MicroRNAs in Lung Cancer Oncogenesis and Tumor Suppression: How it Can Improve the Clinical Practice?

Author(s): Daniel Humberto Pozza, Ramon Andrade De Mello*, Raphael L.C. Araujo, Vamsidhar Velcheti

Journal Name: Current Genomics

Volume 21 , Issue 5 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Lung cancer (LC) development is a process that depends on genetic mutations. The DNA methylation, an important epigenetic modification, is associated with the expression of noncoding RNAs, such as microRNAs. MicroRNAs are particularly essential for cell physiology, since they play a critical role in tumor suppressor gene activity. Furthermore, epigenetic disruptions are the primary event in cell modification, being related to tumorigenesis. In this context, microRNAs can be a useful tool in the LC suppression, consequently improving prognosis and predicting treatment.

Conclusion: This manuscript reviews the main microRNAs involved in LC and its potential clinical applications to improve outcomes, such as survival and better quality of life.

Keywords: Lung cancer, squamous cell carcinoma, adenocarcinoma, epigenetic modification, DNA methylation, microRNA.

[1]
Castro, D.; Moreira, M.; Gouveia, A.M.; Pozza, D.H.; De Mello, R.A. MicroRNAs in lung cancer. Oncotarget, 2017, 8(46), 81679-81685.
[http://dx.doi.org/10.18632/oncotarget.20955] [PMID: 29113423]
[2]
Wu, K.L.; Tsai, Y.M.; Lien, C.T.; Kuo, P.L.; Hung, A.J. The roles of microRNA in lung cancer. Int. J. Mol. Sci., 2019, 20(7), E1611.
[http://dx.doi.org/10.3390/ijms20071611] [PMID: 30935143]
[3]
Catteau, A.; Morris, J.R. BRCA1 methylation: a significant role in tumour development? Semin. Cancer Biol., 2002, 12(5), 359-371.
[http://dx.doi.org/10.1016/S1044-579X(02)00056-1] [PMID: 12191635]
[4]
Kulis, M.; Esteller, M. DNA methylation and cancer. Adv. Genet., 2010, 70, 27-56.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2] [PMID: 20920744]
[5]
Feinberg, A.P.; Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 1983, 301(5895), 89-92.
[http://dx.doi.org/10.1038/301089a0] [PMID: 6185846]
[6]
Bird, A.P. CpG-rich islands and the function of DNA methylation. Nature, 1986, 321(6067), 209-213.
[http://dx.doi.org/10.1038/321209a0] [PMID: 2423876]
[7]
Li, J.; Li, Y.; Li, W.; Luo, H.; Xi, Y.; Dong, S.; Gao, M.; Xu, P.; Zhang, B.; Liang, Y.; Zou, Q.; Hu, X.; Peng, L.; Zou, D.; Wang, T.; Yang, H.; Jiang, C.; Peng, S.; Wu, F.; Yu, W. Guide positioning sequencing identifies aberrant DNA methylation patterns that alter cell identity and tumor-immune surveillance networks. Genome Res., 2019, 29(2), 270-280.
[http://dx.doi.org/10.1101/gr.240606.118] [PMID: 30670627]
[8]
Fabbri, M.; Garzon, R.; Cimmino, A.; Liu, Z.; Zanesi, N.; Callegari, E.; Liu, S.; Alder, H.; Costinean, S.; Fernandez-Cymering, C.; Volinia, S.; Guler, G.; Morrison, C.D.; Chan, K.K.; Marcucci, G.; Calin, G.A.; Huebner, K.; Croce, C.M. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. USA, 2007, 104(40), 15805-15810.
[http://dx.doi.org/10.1073/pnas.0707628104] [PMID: 17890317]
[9]
Husni, R.E.; Shiba-Ishii, A.; Nakagawa, T.; Dai, T.; Kim, Y.; Hong, J.; Sakashita, S.; Sakamoto, N.; Sato, Y.; Noguchi, M. DNA hypomethylation-related overexpression of SFN, GORASP2 and ZYG11A is a novel prognostic biomarker for early stage lung adenocarcinoma. Oncotarget, 2019, 10(17), 1625-1636.
[http://dx.doi.org/10.18632/oncotarget.26676] [PMID: 30899432]
[10]
Fleisher, A.S.; Esteller, M.; Tamura, G.; Rashid, A.; Stine, O.C.; Yin, J.; Zou, T.T.; Abraham, J.M.; Kong, D.; Nishizuka, S.; James, S.P.; Wilson, K.T.; Herman, J.G.; Meltzer, S.J. Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene, 2001, 20(3), 329-335.
