Algal Biorefinery for the Extraction of Bioactive Compounds

Author(s): Navneeta Bharadvaja, Lakhan Kumar*

Journal Name: Current Bioactive Compounds

Volume 17 , Issue 4 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Algae, tiny photosynthetic microorganisms are under investigation for commercial biofuels and biochemical production. Applications of bioactive compounds of algal origin are now increasing for food, feed, fodder, fibre, cosmetics, nutraceutical and pharmaceuticals. Recent years have witnessed a major thrust moving towards a sustainable, biobased economy using a biorefinery concept. The biorefinery concept is based on obtaining a broad spectrum of products such as biodiesel, bioethanol, biogas, jet fuels, and many value-added biobased products from renewable bioresources analogous to the petroleum refinery.

Methodology: The aim of this review is to provide an insight into the utilization of algal biomass for the production of bioactive compounds, algal cultivation systems, cell disruption techniques, challenges to algal bioactive compound extraction, and offer a way forward. According to this objective, we did a comprehensive search in all available electronic information resources like in Web of Science, Scopus, and Science Direct.

Results: The review summarizes representative bioactive compounds from algal biomass, indicating that these biological resources are an inexhaustible source of new molecules that often display unique structures and sometimes have very interesting pharmacological properties, such as antifungal, antibacterial, enzyme-inhibitory, and other activities. A better cultivation and cell disruption strategy have been suggested for a sustainable algal biorefinery system.

Conclusion: The paper reviewed different bioactive compounds like astaxanthin, DHA, EPA, vitamins and β-1,3 Glucan, etc. present in microalgae and their applications in pharmaceuticals and nutraceuticals development for human consumption along with major steps of algal bioprocessing, such as algal cultivation and cell disruption. Also, the production and role of several high-value compounds extracted from algal biomass in the treatment of various diseases along with the way forward to make algal-based biorefinery for bioactive compounds economically sustainable and viable have been discussed. However, research on various aspects of algal based bioactive compound extraction is in a nascent phase and requires bioprospecting of high yielding native algal species, development and deployment of mass cultivation strategies, process optimization for harvest and cell disruption techniques followed by efficient biomolecule extraction procedures to make algal biorefinery sustainable and commercially viable in nature.

Keywords: Microalgae, bioactive compounds, algal bioprocessing, biorefinery, pharmaceuticals, nutraceuticals.

[1]
Zhou, Z.F.; Guo, Y.W. Bioactive natural products from Chinese marine flora and fauna. Acta Pharmacol. Sin., 2012, 33(9), 1159-1169.
[http://dx.doi.org/10.1038/aps.2012.110] [PMID: 22941288]
[2]
Gong, M.; Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv., 2016, 34(8), 1396-1412.
[http://dx.doi.org/10.1016/j.biotechadv.2016.10.005] [PMID: 27816618]
[3]
Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci., 201926(4), 709-722.
[http://dx.doi.org/10.1016/J.SJBS.2017.11.003] [PMID: 31048995]
[4]
Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D-T.; Show, P-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness, 2019, 8(1), 16-24.
[http://dx.doi.org/10.1016/j.fshw.2019.03.001]
[5]
Jacob-Lopes, E.; Maroneze, M.M.; Deprá, M.C.; Sartori, R.B.; Dias, R.R.; Zepka, L.Q. Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Curr. Opin. Food Sci., 2019, 25, 1-7.
[http://dx.doi.org/10.1016/j.cofs.2018.12.003]
[6]
Heidari, F.; Shariatmadari, Z.; Riahi, H. Screening of bioactive materials from extremophile microalgae isolated from high background radiation areas. Curr. Bioact. Compd., 2020, 16(4), 407-414.
[http://dx.doi.org/10.2174/1573407215666181219104518]
[7]
Chandra, R.; Iqbal, H.M.N.; Vishal, G.; Lee, H.S.; Nagra, S. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour. Technol., 2019, 278, 346-359.
