Synthesis and Evaluation of Antimicrobial Activity and Molecular Docking of New N-1,3-thiazol-2-ylacetamides of Condensed Pyrido[3',2':4,5] furo(thieno)[3,2-d]pyrimidines

Author(s): Samuel N. Sirakanyan*, Victor G. Kartsev, Athina Geronikaki*, Domenico Spinelli, Anthi Petrou, Elmira K. Hakobyan, Jasmina Glamoclija, Manija Ivanov, Marina Sokovic, Anush A. Hovakimyan

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 24 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: From the literature it is known that many derivatives of fused thienopyrimidines and furopyrimidines possess broad spectrum of biological activity.

Objectives: The current studies describe the synthesis and evaluation of antimicrobial activity of some new N-1,3-thiazol-2-ylacetamides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines.

Methods: By cyclocondensation of ethyl 1-aminofuro(thieno)[2,3-b]pyridine-2-carboxylates 1with formamide were converted to the pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidin-7(8)-ones 2.Alkylation of compound 2 with 2-chloro-N-1,3-thiazol-2-ylacetamide led to the aimed N-1,3-thiazol-2-ylaceta-mides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 3. Starting from compound 2 the relevant S-alkylated derivatives of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 6 were also synthesized.

Results: All the compounds showed antibacterial activity to non-resistant strains. Compounds 3a-3m showed antibacterial activity with MIC/MBC at 0.08-2.31 mg/mL/0.11-3.75 mg/mL .The two most active compounds, 3j and 6b, appeared to be more active towards MRSA than the reference drugs. Half of the tested compounds appeared to be equipotent/more potent than ketoconazole and more potent than bifonazole.

The docking analysis provided useful information about the interactions occurring between the tested compounds and the different enzymes.

Conclusion: Gram-negative and Gram-positive bacteria and fungi showed different response towards tested compounds, indicating that different substituents may lead to different modes of action or that the metabolism of some bacteria/fungi was better able to overcome the effect of the compounds or adapt to it.

Keywords: furo(thieno)[3, 2-d]pyrimidin-7(8)-ones, furo(thieno)[3, 2-d]pyrimidin-4(7, 8)-thiones, 2-chloro-N-1, 3-thiazol 2- ylacetamide, Alkylation, Antimicrobial activity, Biological activity.