[http://dx.doi.org/10.1038/sj.onc.1204104] [PMID: 11313962]
[11]
Dong, S.; Li, W.; Wang, L.; Hu, J.; Song, Y.; Zhang, B.; Ren, X.; Ji, S.; Li, J.; Xu, P.; Liang, Y.; Chen, G.; Lou, J.T.; Yu, W. Histone-related genes are hypermethylated in lung cancer and hypermethylated HIST1H4F could serve as a pan-cancer biomarker. Cancer Res., 2019, 79(24), 6101-6112.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1019] [PMID: 31575549]
[12]
Vincent, K.; Pichler, M.; Lee, G.W.; Ling, H. MicroRNAs, genomic instability and cancer. Int. J. Mol. Sci., 2014, 15(8), 14475-14491.
[http://dx.doi.org/10.3390/ijms150814475] [PMID: 25141103]
[13]
Lin, R.K.; Hsu, H.S.; Chang, J.W.; Chen, C.Y.; Chen, J.T.; Wang, Y.C. Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung Cancer, 2007, 55(2), 205-213.
[http://dx.doi.org/10.1016/j.lungcan.2006.10.022] [PMID: 17140695]
[14]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[15]
Iorio, M.V.; Croce, C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med., 2012, 4(3), 143-159.
[http://dx.doi.org/10.1002/emmm.201100209] [PMID: 22351564]
[16]
Johnson, C.D.; Esquela-Kerscher, A.; Stefani, G.; Byrom, M.; Kelnar, K.; Ovcharenko, D.; Wilson, M.; Wang, X.; Shelton, J.; Shingara, J.; Chin, L.; Brown, D.; Slack, F.J. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res., 2007, 67(16), 7713-7722.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1083] [PMID: 17699775]
[17]
Khan, A.Q.; Ahmed, E.I.; Elareer, N.R.; Junejo, K.; Steinhoff, M.; Uddin, S. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells, 2019, 8(8), E840.
[http://dx.doi.org/10.3390/cells8080840] [PMID: 31530793]
[18]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[19]
Mohr, A.M.; Mott, J.L. Overview of microRNA biology. Semin. Liver Dis., 2015, 35(1), 3-11.
[http://dx.doi.org/10.1055/s-0034-1397344] [PMID: 25632930]
[20]
Lu, J.; Zhan, Y.; Feng, J.; Luo, J.; Fan, S. MicroRNAs associated with therapy of non-small cell lung cancer. Int. J. Biol. Sci., 2018, 14(4), 390-397.
[http://dx.doi.org/10.7150/ijbs.22243] [PMID: 29725260]
[21]
Davalos, V.; Esteller, M. MicroRNAs and cancer epigenetics: a macrorevolution. Curr. Opin. Oncol., 2010, 22(1), 35-45.
[http://dx.doi.org/10.1097/CCO.0b013e328333dcbb] [PMID: 19907325]
[22]
Lujambio, A.; Esteller, M. How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle, 2009, 8(3), 377-382.
[http://dx.doi.org/10.4161/cc.8.3.7526] [PMID: 19177007]
[23]
Hu, J.; Cheng, Y.; Li, Y.; Jin, Z.; Pan, Y.; Liu, G.; Fu, S.; Zhang, Y.; Feng, K.; Feng, Y. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur. J. Cancer, 2014, 50(13), 2336-2350.
[http://dx.doi.org/10.1016/j.ejca.2014.06.005] [PMID: 25001183]
[24]
Duan, B.; Guo, T.; Sun, H.; Cai, R.; Rui, Q.; Xi, Z. miR-205 as a biological marker in non-small cell lung cancer. Biomed. Pharmacother., 2017, 91, 823-830.
[http://dx.doi.org/10.1016/j.biopha.2017.04.086] [PMID: 28501009]
[25]
Shan, N.; Shen, L.; Wang, J.; He, D.; Duan, C. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19. Biochem. Biophys. Res. Commun., 2015, 456(1), 385-391.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.093] [PMID: 25475731]
[26]
Yuan, Y.; Du, W.; Wang, Y.; Xu, C.; Wang, J.; Zhang, Y.; Wang, H.; Ju, J.; Zhao, L.; Wang, Z.; Lu, Y.; Cai, B.; Pan, Z. Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer. Int. J. Cancer, 2015, 136(6), 1333-1340.
[http://dx.doi.org/10.1002/ijc.29103] [PMID: 25066607]
[27]
Wang, R.; Wang, Z.X.; Yang, J.S.; Pan, X.; De, W.; Chen, L.B. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene, 2011, 30(23), 2644-2658.
[http://dx.doi.org/10.1038/onc.2010.642] [PMID: 21358675]
[28]
Wang, X.; Cao, L.; Wang, Y.; Wang, X.; Liu, N.; You, Y. Regulation of let-7 and its target oncogenes. (review) Oncol. Lett., 2012, 3(5), 955-960.
[http://dx.doi.org/10.3892/ol.2012.609]] [PMID: 22783372]
[29]
Chirshev, E.; Oberg, K.C.; Ioffe, Y.J.; Unternaehrer, J.J. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin. Transl. Med., 2019, 8(1), 24.