[http://dx.doi.org/10.1016/j.biortech.2019.01.104] [PMID: 30718075]
[8]
Kumar, D.; Singh, B. Algal biorefinery: An integrated approach for sustainable biodiesel production. Biomass Bioenergy, 2019, 131(42), 105398.
[http://dx.doi.org/10.1016/j.biombioe.2019.105398]
[9]
Kalimuthu, S.; Venkatesan, J.; Kim, S-K. Marine derived bioactive compounds for breast and prostate cancer treatment: A review. Curr. Bioact. Compd., 2014, 10(1), 62-74.
[http://dx.doi.org/10.2174/1573407210666140327212945]
[10]
Ganesan, A.R.; Tiwari, U.; Rajauria, G. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci. Hum. Wellness, 2019, 8(3), 252-263.
[http://dx.doi.org/10.1016/j.fshw.2019.08.001]
[11]
Poblete-Castro, I.; Hoffmann, S.L.; Becker, J.; Wittmann, C. Cascaded valorization of seaweed using microbial cell factories. Curr. Opin. Biotechnol., 2020, 65, 102-113.
[http://dx.doi.org/10.1016/j.copbio.2020.02.008] [PMID: 32171887]
[12]
Zarena, A.S. Exploring the potential bioactive properties of marine natural products. Curr. Bioact. Compd., 2018, 15(5), 524-539.
[http://dx.doi.org/10.2174/1573407214666180727092555]
[13]
Borowitzka, M.A. High-value products from microalgae-Their development and commercialisation. J. Appl. Phycol., 2013, 25(3), 743-756.
[http://dx.doi.org/10.1007/s10811-013-9983-9]
[14]
Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr., 2006, 46(2), 185-196.
[http://dx.doi.org/10.1080/10408690590957188] [PMID: 16431409]
[15]
Abed, R.M.M.; Dobretsov, S.; Sudesh, K. Applications of cyanobacteria in biotechnology. J. Appl. Microbiol., 2009, 106(1), 1-12.
[http://dx.doi.org/10.1111/j.1365-2672.2008.03918.x] [PMID: 19191979]
[16]
Raja, R.; Hemaiswarya, S.; Kumar, N.A.; Sridhar, S.; Rengasamy, R. A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol., 2008, 34(2), 77-88.
[http://dx.doi.org/10.1080/10408410802086783] [PMID: 18568862]
[17]
Sulaiman, M.; Mahadevan, R.K.; Kurup, M.G. Effect of ascophyllan from brown algae Padina tetrastromatica on cell migration and extracellular matrix stabilisation in burn wounds. Curr. Bioact. Compd., 2018, 15(5), 562-572.
[http://dx.doi.org/10.2174/1573407214666180327123118]
[18]
Vasquez, R.D.; Lirio, S. Content analysis, cytotoxic, and anti-metastasis potential of bioactive polysaccharides from green alga codium intricatum okamura. Curr. Bioact. Compd., 2018, 16(3), 320-328.
[http://dx.doi.org/10.2174/1573407214666181019124339]
[19]
Mimouni, V.; Ulmann, L.; Pasquet, V.; Mathieu, M.; Picot, L.; Bougaran, G.; Cadoret, J-P.; Morant-Manceau, A.; Schoefs, B. The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr. Pharm. Biotechnol., 2012, 13(15), 2733-2750.
[http://dx.doi.org/10.2174/138920112804724828] [PMID: 23072388]
[20]
Fu, W.; Nelson, D.R.; Yi, Z.; Xu, M.; Khraiwesh, B.; Jijakli, K.; Chaiboonchoe, A.; Alzahmi, A.; Al-Khairy, D.; Brynjolfsson, S. Bioactive Compounds From Microalgae: Current Development and Prospects. In: Studies in Natural Products Chemistry; , 2017; 54, pp. 199-225.
[21]
Plaza, M.; Santoyo, S.; Jaime, L.; García-Blairsy Reina, G.; Herrero, M.; Señoráns, F.J.; Ibáñez, E. Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal., 2010, 51(2), 450-455.
