007; 341(1-2): 215-20.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.031 ] [PMID: 17482392]
[118]
Glavas-Dodov M, Goracinova K, Mladenovska K, Fredro-Kumbaradzi E. Release profile of lidocaine HCl from topical liposomal gel formulation. Int J Pharm 2002; 242(1-2): 381-4.
[http://dx.doi.org/10.1016/S0378-5173(02)00221-1 ] [PMID: 12176284]
[119]
Pople PV, Singh KK. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech 2006; 7(4): 91.
[http://dx.doi.org/10.1208/pt070491 ] [PMID: 17285742]
[120]
Souto E, Almeida A, Müller R. Lipid nanoparticles (sln®, nlc®) for cutaneous drug delivery: Structure, protection and skin effects. J Biomed Nanotechnol 2007; 3(4): 317-31.
[http://dx.doi.org/10.1166/jbn.2007.049 ] [PMID: 20055078]
[121]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54(54)(Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7 ] [PMID: 12460720]
[122]
Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int J Nanomedicine 2007; 2(4): 595-607.
[PMID: 18203427]
[123]
Prow TW, Monteiro-Riviere NA, Inman AO, et al. Quantum dot penetration into viable human skin. Nanotoxicology 2012; 6(2): 173-85.
[http://dx.doi.org/10.3109/17435390.2011.569092 ] [PMID: 21456897]
[124]
Allenby A, Fletcher J, Schock C, Tees T. The effect of heat, pH and organic solvents on the electrical impedance and permeability of excised human skin. Br J Dermatol 1969; 81: 31-9.
[http://dx.doi.org/10.1111/j.1365-2133.1969.tb16059.x]
[125]
Barry BW. Mode of action of penetration enhancers in human skin. J Control Release 1987; 6(1): 85-97.
[http://dx.doi.org/10.1016/0168-3659(87)90066-6]
[126]
Van Hal DA, Jeremiasse E, Junginger HE, Spies F, Bouwstra JA. Structure of fully hydrated human stratum corneum: a freeze-fracture electron microscopy study. J Invest Dermatol 1996; 106(1): 89-95.
[http://dx.doi.org/10.1111/1523-1747.ep12328031 ] [PMID: 8592088]
[127]
Baroli B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci 2010; 99(1): 21-50.
[http://dx.doi.org/10.1002/jps.21817 ] [PMID: 19670463]
[128]
Lademann J, Patzelt A, Richter H, Antoniou C, Sterry W, Knorr F. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt 2009; 14(2)021014
[http://dx.doi.org/10.1117/1.3078813 ] [PMID: 19405727]
[129]
Gratieri T, Schaefer UF, Jing L, et al. Penetration of quantum dot particles through human skin. J Biomed Nanotechnol 2010; 6(5): 586-95.
[http://dx.doi.org/10.1166/jbn.2010.1155 ] [PMID: 21329051]
[130]
Pflücker F, Wendel V, Hohenberg H, et al. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol 2001; 14(S1)(Suppl. 1): 92-7.
[http://dx.doi.org/10.1159/000056396 ] [PMID: 11509913]
[131]
Gontier E, Ynsa M-D, Bíró T, et al. Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology 2008; 2(4): 218-31.
[http://dx.doi.org/10.1080/17435390802538508]
[132]
Liang XW, Xu ZP, Grice J, Zvyagin AV, Roberts MS, Liu X. Penetration of nanoparticles into human skin. Curr Pharm Des 2013; 19(35): 6353-66.
[http://dx.doi.org/10.2174/1381612811319350011 ] [PMID: 23469998]
[133]
DeLouise LA. Applications of nanotechnology in dermatology. J Invest Dermatol 2012; 132(3 Pt 2): 964-75.
[http://dx.doi.org/10.1038/jid.2011.425 ] [PMID: 22217738]
[134]
Jung S, Patzelt A, Otberg N, Thiede G, Sterry W, Lademann J. Strategy of topical vaccination with nanoparticles. J Biomed Opt 2009; 14(2)021001
[http://dx.doi.org/10.1117/1.3080714 ] [PMID: 19405714]
[135]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 2). Trop J Pharm Res 2013; 12(2): 265-73.
[136]
Win KY, Feng S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005; 26(15): 2713-22.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.050 ] [PMID: 15585275]
[137]
Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 2007; 28(31): 4600-7.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.029 ] [PMID: 17675227]
[138]
Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159-65.
[http://dx.doi.org/10.1093/toxsci/kfj122 ] [PMID: 16443688 ]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 36
Year: 2020
Published on: 22 October, 2020
Page: [4601 - 4614]
Pages: 14
DOI: 10.2174/1381612826666200701204010
Price: $65

Article Metrics

PDF: 28
HTML: 3
EPUB: 1
PRC: 1