[http://dx.doi.org/10.1186/s40169-019-0240-y] [PMID: 31468250]
[30]
Johnson, M.; Pennell, N.A.; Borghaei, H. My patient was diagnosed with nontargetable advanced non-small cell lung cancer. what now? Diagnosis and initial treatment options for newly diagnosed patients with advanced NSCLC. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38(38), 696-707.
[http://dx.doi.org/10.1200/EDBK_201231] [PMID: 30231362]
[31]
Lim, C.; Tsao, M.S.; Le, L.W.; Shepherd, F.A.; Feld, R.; Burkes, R.L.; Liu, G.; Kamel-Reid, S.; Hwang, D.; Tanguay, J.; da Cunha Santos, G.; Leighl, N.B. Biomarker testing and time to treatment decision in patients with advanced nonsmall-cell lung cancer. Ann. Oncol., 2015, 26(7), 1415-1421.
[http://dx.doi.org/10.1093/annonc/mdv208] [PMID: 25922063]
[32]
Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; Doebele, R.C.; Govindan, R.; Gubens, M.A.; Hennon, M.; Horn, L.; Komaki, R.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Leisch, L.J.; Lilenbaum, R.; Lin, J.; Loo, B.W., Jr; Martins, R.; Otterson, G.A.; Reckamp, K.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Stevenson, J.; Swanson, S.J.; Tauer, K.; Yang, S.C.; Gregory, K.; Hughes, M. Non-small cell lung cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw., 2017, 15(4), 504-535.
[http://dx.doi.org/10.6004/jnccn.2017.0050] [PMID: 28404761]
[33]
Goldman, J.W.; Shi, P.; Reck, M.; Paz-Ares, L.; Koustenis, A.; Hurt, K.C. Treatment rationale and study design for the JUNIPER study: a randomized phase III study of abemaciclib with best supportive care versus erlotinib with best supportive care in patients with stage IV non-small-cell lung cancer with a detectable KRAS mutation whose disease has progressed after platinum-based chemotherapy. Clin. Lung Cancer, 2016, 17(1), 80-84.
[http://dx.doi.org/10.1016/j.cllc.2015.08.003] [PMID: 26432508]
[34]
Thakur, S.; Brenner, C. KRAS-driven miR-29b expression is required for tumor suppressor gene silencing. Oncotarget, 2017, 8(43), 74755-74766.
[http://dx.doi.org/10.18632/oncotarget.20364] [PMID: 29088821]
[35]
Barlesi, F.; Mazieres, J.; Merlio, J.P.; Debieuvre, D.; Mosser, J.; Lena, H.; Ouafik, L.; Besse, B.; Rouquette, I.; Westeel, V.; Escande, F.; Monnet, I.; Lemoine, A.; Veillon, R.; Blons, H.; Audigier-Valette, C.; Bringuier, P.P.; Lamy, R.; Beau-Faller, M.; Pujol, J.L.; Sabourin, J.C.; Penault-Llorca, F.; Denis, M.G.; Lantuejoul, S.; Morin, F.; Tran, Q.; Missy, P.; Langlais, A.; Milleron, B.; Cadranel, J.; Soria, J.C.; Zalcman, G. Biomarkers France contributors. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet, 2016, 387(10026), 1415-1426.
[http://dx.doi.org/10.1016/S0140-6736(16)00004-0] [PMID: 26777916]
[36]
Yu, H.A.; Planchard, D.; Lovly, C.M. Sequencing therapy for genetically defined subgroups of non-small cell lung cancer. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38(38), 726-739.
[http://dx.doi.org/10.1200/EDBK_201331] [PMID: 30231382]
[37]
Dinami, R.; Buemi, V.; Sestito, R.; Zappone, A.; Ciani, Y.; Mano, M.; Petti, E.; Sacconi, A.; Blandino, G.; Giacca, M.; Piazza, S.; Benetti, R.; Schoeftner, S. Epigenetic silencing of miR-296 and miR-512 ensures hTERT dependent apoptosis protection and telomere maintenance in basal-type breast cancer cells. Oncotarget, 2017, 8(56), 95674-95691.
[http://dx.doi.org/10.18632/oncotarget.21180] [PMID: 29221158]
[38]
Zhou, J.; Dai, W.; Song, J. miR-1182 inhibits growth and mediates the chemosensitivity of bladder cancer by targeting hTERT. Biochem. Biophys. Res. Commun., 2016, 470(2), 445-452.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.014] [PMID: 26772886]
[39]
Xu, Q.; Sun, Q.; Zhang, J.; Yu, J.; Chen, W.; Zhang, Z. Downregulation of miR-153 contributes to epithelial-mesenchymal transition and tumor metastasis in human epithelial cancer. Carcinogenesis, 2013, 34(3), 539-549.