[http://dx.doi.org/10.1016/j.jpba.2009.03.016] [PMID: 19375880]
[22]
Carotenoids Market by Type (Astaxanthin, Beta-Carotene, Canthaxanthin, Lutein, Lycopene, & Zeaxanthin), Source (Synthetic and Natural), Application (Supplements, Food, Feed, and Cosmetics), & by Region - Global Trends & Forecasts to 2021, 2021. Available from: https://www.marketsandmarkets.com/Market-Reports/carotenoid-market-158421566.html
[23]
Lutein Market by Form (Powder & Crystalline, Oil Suspension, Beadlet, Emulsion), Source (Natural, Synthetic), Application (Food, Beverages, Dietary Supplements, Animal Feed), Production Process, and Region - Global Forecast to 2022, Available from: https://www.marketsandmarkets.com/Market-Reports/lutein-market-69753879.html
[24]
Lutein Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2018 - 2026, Available from: https://www.transparencymarketresearch.com/lutein-market.html
[25]
Astaxanthin Market by Source (Plant, Yeast   Microbes, Marine, Petroleum), Form (Dry, Liquid), Method of Production (Biological Process, Chemical Process), Application (Feed, Supplements, Food, Cosmetics), and Region - Global Forecast to 2022, Available from: https://www.marketsandmarkets.com/Market-Reports/astaxanthin-market-162119410.html
[26]
Omega-3 PUFA Market by Type (DHA, EPA, ALA), Application (Dietary Supplements, Functional Foods   Beverages, Pharmaceuticals, Infant Formula), Source (Marine, Plant), Sub-source),   Region - Global Forecasts to 2020, 2020. Available from: https://www.marketresearch.com/MarketsandMarkets-v3719/Omega-PUFA-Type-DHA-EPA-9847554/
[27]
Milledge, J.J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Biotechnol., 2011, 10(1), 31-41.
[http://dx.doi.org/10.1007/s11157-010-9214-7]
[28]
Mobin, S.M.A.; Chowdhury, H.; Alam, F. Commercially important bioproducts from microalgae and their current applications-A review. Energy Procedia, 2018, 2019(160), 752-760.
[http://dx.doi.org/10.1016/j.egypro.2019.02.183]
[29]
Levasseur, W.; Perré, P.; Pozzobon, V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol. Adv., 2020, 41, 107545.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107545] [PMID: 32272160]
[30]
Bhattacharya, M.; Goswami, S. Microalgae – A green multi-product biorefinery for future industrial prospects. Biocatal. Agric. Biotechnol., 2020, 24(2), 101580.
[http://dx.doi.org/10.1016/j.bcab.2020.101580]
[31]
Cardozo, K.H.M.; Guaratini, T.; Barros, M.P.; Falcão, V.R.; Tonon, A.P.; Lopes, N.P.; Campos, S.; Torres, M.A.; Souza, A.O.; Colepicolo, P.; Pinto, E. Metabolites from algae with economical impact. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2007, 146(1-2), 60-78.
[http://dx.doi.org/10.1016/j.cbpc.2006.05.007] [PMID: 16901759]
[32]
Javed, F.; Aslam, M.; Rashid, N.; Shamair, Z.; Khan, A.L.; Yasin, M.; Fazal, T.; Hafeez, A.; Rehman, F.; Rehman, M.S.U. Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel, 2019, 255(6), 115826.
[http://dx.doi.org/10.1016/j.fuel.2019.115826]
[33]
Bhatnagar, A.; Bhatnagar, M.; Chinnasamy, S.; Das, K. C. Chlorella Minutissima - A promising fuel alga for cultivation in municipal wastewaters Appl. Biochem. Biotechnol, 2010, 161(1-8), 523-536.
[34]
Keshri, J. Algae in Medicine. In: Medicinal Plants: Various Perspectives; Pub. Keshri, J.P.; Mukhopadhyay, R., Eds.; Department of Botany & Publication Unit, the University of Burdwan, 2012; pp. 30-50.