[1]
Litvinov, V.P. Thienopyrimidines: synthesis, properties, and biological activity. Russ. Chem. Bull., 2004, 53(3), 487-5164.
[http://dx.doi.org/10.1023/B:RUCB.0000035630.75564.2b]
[2]
Sirakanyan, S.N.; Hovakimyan, A.A.; Noravyan, A.S. Synthesis, transformations and biological properties of furo[2,3-b]pyridines. Russ. Chem. Rev., 2015, 84(4), 441-454.
[http://dx.doi.org/10.1070/RCR4447]
[3]
Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.; Raynaud, F.I.; Workman, P.; Waterfield, M.D.; Parker, P. Synthesis and biological evaluation of pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(9), 2438-2442.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.032 ] [PMID: 17339109]
[4]
Kjellerup, L.; Gordon, S.; Cohrt, K.O.; Brown, W.D.; Fuglsang, A.T.; Winther, A.L. Identification of antifungal H+-ATPase inhibitors with effect on the plasma membrane potential. Antimicrob. Agents Chemother., 2017, 61(7), 1-14.
[http://dx.doi.org/10.1128/AAC.00032-17 ] [PMID: 28438931]
[5]
Zheng, G.Z.; Bhatia, P.; Daanen, J.; Kolasa, T.; Patel, M.; Latshaw, S.; El Kouhen, O.F.; Chang, R.; Uchic, M.E.; Miller, L.; Nakane, M.; Lehto, S.G.; Honore, M.P.; Moreland, R.B.; Brioni, J.D.; Stewart, A.O. Structure-activity relationship of triazafluorenone derivatives as potent and selective mGluR1 antagonists. J. Med. Chem., 2005, 48(23), 7374-7388.
[http://dx.doi.org/10.1021/jm0504407 ] [PMID: 16279797]
[6]
Sirakanyan, S.N.; Ovakimyan, A.A.; Noravyan, A.S.; Minasyan, N.S.; Dzhagatspanyan, I.A.; Nazaryan, I.M.; Hakopyan, A.G. Synthesis and neurotropic activity of 8-amino derivatives of condensed thieno[3,2-d]- and furo[3,2-d]pyrimidines. Pharm. Chem. J., 2014, 47, 655-659.
[http://dx.doi.org/10.1007/s11094-014-1026-6]
[7]
Sirakanyan, S.N.; Akopyan, E.K.; Paronikyan, R.G.; Akopyan, A.G.; Ovakimyan, A.A. Synthesis and anticonvulsant activity of 7(8)-amino derivatives of condensed thieno[3,2-d]pyrimidines. Pharm. Chem. J., 2016, 50, 296-300.
[http://dx.doi.org/10.1007/s11094-016-1439-5]
[8]
Sirakanyan, S.N.; Geronikaki, A.; Spinelli, D.; Hakobyan, E.K.; Kartsev, V.G.; Petrou, A.; Hovakimyan, A.A. Synthesis and antimicrobial activity of new amino derivatives of pyrano[4”,3”:4′,5′]pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine. An. Acad. Bras. Cienc., 2018, 90, 1043-1057.
[http://dx.doi.org/10.1590/0001-3765201820170798 ] [PMID: 29694500]
[9]
Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Kartsev, V.G.; Hakobyan, E.K.; Hovakimyan, A.A. Synthesis and antimicrobial activity of new derivatives of pyrano[4”,3”:4′,5′]pyrido [3′,2′:4,5]thieno[3,2-d]pyrimidine and new heterocyclic systems. Synth. Commun., 2019, 49, 1262-1276.
[http://dx.doi.org/10.1080/00397911.2019.1595659]
[10]
Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Hakobyan, E.K.; Sahakyan, H.; Arabyan, E.; Zakaryan, H.; Nersesyan, L.E.; Aharonyan, A.S.; Danielyan, I.S.; Muradyan, R.E.; Hovakimyan, A.A. Synthesis, antitumor activity, and docking analysis of new pyrido[3′,2′:4,5]furo(thieno)[3,2-d]pyrimidin-8-amines. Molecules, 2019, 24(21), 3952-3952.
[http://dx.doi.org/10.3390/molecules24213952 ] [PMID: 31683699]
[11]
Turan-Zitouni, G.; Altıntop, M.D.; Özdemir, A.; Kaplancıklı, Z.A.; Çiftçi, G.A.; Temel, H.E. Synthesis and evaluation of bis-thiazole derivatives as new anticancer agents. Eur. J. Med. Chem., 2016, 107, 288-294.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.002 ] [PMID: 26599534]
[12]
Dhumal, S.T.; Deshmukh, A.R.; Bhosle, M.R.; Khedkar, V.M.; Nawale, L.U.; Sarkar, D.; Mane, R.A. Synthesis and antitubercular activity of new 1,3,4-oxadiazoles bearing pyridyl and thiazolyl scaffolds. Bioorg. Med. Chem. Lett., 2016, 26(15), 3646-3651.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.093 ] [PMID: 27301367]
[13]
Duan, L.M.; Yu, H.Y.; Li, Y.L.; Jia, C.J. Design and discovery of 2-(4-(1H-tetrazol-5-yl)-1H-pyrazol-1-yl)-4-(4-phenyl)thiazole derivatives as cardiotonic agents via inhibition of PDE3. Bioorg. Med. Chem., 2015, 23(18), 6111-6117.
[http://dx.doi.org/10.1016/j.bmc.2015.08.002 ] [PMID: 26319621]
[14]
Djukic, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Angelova, V.T.; Savic, V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B.; Pavlica, M.; Djuric, A.; Stanojevic, I.; Vojvodic, D.; Saso, L. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Interact., 2018, 286, 119-131.
[http://dx.doi.org/10.1016/j.cbi.2018.03.013 ] [PMID: 29574026]
[15]
Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules, 2019, 24(9), 1741-1764.
[http://dx.doi.org/10.3390/molecules24091741 ] [PMID: 31060260]
[16]