[http://dx.doi.org/10.1093/carcin/bgs374] [PMID: 23188671]
[40]
Kalluri, R.; Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest., 2003, 112(12), 1776-1784.
[http://dx.doi.org/10.1172/JCI200320530] [PMID: 14679171]
[41]
Sun, Z.; Liu, G.; Xu, N. Does hypermethylation of CpG island in the promoter region of the E-cadherin gene increase the risk of lung cancer? A meta-analysis. Thorac. Cancer, 2019, 10(1), 54-59.
[http://dx.doi.org/10.1111/1759-7714.12900] [PMID: 30390382]
[42]
Bai, Z.; Sun, J.; Wang, X.; Wang, H.; Pei, H.; Zhang, Z. MicroRNA-153 is a prognostic marker and inhibits cell migration and invasion by targeting SNAI1 in human pancreatic ductal adenocarcinoma. Oncol. Rep., 2015, 34(2), 595-602.
[http://dx.doi.org/10.3892/or.2015.4051] [PMID: 26062664]
[43]
Takeyama, Y.; Sato, M.; Horio, M.; Hase, T.; Yoshida, K.; Yokoyama, T.; Nakashima, H.; Hashimoto, N.; Sekido, Y.; Gazdar, A.F.; Minna, J.D.; Kondo, M.; Hasegawa, Y. Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett., 2010, 296(2), 216-224.
[http://dx.doi.org/10.1016/j.canlet.2010.04.008] [PMID: 20452118]
[44]
Chen, L.; Gibbons, D.L.; Goswami, S.; Cortez, M.A.; Ahn, Y.H.; Byers, L.A.; Zhang, X.; Yi, X.; Dwyer, D.; Lin, W.; Diao, L.; Wang, J.; Roybal, J.; Patel, M.; Ungewiss, C.; Peng, D.; Antonia, S.; Mediavilla-Varela, M.; Robertson, G.; Suraokar, M.; Welsh, J.W.; Erez, B.; Wistuba, I.I.; Chen, L.; Peng, D.; Wang, S.; Ullrich, S.E.; Heymach, J.V.; Kurie, J.M.; Qin, F.X. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun., 2014, 5, 5241.
[http://dx.doi.org/10.1038/ncomms6241] [PMID: 25348003]
[45]
Shi, Z.M.; Wang, L.; Shen, H.; Jiang, C.F.; Ge, X.; Li, D.M.; Wen, Y.Y.; Sun, H.R.; Pan, M.H.; Li, W.; Shu, Y.Q.; Liu, L.Z.; Peiper, S.C.; He, J.; Jiang, B.H. Downregulation of miR-218 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene, 2017, 36(18), 2577-2588.
[http://dx.doi.org/10.1038/onc.2016.414] [PMID: 28192397]
[46]
Chen, Y.; Lu, L.; Feng, B.; Han, S.; Cui, S.; Chu, X.; Chen, L.; Wang, R. Non-coding RNAs as emerging regulators of epithelial to mesenchymal transition in non-small cell lung cancer. Oncotarget, 2017, 8(22), 36787-36799.
[http://dx.doi.org/10.18632/oncotarget.16375] [PMID: 28415568]
[47]
Hsu, Y.L.; Hung, J.Y.; Chang, W.A.; Lin, Y.S.; Pan, Y.C.; Tsai, P.H.; Wu, C.Y.; Kuo, P.L. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene, 2017, 36(34), 4929-4942.
[http://dx.doi.org/10.1038/onc.2017.105] [PMID: 28436951]
[48]
Zhao, W.Y.; Wang, Y.; An, Z.J.; Shi, C.G.; Zhu, G.A.; Wang, B.; Lu, M.Y.; Pan, C.K.; Chen, P. Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2013, 435(3), 466-471.
[http://dx.doi.org/10.1016/j.bbrc.2013.05.010] [PMID: 23673296]
[49]
Tian, J.; Hu, L.; Li, X.; Geng, J.; Dai, M.; Bai, X. MicroRNA-130b promotes lung cancer progression via PPARγ/VEGF-A/BCL-2-mediated suppression of apoptosis. J. Exp. Clin. Cancer Res., 2016, 35(1), 105.
[http://dx.doi.org/10.1186/s13046-016-0382-3] [PMID: 27364335]
[50]
Zhai, S.; Zhao, L.; Lin, T.; Wang, W. Downregulation of miR-33b promotes non-small cell lung cancer cell growth through reprogramming glucose metabolism miR-33b regulates non-small cell lung cancer cell growth. J. Cell. Biochem., 2019, 120(4), 6651-6660.
[http://dx.doi.org/10.1002/jcb.27961] [PMID: 30368888]
[51]
Liu, M.; Gao, J.; Huang, Q.; Jin, Y.; Wei, Z. Downregulating microRNA-144 mediates a metabolic shift in lung cancer cells by regulating GLUT1 expression. Oncol. Lett., 2016, 11(6), 3772-3776.