[35]
Chróst, R.J. Inhibitors produced by algae as an ecological factor affecting bacteria in water ecosystems. I. Dependence between phytoplankton and bacteria development. Acta Microbiol. Pol. B, 1975, 7(2), 125-133.
[PMID: 810003]
[36]
Preisitsch, M.; Harmrolfs, K.; Pham, H.T.L.; Heiden, S.E.; Füssel, A.; Wiesner, C.; Pretsch, A.; Swiatecka-Hagenbruch, M.; Niedermeyer, T.H.J.; Müller, R.; Mundt, S. Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. J. Antibiot. (Tokyo), 2015, 68(3), 165-177.
[http://dx.doi.org/10.1038/ja.2014.118] [PMID: 25182484]
[37]
Bhattacharjee, M. Pharmaceutically valuable bioactive compounds of algae. Asian J. Pharm. Clin. Res., 2016, 9(6), 43-47.
[http://dx.doi.org/10.22159/ajpcr.2016.v9i6.14507]
[38]
Goldman, J.C. Outdoor algal mass cultures-I. Applications. Water Res., 1979, 13(1), 1-19.
[http://dx.doi.org/10.1016/0043-1354(79)90249-5]
[39]
Costa, J.A.V.; de Morais, M.G. An open pond system for microalgal cultivation. In: Biofuels from Algae; Elsevier, 2014; pp. 1-22.
[http://dx.doi.org/10.1016/B978-0-444-59558-4.00001-2]
[40]
Hamed, I. The evolution and versatility of microalgal biotechnology: A review. Compr. Rev. Food Sci. Food Saf., 2016, 15(6), 1104-1123.
[http://dx.doi.org/10.1111/1541-4337.12227]
[41]
Hartig, P.; Grobbelaar, J.U.; Soeder, C.J.; Groeneweg, J. On the mass culture of microalgae: Areal density as an important factor for achieving maximal productivity. Biomass, 1988, 15(4), 211-221.
[http://dx.doi.org/10.1016/0144-4565(88)90057-1]
[42]
Richmond, A. Open systems for the mass production of photoautotrophic microalgae outdoors: Physiological principles. J. Appl. Phycol., 1992, 4(3), 281-286.
[http://dx.doi.org/10.1007/BF02161213]
[43]
Pereira, H.; Páramo, J.; Silva, J.; Marques, A.; Barros, A.; Maurício, D.; Santos, T.; Schulze, P.; Barros, R.; Gouveia, L. Scale-up and large-scale production of Tetraselmis Sp. CTP4 (Chlorophyta) for CO2 mitigation: From an agar plate to 100-M3 industrial photobioreactors. Sci. Rep., 2018, 8(1), 1-11.
[http://dx.doi.org/10.1038/s41598-018-23340-3] [PMID: 29311619]
[44]
Lee, Y-K. Microalgal mass culture systems and methods: Their limitation and potential. J. Appl. Phycol., 2001, 13(4), 307-315.
[http://dx.doi.org/10.1023/A:1017560006941]
[45]
Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 2010, 14(1), 217-232.
[http://dx.doi.org/10.1016/j.rser.2009.07.020]
[46]
Sun, H.; Guan, B.; Kong, Q.; Geng, Z.; Wang, N. Repeated cultivation: non-cell disruption extraction of astaxanthin for Haematococcus pluvialis. Sci. Rep., 2016, 6, 20578.
[http://dx.doi.org/10.1038/srep20578] [PMID: 26838183]
[47]
Hannon, M.; Gimpel, J.; Tran, M.; Rasala, B.; Mayfield, S. Biofuels from algae: Challenges and potential. Biofuels, 2010, 1(5), 763-784.
[http://dx.doi.org/10.4155/bfs.10.44] [PMID: 21833344]
[48]
Hu, J.; Nagarajan, D.; Zhang, Q.; Chang, J-S.; Lee, D-J. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol. Adv., 2018, 36(1), 54-67.
