Biosynthesis, Characterization and Mechanism of Formation of ZnO Nanoparticles Using Petroselinum Crispum Leaf Extract

Author(s): Azeez Abdullah Barzinjy*, Samir Mustafa Hamad, Ahmed Fattah Abdulrahman, Safiya Jameel Biro, AbdulBasit Ali Ghafor

Journal Name: Current Organic Synthesis

Volume 17 , Issue 7 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Aim: The study aimed at synthesizing ZnO NPs using Petroselinum crispum extract, commonly known as parsley, as a source of biosynthesis without utilizing chemical agents for reducing, capping and stabilizing agent.

Background: Recently, the biosynthesis of nanoparticles has been widely explored due to the wide range of vital applications in nanotechnology. Biosynthesized zinc oxide nanoparticles, ZnO NPs, have become increasingly important since they have many applications and are environmentally friendly.

Methods: The innovation of this investigation is that the nanosized ZnO NPs can be formed from one-pot reaction without utilizing any external stabilizing and reducing agent which is not plausible via the current procedures.

Results: The biosynthesized ZnO NPs were characterized using UV-Vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX) to investigate the optical, chemical, structural, and morphological properties.

Conclusion: These techniques exhibited that the property of the biosynthesized ZnO NPs is analogous with the standard NPs prepared from dissimilar methods. Investigating the plausible mechanism of formation and stabilization of ZnO NPs by biomolecules of Petroselinum crispum leaf extract was another vital feature of this study.

Keywords: Biosynthesis method, mechanism of NPs formation, Petroselinum crispum (Parsley) leaf extract, reducing agent, stabilizing agent, ZnO nanoparticle.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 27 October, 2020
Page: [558 - 566]
Pages: 9
DOI: 10.2174/1570179417666200628140547
Price: $65

Article Metrics

PDF: 15