[http://dx.doi.org/10.3892/ol.2016.4468] [PMID: 27313692]
[52]
Ding, G.; Huang, G.; Liu, H.D.; Liang, H.X.; Ni, Y.F.; Ding, Z.H.; Ni, G.Y.; Hua, H.W. MiR-199a suppresses the hypoxia-induced proliferation of non-small cell lung cancer cells through targeting HIF1α. Mol. Cell. Biochem., 2013, 384(1-2), 173-180.
[http://dx.doi.org/10.1007/s11010-013-1795-3] [PMID: 24022342]
[53]
Zhu, B.; Cao, X.; Zhang, W.; Pan, G.; Yi, Q.; Zhong, W.; Yan, D. MicroRNA-31-5p enhances the Warburg effect via targeting FIH. FASEB J., 2019, 33(1), 545-556.
[http://dx.doi.org/10.1096/fj.201800803R] [PMID: 30004795]
[54]
Puisségur, M.P.; Mazure, N.M.; Bertero, T.; Pradelli, L.; Grosso, S.; Robbe-Sermesant, K.; Maurin, T.; Lebrigand, K.; Cardinaud, B.; Hofman, V.; Fourre, S.; Magnone, V.; Ricci, J.E.; Pouysségur, J.; Gounon, P.; Hofman, P.; Barbry, P.; Mari, B. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ., 2011, 18(3), 465-478.
[http://dx.doi.org/10.1038/cdd.2010.119] [PMID: 20885442]
[55]
Khan, M.; Lin, J.; Liao, G.; Tian, Y.; Liang, Y.; Li, R.; Liu, M.; Yuan, Y. Comparative analysis of immune checkpoint inhibitors and chemotherapy in the treatment of advanced non-small cell lung cancer: A meta-analysis of randomized controlled trials. Medicine (Baltimore), 2018, 97(33), e11936.
[http://dx.doi.org/10.1097/MD.0000000000011936] [PMID: 30113497]
[56]
Thureau, S.; Dubray, B.; Modzelewski, R.; Bohn, P.; Hapdey, S.; Vincent, S.; Anger, E.; Gensanne, D.; Pirault, N.; Pierrick, G.; Vera, P. FDG and FMISO PET-guided dose escalation with intensity-modulated radiotherapy in lung cancer. Radiat. Oncol., 2018, 13(1), 208.
[http://dx.doi.org/10.1186/s13014-018-1147-2] [PMID: 30352608]
[57]
Agustoni, F.; Suda, K.; Yu, H.; Ren, S.; Rivard, C.J.; Ellison, K.; Caldwell, C., Jr; Rozeboom, L.; Brovsky, K.; Hirsch, F.R. EGFR-directed monoclonal antibodies in combination with chemotherapy for treatment of non-small-cell lung cancer: an updated review of clinical trials and new perspectives in biomarkers analysis. Cancer Treat. Rev., 2019, 72, 15-27.
[http://dx.doi.org/10.1016/j.ctrv.2018.08.002] [PMID: 30445271]
[58]
Fujimoto, D.; Yamashita, D.; Fukuoka, J.; Kitamura, Y.; Hosoya, K.; Kawachi, H.; Sato, Y.; Nagata, K.; Nakagawa, A.; Tachikawa, R.; Date, N.; Sakanoue, I.; Hamakawa, H.; Takahashi, Y.; Tomii, K. Comparison of PD-L1 assays in non-small cell lung cancer: 22C3 pharmDx and SP263. Anticancer Res., 2018, 38(12), 6891-6895.
[http://dx.doi.org/10.21873/anticanres.13065] [PMID: 30504406]
[59]
Weiss, J.M.; Villaruz, L.C.; O’Brien, J.; Ivanova, A.; Lee, C.; Olson, J.G.; Pollack, G.; Gorman, R.; Socinski, M.A.; Stinchombe, T.E. Results of a phase II trial of Carboplatin, Pemetrexed, and Bevacizumab for the treatment of never or former/light smoking patients with stage IV non-small cell lung cancer. Clin. Lung Cancer, 2016, 17(2), 128-132.
[http://dx.doi.org/10.1016/j.cllc.2015.12.006] [PMID: 26774201]
[60]
Zimmermann, S.; Peters, S.; Owinokoko, T.; Gadgeel, S.M. Immune checkpoint inhibitors in the management of lung cancer. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38(38), 682-695.
[http://dx.doi.org/10.1200/EDBK_201319] [PMID: 30231367]
[61]
Cortez, M.A.; Ivan, C.; Valdecanas, D.; Wang, X.; Peltier, H.J.; Ye, Y.; Araujo, L.; Carbone, D.P.; Shilo, K.; Giri, D.K.; Kelnar, K.; Martin, D.; Komaki, R.; Gomez, D.R.; Krishnan, S.; Calin, G.A.; Bader, A.G.; Welsh, J.W. PDL1 Regulation by p53 via miR-34. J. Natl. Cancer Inst., 2015, 108(1), djv303.