[http://dx.doi.org/10.1016/j.biotechadv.2017.09.009] [PMID: 28947090]
[49]
Yen, H-W.; Hu, I-C.; Chen, C-Y.; Ho, S-H.; Lee, D-J.; Chang, J.S. Microalgae-based biorefinery-From biofuels to natural products. Bioresour. Technol., 2013, 135, 166-174.
[http://dx.doi.org/10.1016/j.biortech.2012.10.099] [PMID: 23206809]
[50]
Xi, T.; Kim, D.G.; Roh, S.W.; Choi, J-S.; Choi, Y-E. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl. Microbiol. Biotechnol., 2016, 100(14), 6231-6238.
[http://dx.doi.org/10.1007/s00253-016-7301-6] [PMID: 26860938]
[51]
Gómez, P.I.; Inostroza, I.; Pizarro, M.; Pérez, J. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants, 2013, 5(0), plt026-plt026.
[http://dx.doi.org/10.1093/aobpla/plt026] [PMID: 23789055]
[52]
Shah, M.M.R.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Front. Plant Sci., 2016, 7, 531.
[http://dx.doi.org/10.3389/fpls.2016.00531] [PMID: 27200009]
[53]
Wang, Q.; Ye, H.; Sen, B.; Xie, Y.; He, Y.; Park, S.; Wang, G. Improved production of docosahexaenoic acid in batch fermentation by newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. through bioprocess optimization. Synth Syst Biotechnol, 2018, 3(2), 121-129.
[http://dx.doi.org/10.1016/j.synbio.2018.04.001] [PMID: 29900425]
[54]
Cuellar-Bermudez, S.P.; Aguilar-Hernandez, I.; Cardenas-Chavez, D.L.; Ornelas-Soto, N.; Romero-Ogawa, M.A.; Parra-Saldivar, R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol., 2015, 8(2), 190-209.
[http://dx.doi.org/10.1111/1751-7915.12167] [PMID: 25223877]
[55]
Mendes, A.; Lopes Da Silva, T.; Reis, A. DHA Concentration and purification from the marine heterotrophic microalga Crypthecodinium Cohnii CCMP 316 by winterization and urea complexation. Food Technol. Biotechnol., 2007, 45(1), 38-44.
[56]
Winwood, R.J. Micro-organismes producteurs de lipides recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL, 2013, 20(6), D604.
[http://dx.doi.org/10.1051/ocl/2013030]
[57]
Hamilton, M.L.; Warwick, J.; Terry, A.; Allen, M.J.; Napier, J.A.; Sayanova, O. Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLoS One, 2015, 10(12), e0144054.
[http://dx.doi.org/10.1371/journal.pone.0144054] [PMID: 26658738]
[58]
Nazir, Y.; Shuib, S.; Kalil, M.S.; Song, Y.; Hamid, A.A. Optimization of culture conditions for enhanced growth, lipid and Docosahexaenoic Acid (DHA) production of aurantiochytrium SW1 by response surface methodology. Sci. Rep., 2018, 8(1), 8909.
[http://dx.doi.org/10.1038/s41598-018-27309-0] [PMID: 29892078]
[59]
Zhang, Y.; Ward, V.; Dennis, D.; Plechkova, N.V.; Armenta, R.; Rehmann, L. Efficient extraction of a Docosahexaenoic Acid (DHA)-rich lipid fraction from Thraustochytrium sp. using ionic liquids. Materials (Basel), 2018, 11(10), E1986.
[http://dx.doi.org/10.3390/ma11101986] [PMID: 30326602]
[60]
Sahin, D.; Tas, E.; Altindag, U.H. Enhancement of Docosahexaenoic Acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions. AMB Express, 2018, 8(1), 7.
[http://dx.doi.org/10.1186/s13568-018-0540-4] [PMID: 29368055]
[61]
Wen, Z-Y.; Chen, F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv., 2003, 21(4), 273-294.
[http://dx.doi.org/10.1016/S0734-9750(03)00051-X] [PMID: 14499126]
[62]
Chen, C-Y.; Chen, Y-C.; Huang, H-C.; Ho, S-H.; Chang, J-S. Enhancing the production of Eicosapentaenoic Acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements. Bioresour. Technol., 2015, 191, 407-413.