Biernasiuk, A.; Kawczyńska, M.; Berecka-Rycerz, A.; Rosada, B.; Gumieniczek, A.; Malm, A.; Dzitko, K.; Lączkowski, K.Z. Synthesis, antimicrobial activity, and determination of the lipophilicity of ((cyclohex-3-enylmethylene)hydrazinyl)thiazole derivatives. Med. Chem. Res., 2019, 28(11), 2023-2036.
[http://dx.doi.org/10.1007/s00044-019-02433-2]
[17]
Bikobo, D.S.N.; Vodnar, D.C.; Stana, A.; Tiperciuc, B.; Nastasa, C.; Douchet, M.; Oniga, O. Synthesis of 2-phenylamino-thiazole derivatives as antimicrobial agents. J. Saudi Chem. Soc., 2017, 21(7), 861-868.
[http://dx.doi.org/10.1016/j.jscs.2017.04.007]
[18]
Bondock, S.; Fouda, A.M. Synthesis and evaluation of some new 5-(hetaryl)thiazoles as potential antimicrobial agents. Synth. Commun., 2018, 48(5), 561-573.
[http://dx.doi.org/10.1080/00397911.2017.1412465]
[19]
Sirakanyan, S.N.; Ovakimyan, A.A.; Noravyan, A.S.; Dzhagatspanyan, I.A.; Shakhatuni, A.A.; Nazaryan, I.M.; Hakopyan, A.G. Synthesis and antyconvulsive activity of 8-amino substitudet cyclopenta[4′,5′]pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidines. Pharm. Chem. J., 2013, 47, 130-134.
[http://dx.doi.org/10.1007/s11094-013-0910-9]
[20]
Sirakanyan, S.N.; Kartsev, V.G.; Hovakimyan, A.A.; Noravyan, A.S.; Shakhatuni, A.A. New heterocyclic systems based on 5,6,7,8-tetrahydroisoquinolines. Chem. Heterocycl. Compd., 2013, 48(11), 1676-1683.
[http://dx.doi.org/10.1007/s10593-013-1192-6]
[21]
Sirakanyan, S.N.; Geronikaki, A.; Spinelli, D.; Paronikyan, R.G.; Dzhagatspanyan, I.A.; Nazaryan, I.M.; Akopyan, A.H.; Hovakimyan, A.A. Pyridofuropyrrolo[1,2-a]pyrimidines and pyridofuropyrimido[1,2-a]azepines: new chemical entities (NCE) with anticonvulsive and psychotropic properties. RSC Advances, 2016, 6, 49028-49038.
[http://dx.doi.org/10.1039/C6RA06507D]
[22]
Sirakanyan, S.N.; Geronikaki, A.; Spinelli, D.; Hovakimyan, A.A.; Noravyan, A.S. Synthesis and structure of condensed triazolo- and tetrazolopyrimidines. Tetrahedron, 2013, 69, 10637-10643.
[http://dx.doi.org/10.1016/j.tet.2013.10.015]
[23]
Gewald, K.; Hentschel, M.; Illgen, U. 3-Aminothieno[2,3-b]pyridine. J. Prakt. Chem., 1974, 316(6), 1030-1036.
[http://dx.doi.org/10.1002/prac. 19743160620.]
[24]
Sirakanyan, S.N.; Noravyan, A.S.; Hovakimyan, A.A. 7,9- Dimethyl-4-methylsulfanyl-pyrido[3´,2´:4:5]furo[3,2-d]pyrimidine. In: The Chemistry of Heterocyclic Compounds. Modern Aspects ; Kartsev, V.G., Ed.; ICSPF Press: Moscow . , 2014.
[25]
Sirakanyan, S.N.; Paronikyan, E.G.; Noravyan, A.S. New condensed bioactive derivatives of pyrano[3,4-c]pyridines and 5,6,7,8-tetrahydroisoquinolines. In: Nitrogen-containing Heterocycles and Alkaloids;; Kartsev, V.G.; Tolstikov, G.A., Eds.; Iridium Press: Moscow, . , 2001.
[26]
Fesatidou, M.; Zagaliotis, P.; Camoutsis, C.; Petrou, A.; Eleftheriou, P.; Tratrat, C.; Haroun, M.; Geronikaki, A.; Ciric, A.; Sokovic, M. 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg. Med. Chem., 2018, 26(16), 4664-4676.
[http://dx.doi.org/10.1016/j.bmc.2018.08.004 ] [PMID: 30107969]
[27]
Tsukatani, T.; Suenaga, H.; Shiga, M.; Noguchi, K.; Ishiyama, M.; Ezoe, T.; Matsumoto, K. Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria. J. Microbiol. Method, 2012, 90(3), 160-166.
[http://dx.doi.org/10.1016/j. mimet.2012.05.001]
[28]
Clinical and Laboratory Standards Institute; Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In: Approved standard, 8th ed. CLSI publication M07-A8 ; Clinical and Laboratory Standards Institute: Wayne, PA . , 2009.
[29]
Espinel-Ingroff, A. Comparison of the E-test with the NCCLS M38-P method for antifungal susceptibility testing of common and emerging pathogenic filamentous fungi. J. Clin. Microbiol., 2001, 39(4), 1360-1367.
[http://dx.doi.org/10.1128/JCM.39.4.1360-1367.2001 ] [PMID: 11283057]
[30]
Hänel, H.; Raether, W. A more sophisticated method of determining the fungicidal effect of water-insoluble preparations with a cell harvester, using miconazole as an example. Mycoses, 1988, 31(3), 148-154.
[http://dx.doi.org/10.1111/j.1439-0507.1988.tb03718.x ] [PMID: 3292912]
[31]
Protox. Available at: . http://tox.charite.de/tox (May 11, 2018)
[32]
GHS-unece. Available at: . http://www.unece.org/trans/danger/publi/ghs/ghs_welcome_e.html (May 11, 2018)
[33]
Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Panosyan, H.A.; Hovakimyan, A.A. Investigation of the lactam-lactim and thiolactam-thiolactim tautomerism in the 2,2,5-trimethylpyrano[4”,3”:4′,5′]pyrido[3′,2′:4,5]furo(thieno)[3,2-d]pyrimidines. Curr. Org. Chem., 2016, 20, 1350-1358.
[http://dx.doi.org/10.2174/1385272820666151116213645]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 24
Year: 2020
Page: [2192 - 2209]
Pages: 18
DOI: 10.2174/1568026620666200628145308
Price: $65

Article Metrics

PDF: 22
HTML: 3