[PMID: 26577528]
[62]
Fujita, Y.; Yagishita, S.; Hagiwara, K.; Yoshioka, Y.; Kosaka, N.; Takeshita, F.; Fujiwara, T.; Tsuta, K.; Nokihara, H.; Tamura, T.; Asamura, H.; Kawaishi, M.; Kuwano, K.; Ochiya, T. The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol. Ther., 2015, 23(4), 717-727.
[http://dx.doi.org/10.1038/mt.2015.10] [PMID: 25597412]
[63]
Kiyohara, C.; Horiuchi, T.; Takayama, K.; Nakanishi, Y. Genetic polymorphisms involved in the inflammatory response and lung cancer risk: a case-control study in Japan. Cytokine, 2014, 65(1), 88-94.
[http://dx.doi.org/10.1016/j.cyto.2013.09.015] [PMID: 24139238]
[64]
Wang, L.; Zhang, L.F.; Wu, J.; Xu, S.J.; Xu, Y.Y.; Li, D.; Lou, J.T.; Liu, M.F. IL-1β-mediated repression of microRNA-101 is crucial for inflammation-promoted lung tumorigenesis. Cancer Res., 2014, 74(17), 4720-4730.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0960] [PMID: 24958470]
[65]
Bhat, I.A.; Naykoo, N.A.; Qasim, I.; Ganie, F.A.; Yousuf, Q.; Bhat, B.A.; Rasool, R.; Aziz, S.A.; Shah, Z.A. Association of interleukin 1 beta (IL-1β) polymorphism with mRNA expression and risk of non small cell lung cancer. Meta Gene, 2014, 2, 123-133.
[http://dx.doi.org/10.1016/j.mgene.2013.12.002] [PMID: 25606396]
[66]
Lv, P.; Zhang, P.; Li, X.; Chen, Y. Micro ribonucleic acid (RNA)-101 inhibits cell proliferation and invasion of lung cancer by regulating cyclooxygenase-2. Thorac. Cancer, 2015, 6(6), 778-784.
[http://dx.doi.org/10.1111/1759-7714.12283] [PMID: 26557918]
[67]
Wang, C.C. Anti-inflammatory effects of Phyllanthus emblica L on benzopyrene-induced precancerous lung lesion by regulating the IL-1beta/miR-101/Lin28B signaling pathway. Integr. Cancer Ther., 2016, 16(4), 505-515.
[PMID: 27562754]
[68]
Cao, W. Ribeiro, Rde.O.; Liu, D.; Saintigny, P.; Xia, R.; Xue, Y.; Lin, R.; Mao, L.; Ren, H. EZH2 promotes malignant behaviors via cell cycle dysregulation and its mRNA level associates with prognosis of patient with non-small cell lung cancer. PLoS One, 2012, 7(12), e52984.
[http://dx.doi.org/10.1371/journal.pone.0052984] [PMID: 23300840]
[69]
Lei, Y.M.; Zu, Y.F.; Wang, J.; Bai, S.; Shi, Y.F.; Shi, R.; Duan, J.; Cui, D.; Chen, J.; Xiang, Y.; Dong, J. Interleukin-1β-mediated suppression of microRNA-101 and upregulation of enhancer of zeste homolog 2 is involved in particle-induced lung cancer. Med. Oncol., 2015, 32(1), 387.
[http://dx.doi.org/10.1007/s12032-014-0387-8] [PMID: 25428391]
[70]
Chen, X.; Hu, Z.; Wang, W.; Ba, Y.; Ma, L.; Zhang, C.; Wang, C.; Ren, Z.; Zhao, Y.; Wu, S.; Zhuang, R.; Zhang, Y.; Hu, H.; Liu, C.; Xu, L.; Wang, J.; Shen, H.; Zhang, J.; Zen, K.; Zhang, C.Y. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int. J. Cancer, 2012, 130(7), 1620-1628.
[http://dx.doi.org/10.1002/ijc.26177] [PMID: 21557218]
[71]
Rani, S.; Gately, K.; Crown, J.; O’Byrne, K.; O’Driscoll, L. Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol. Ther., 2013, 14(12), 1104-1112.
[http://dx.doi.org/10.4161/cbt.26370] [PMID: 24025412]
[72]
Wozniak, M.B.; Scelo, G.; Muller, D.C.; Mukeria, A.; Zaridze, D.; Brennan, P. Circulating microRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PLoS One, 2015, 10(5), e0125026.
[http://dx.doi.org/10.1371/journal.pone.0125026] [PMID: 25965386]
[73]
Han, Y.; Li, H. miRNAs as biomarkers and for the early detection of non-small cell lung cancer (NSCLC). J. Thorac. Dis., 2018, 10(5), 3119-3131.