[http://dx.doi.org/10.1016/j.biortech.2015.03.001] [PMID: 25777066]
[63]
Chen, C-Y.; Chen, Y-C.; Huang, H-C.; Huang, C-C.; Lee, W-L.; Chang, J-S. Engineering strategies for enhancing the production of Eicosapentaenoic Acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2. Bioresour. Technol., 2013, 147, 160-167.
[http://dx.doi.org/10.1016/j.biortech.2013.08.051] [PMID: 23994697]
[64]
Lin, J-H.; Lee, D-J.; Chang, J-S. Lutein production from biomass: Marigold flowers versus microalgae. Bioresour. Technol., 2015, 184, 421-428.
[http://dx.doi.org/10.1016/j.biortech.2014.09.099] [PMID: 25446782]
[65]
Cerón, M.C.; Campos, I.; Sánchez, J.F.; Acién, F.G.; Molina, E.; Fernández-Sevilla, J.M. Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J. Agric. Food Chem., 2008, 56(24), 11761-11766.
[http://dx.doi.org/10.1021/jf8025875] [PMID: 19049289]
[66]
Shinde, S.D.; Lele, S.S. Statistical media optimization for lutein production from microalgae Auxenochlorella protothecoides SAG 211-7A. Int. J. Adv. Biotechnol. Res., 2010, 1, 104-114.
[67]
Kronick, M.N. The use of phycobiliproteins as fluorescent labels in immunoassay. J. Immunol. Methods, 1986, 92(1), 1-13.
[http://dx.doi.org/10.1016/0022-1759(86)90496-5] [PMID: 3528294]
[68]
Xiao, Y.; He, X.; Ma, Q.; Lu, Y.; Bai, F.; Dai, J.; Wu, Q. Photosynthetic accumulation of lutein in Auxenochlorella protothecoides after heterotrophic growth. Mar. Drugs, 2018, 16(8), 283.
[http://dx.doi.org/10.3390/md16080283] [PMID: 30115823]
[69]
Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol., 2004, 65(6), 635-648.
[http://dx.doi.org/10.1007/s00253-004-1647-x] [PMID: 15300417]
[70]
Jin, E.S.; Melis, A. Microalgal biotechnology: Carotenoid production by the green algae Dunaliella salina. Biotechnol. Bioprocess Eng.; BBE, 2003, 8(6), 331-337.
[http://dx.doi.org/10.1007/BF02949276]
[71]
Shimizu, Y. Microalgal metabolites. Curr. Opin. Microbiol., 2003, 6(3), 236-243.
[http://dx.doi.org/10.1016/S1369-5274(03)00064-X] [PMID: 12831899]
[72]
Yamaguchi, S.; Kawada, Y.; Yuge, H.; Tanaka, K.; Imamura, S. Development of new carbon resources: Production of important chemicals from algal residue. Sci. Rep., 2017, 7(1), 855.
[http://dx.doi.org/10.1038/s41598-017-00979-y] [PMID: 28405002]
[73]
Wang, X.; Wang, H.; Pierre, J.F.; Wang, S.; Huang, H.; Zhang, J.; Liang, S.; Zeng, Q.; Zhang, C.; Huang, M.; Ruan, C.; Lin, J.; Li, H. Marine microalgae bioengineered Schizochytrium sp. meal hydrolysates inhibits acute inflammation. Sci. Rep., 2018, 8(1), 9848.
[http://dx.doi.org/10.1038/s41598-018-28064-y] [PMID: 29959357]
[74]
Sansone, C.; Galasso, C.; Orefice, I.; Nuzzo, G.; Luongo, E.; Cutignano, A.; Romano, G.; Brunet, C.; Fontana, A.; Esposito, F.; Ianora, A. The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Sci. Rep., 2017, 7(1), 41215.
[http://dx.doi.org/10.1038/srep41215] [PMID: 28117410]
[75]
Ciferri, O. Spirulina, the edible microorganism. Microbiol. Rev., 1983, 47(4), 551-578.
[http://dx.doi.org/10.1128/MMBR.47.4.551-578.1983] [PMID: 6420655]
[76]
Sathasivam, R.; Ki, J.S. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar. Drugs, 2018, 16(1), e26.
[http://dx.doi.org/10.3390/md16010026] [PMID: 29329235]
[77]
Mezzomo, N.; Ferreira, S.R.S. Carotenoids functionality, sources, and processing by supercritical technology. Rev. J. Chem., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/3164312]
[78]
Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.J.; Chang, J.S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol., 2017, 229, 53-62.
[http://dx.doi.org/10.1016/j.biortech.2017.01.006] [PMID: 28107722]
[79]
Santoyo, S.; Jaime, L.; Plaza, M.; Herrero, M.; Rodriguez-Meizoso, I.; Ibañez, E.; Reglero, G. Antiviral compounds obtained from microalgae commonly used as carotenoid sources. J. Appl. Phycol., 2012, 24(4), 731-741.
[http://dx.doi.org/10.1007/s10811-011-9692-1]
[80]
Ahmadi, A.; Zorofchian, M.S.; Abubakar, S.; Zandi, K. Antiviral potential of algae polysaccharides isolated from marine sources: A review. BioMed Res. Int., 2015, 2015, 825203.
[http://dx.doi.org/10.1155/2015/825203] [PMID: 26484353]
[81]
Pandian, P.; Selvamuthukumar, S.; Manavalan, R.; Parthasarathy, V. Screening of antibacterial and antifungal activities of red marine algae Acanthaphora spicifera (Rhodophyceae). J Biomed Sci Res., 2011, 3(3), 444-448.
[82]
Tariq, V-N. Antifungal activity in crude extracts of marine red algae. Mycol. Res., 1991, 95(12), 1433-1435.
[http://dx.doi.org/10.1016/S0953-7562(09)80398-5]
[83]
Abu-Ghannam, N.; Rajauria, G. Antimicrobial activity of compounds isolated from algae. In: Functional Ingredients from Algae for Foods and Nutraceuticals; Woodhead Publishing, 2013; pp. 287-306.
[http://dx.doi.org/10.1533/9780857098689.2.287]
[84]
Vanthoor-Koopmans, M.; Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M. Biorefinery of microalgae for food and fuel. Bioresour. Technol., 2013, 135, 142-149.
[http://dx.doi.org/10.1016/j.biortech.2012.10.135] [PMID: 23186688]
[85]
Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage, 2010, 51(7), 1412-1421.
[http://dx.doi.org/10.1016/j.enconman.2010.01.015]
[86]
Ma, N.L.; Aziz, A.; Teh, K.Y.; Lam, S.S.; Cha, T.S. Metabolites re-programming and physiological changes induced in Scenedesmus regularis under nitrate treatment. Sci. Rep., 2018, 8(1), 9746.
[http://dx.doi.org/10.1038/s41598-018-27894-0] [PMID: 29950688]
[87]
Bhosale, P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol., 2004, 63(4), 351-361.
[http://dx.doi.org/10.1007/s00253-003-1441-1] [PMID: 14566431]
[88]
Garbayo, I.; Cuaresma, M.; Vílchez, C.; Vega, J.M. Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila. Process Biochem., 2008, 43(10), 1158-1161.
[http://dx.doi.org/10.1016/j.procbio.2008.06.012]
[89]
Caetano, N.; Melo, A.R.; Gorgich, M.; Branco-Vieira, M.; Martins, A.A.; Mata, T.M. Influence of cultivation conditions on the bioenergy potential and bio-compounds of Chlorella vulgaris. Energy Reports, 2020, 6, 378-384.
[http://dx.doi.org/10.1016/j.egyr.2019.08.076]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2021
Published on: 30 June, 2020
Page: [280 - 288]
Pages: 9
DOI: 10.2174/1573407216999200630115417
Price: $65

Article Metrics

PDF: 43
HTML: 2