[http://dx.doi.org/10.21037/jtd.2018.05.32] [PMID: 29997981]
[74]
Su, K.; Zhang, T.; Wang, Y.; Hao, G. Diagnostic and prognostic value of plasma microRNA-195 in patients with non-small cell lung cancer. World J. Surg. Oncol., 2016, 14(1), 224.
[http://dx.doi.org/10.1186/s12957-016-0980-8] [PMID: 27733164]
[75]
Heegaard, N.H.; Schetter, A.J.; Welsh, J.A.; Yoneda, M.; Bowman, E.D.; Harris, C.C. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int. J. Cancer, 2012, 130(6), 1378-1386.
[http://dx.doi.org/10.1002/ijc.26153] [PMID: 21544802]
[76]
Võsa, U.; Vooder, T.; Kolde, R.; Fischer, K.; Välk, K.; Tõnisson, N.; Roosipuu, R.; Vilo, J.; Metspalu, A.; Annilo, T. Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer, 2011, 50(10), 812-822.
[http://dx.doi.org/10.1002/gcc.20902] [PMID: 21748820]
[77]
Boeri, M.; Verri, C.; Conte, D.; Roz, L.; Modena, P.; Facchinetti, F.; Calabrò, E.; Croce, C.M.; Pastorino, U.; Sozzi, G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA, 2011, 108(9), 3713-3718.
[http://dx.doi.org/10.1073/pnas.1100048108] [PMID: 21300873]
[78]
Xing, L.; Todd, N.W.; Yu, L.; Fang, H.; Jiang, F. Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod. Pathol., 2010, 23(8), 1157-1164.
[http://dx.doi.org/10.1038/modpathol.2010.111] [PMID: 20526284]
[79]
Yu, L.; Todd, N.W.; Xing, L.; Xie, Y.; Zhang, H.; Liu, Z.; Fang, H.; Zhang, J.; Katz, R.L.; Jiang, F. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int. J. Cancer, 2010, 127(12), 2870-2878.
[http://dx.doi.org/10.1002/ijc.25289] [PMID: 21351266]
[80]
Võsa, U.; Vooder, T.; Kolde, R.; Vilo, J.; Metspalu, A.; Annilo, T. Meta-analysis of microRNA expression in lung cancer. Int. J. Cancer, 2013, 132(12), 2884-2893.
[http://dx.doi.org/10.1002/ijc.27981] [PMID: 23225545]
[81]
Nymark, P.; Guled, M.; Borze, I.; Faisal, A.; Lahti, L.; Salmenkivi, K.; Kettunen, E.; Anttila, S.; Knuutila, S. Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosomes Cancer, 2011, 50(8), 585-597.
[http://dx.doi.org/10.1002/gcc.20880] [PMID: 21563230]
[82]
Van Roosbroeck, K.; Fanini, F.; Setoyama, T.; Ivan, C.; Rodriguez-Aguayo, C.; Fuentes-Mattei, E.; Xiao, L.; Vannini, I.; Redis, R.S.; D’Abundo, L.; Zhang, X.; Nicoloso, M.S.; Rossi, S.; Gonzalez-Villasana, V.; Rupaimoole, R.; Ferracin, M.; Morabito, F.; Neri, A.; Ruvolo, P.P.; Ruvolo, V.R.; Pecot, C.V.; Amadori, D.; Abruzzo, L.; Calin, S.; Wang, X.; You, M.J.; Ferrajoli, A.; Orlowski, R.; Plunkett, W.; Lichtenberg, T.M.; Davuluri, R.V.; Berindan-Neagoe, I.; Negrini, M.; Wistuba, I.I.; Kantarjian, H.M.; Sood, A.K.; Lopez-Berestein, G.; Keating, M.J.; Fabbri, M.; Calin, G.A. Combining anti-Mir-155 with chemotherapy for the treatment of lung cancers. Clin. Cancer Res., 2017, 23(11), 2891-2904.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1025] [PMID: 27903673]
[83]
Inamura, K.; Ishikawa, Y. MicroRNA in lung cancer: novel biomarkers and potential tools for treatment. J. Clin. Med., 2016, 5(3), E36.
[http://dx.doi.org/10.3390/jcm5030036] [PMID: 27005669]
[84]
Lv, X.; Yao, L.; Zhang, J.; Han, P.; Li, C. Inhibition of microRNA-155 sensitizes lung cancer cells to irradiation via suppression of HK2-modulated glucose metabolism. Mol. Med. Rep., 2016, 14(2), 1332-1338.
[http://dx.doi.org/10.3892/mmr.2016.5394] [PMID: 27315591]
[85]
Zang, Y.S.; Zhong, Y.F.; Fang, Z.; Li, B.; An, J. MiR-155 inhibits the sensitivity of lung cancer cells to cisplatin via negative regulation of Apaf-1 expression. Cancer Gene Ther., 2012, 19(11), 773-778.
[http://dx.doi.org/10.1038/cgt.2012.60] [PMID: 22996741]
[86]
Yang, M.; Shen, H.; Qiu, C.; Ni, Y.; Wang, L.; Dong, W.; Liao, Y.; Du, J. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur. J. Cancer, 2013, 49(3), 604-615.
[http://dx.doi.org/10.1016/j.ejca.2012.09.031] [PMID: 23099007]
[87]
Tellez, C.S.; Juri, D.E.; Do, K.; Bernauer, A.M.; Thomas, C.L.; Damiani, L.A.; Tessema, M.; Leng, S.; Belinsky, S.A. EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res., 2011, 71(8), 3087-3097.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3035] [PMID: 21363915]
[88]
Kumamoto, T.; Seki, N.; Mataki, H.; Mizuno, K.; Kamikawaji, K.; Samukawa, T.; Koshizuka, K.; Goto, Y.; Inoue, H. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. Int. J. Oncol., 2016, 49(5), 1870-1880.
[http://dx.doi.org/10.3892/ijo.2016.3690] [PMID: 27633630]
[89]
Bao, L.; Lv, L.; Feng, J.; Chen, Y.; Wang, X.; Han, S.; Zhao, H. miR-487b-5p regulates temozolomide resistance of lung cancer cells through LAMP2-medicated autophagy. DNA Cell Biol., 2016, 35(8), 385-392.
[http://dx.doi.org/10.1089/dna.2016.3259] [PMID: 27097129]
[90]
Mao, G.; Liu, Y.; Fang, X.; Liu, Y.; Fang, L.; Lin, L.; Liu, X.; Wang, N. Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis, 2015, 18(3), 373-382.
[http://dx.doi.org/10.1007/s10456-015-9474-5] [PMID: 26040900]
[91]
Jang, J.S.; Jeon, H.S.; Sun, Z.; Aubry, M.C.; Tang, H.; Park, C.H.; Rakhshan, F.; Schultz, D.A.; Kolbert, C.P.; Lupu, R.; Park, J.Y.; Harris, C.C.; Yang, P.; Jen, J. Increased miR-708 expression in NSCLC and its association with poor survival in lung adenocarcinoma from never smokers. Clin. Cancer Res., 2012, 18(13), 3658-3667.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2857] [PMID: 22573352]
[92]
Yanaihara, N.; Caplen, N.; Bowman, E.; Seike, M.; Kumamoto, K.; Yi, M.; Stephens, R.M.; Okamoto, A.; Yokota, J.; Tanaka, T.; Calin, G.A.; Liu, C.G.; Croce, C.M.; Harris, C.C. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 2006, 9(3), 189-198.
[http://dx.doi.org/10.1016/j.ccr.2006.01.025] [PMID: 16530703]
[93]
Crawford, M.; Batte, K.; Yu, L.; Wu, X.; Nuovo, G.J.; Marsh, C.B.; Otterson, G.A.; Nana-Sinkam, S.P. MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem. Biophys. Res. Commun., 2009, 388(3), 483-489.
[http://dx.doi.org/10.1016/j.bbrc.2009.07.143] [PMID: 19654003]
[94]
Cho, W.C.; Chow, A.S.; Au, J.S. Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur. J. Cancer, 2009, 45(12), 2197-2206.
[http://dx.doi.org/10.1016/j.ejca.2009.04.039] [PMID: 19493678]
[95]
Gao, W.; Shen, H.; Liu, L.; Xu, J.; Xu, J.; Shu, Y. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J. Cancer Res. Clin. Oncol., 2011, 137(4), 557-566.
[http://dx.doi.org/10.1007/s00432-010-0918-4] [PMID: 20508945]
[96]
Raponi, M.; Dossey, L.; Jatkoe, T.; Wu, X.; Chen, G.; Fan, H.; Beer, D.G. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res., 2009, 69(14), 5776-5783.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0587] [PMID: 19584273]
[97]
Yang, Y.; Li, X.; Yang, Q.; Wang, X.; Zhou, Y.; Jiang, T.; Ma, Q.; Wang, Y.J. The role of microRNA in human lung squamous cell carcinoma. Cancer Genet. Cytogenet., 2010, 200(2), 127-133.
[http://dx.doi.org/10.1016/j.cancergencyto.2010.03.014] [PMID: 20620595]
[98]
Zang, H.; Wang, W.; Fan, S. The role of microRNAs in resistance to targeted treatments of non-small cell lung cancer. Cancer Chemother. Pharmacol., 2017, 79(2), 227-231.
[http://dx.doi.org/10.1007/s00280-016-3130-7] [PMID: 27515517]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 5
Year: 2020
Published on: 04 September, 2020
Page: [372 - 381]
Pages: 10
DOI: 10.2174/1389202921999200630144712
Price: $65

Article Metrics

PDF: 25
HTML: 2