Rhodamine B - as New Chromophore for the Determination of Melatonin in Biological, Food, and Pharmaceutical Samples

Author(s): Alexandrina Lungu-Moscalu, Catalina C. Negut, Cristina Stefanov, Raluca-Ioana S. van Staden*, Andrei A. Bunaciu, Jacobus F. van Staden

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Aim and Objective: Melatonin is an essential biomarker for sleep-related disorders. Reliable methods of analysis are needed for melatonin. Therefore, a new chromophore (Rhodamine B) was proposed for the assay of melatonin; this method succeeded to enlarge the working concentration range and to decrease the limit of determination comparing with the method that just used the native fluorescence of melatonin.

Materials and Methods: Rhodamine B was proposed as a new chromophore for the assay of melatonin in biological, food, and pharmaceutical samples. Fluorescence was used for the determination of melatonin.

Results: The results obtained using Rhodamine B were compared with those obtained by the native fluorescence of melatonin. Using the new chromophore, melatonin was determined in the concentration range between 0.01 and 50 pmol L-1, with the detection limit of 2.4 fmol L-1. The recovery of melatonin was higher than 98.00% with a relative standard deviation of less than 0.10%, when the method was applied for the assay of melatonin in samples such as breast milk, whole blood, milk powder, and pharmaceutical formulations.

Conclusion: Utilization of Rhodamine B enlarged the linear concentration range for the assay of melatonin and decreased the detection limit, making possible the assay of melatonin in a variety of samples such as pharmaceuticals, food, and biological samples.

Keywords: Melatonin, Rhodamine B, Fluorescence, biomarker, chromophore, assay of melatonin.

[1]
Yeligar, V.C.; Gaikwad, R.G.; Patil, K.D.; Patil, S.S. Development of spectrophotometric method and validation for melatonin in tablet. World J. Pharm. Pharm. Sci., 2016, 5(6), 1440-1451.
[2]
Huether, G. Tryptophan, Serotonin, and Melatonin: Basic Aspects and Applications. Advances in Experimental Medicine and Biology; Kluwer Academic/Plenum Publishers: New York, 1999, p. 852.
[http://dx.doi.org/10.1007/978-1-4615-4709-9]
[3]
Sundberg, I.; Rasmusson, A.J.; Ramklint, M.; Just, D.; Ekselius, L.; Cunningham, J.L. Daytime melatonin levels in saliva are associated with inflammatory markers and anxiety disorders. Psychoneuroendocrinology, 2020, 112104514
[http://dx.doi.org/10.1016/j.psyneuen.2019.104514] [PMID: 31776047]
[4]
Hardeland, R. Story of a double-edge blade. J. Pineal Res., 2018, 65(4)e12525
[http://dx.doi.org/10.1111/jpi.12525] [PMID: 30242884]
[5]
Kennaway, D.J. A critical review of melatonin assays: Past and present. J. Pineal Res., 2019, 67(1)e12572
[http://dx.doi.org/10.1111/jpi.12572] [PMID: 30919486]
[6]
McIntyre, I.M.; Norman, T.R.; Burrows, G.D.; Armstrong, S.M. Melatonin rhythm in human plasma and saliva. J. Pineal Res., 1987, 4(2), 177-183.
[http://dx.doi.org/10.1111/j.1600-079X.1987.tb00854.x] [PMID: 3598852]
[7]
Simonin, G.; Bru, L.; Lelièvre, E.; Jeanniot, J.P.; Bromet, N.; Walther, B.; Boursier-Neyret, C. Determination of melatonin in biological fluids in the presence of the melatonin agonist S 20098: comparison of immunological techniques and GC-MS methods. J. Pharm. Biomed. Anal., 1999, 21(3), 591-601.
[http://dx.doi.org/10.1016/S0731-7085(99)00150-8] [PMID: 10701426]
[8]
Muñoz, J.L.P.; Ceinos, R.M.; Soengas, J.L.; Míguez, J.M. A simple and sensitive method for determination of melatonin in plasma, bile and intestinal tissues by high performance liquid chromatography with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(22), 2173-2177.
[http://dx.doi.org/10.1016/j.jchromb.2009.06.001] [PMID: 19539546]
[9]
Chau, R.M.W.; Patel, B.A. Determination of serotonin, melatonin and metabolites in gastrointestinal tissue using high-performance liquid chromatography with electrochemical detection. Biomed. Chromatogr., 2009, 23(2), 175-181.
[http://dx.doi.org/10.1002/bmc.1100] [PMID: 18814194]
[10]
Tudela, R.; Ribas-Agustí, A.; Buxaderas, S.; Riu-Aumatell, M.; Castellari, M.; López-Tamames, E. Ultrahigh-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS) quantification of nine target indoles in sparkling wines. J. Agric. Food Chem., 2016, 64(23), 4772-4776.
[http://dx.doi.org/10.1021/acs.jafc.6b01254] [PMID: 27148823]
[11]
Morita, I.; Masujima, T.; Yoshida, H.; Imai, H. Enrichment and HPLC analysis of tryptophan metabolites in plasma. Anal. Biochem., 1981, 118(1), 142-146.
[http://dx.doi.org/10.1016/0003-2697(81)90170-6] [PMID: 7337209]
[12]
Römsing, S.; Ulfberg, J.; Bergqvist, Y. Determination of melatonin in human plasma with solid-phase extraction, high-performance liquid chromatography and fluorescence detection. Scand. J. Clin. Lab. Invest., 2003, 63(1), 81-88.
[http://dx.doi.org/10.1080/00365510310000529] [PMID: 12729073]
[13]
Zagajewski, J.; Drozdowicz, D.; Brzozowska, I.; Hubalewska-Mazgaj, M.; Stelmaszynska, T.; Laidler, P.M.; Brzozowski, T. Conversion L-tryptophan to melatonin in the gastrointestinal tract: the new high performance liquid chromatography method enabling simultaneous determination of six metabolites of L-tryptophan by native fluorescence and UV-VIS detection. J. Physiol. Pharmacol., 2012, 63(6), 613-621.
[PMID: 23388477]
[14]
Hényková, E.; Vránová, H.P.; Amakorová, P.; Pospíšil, T.; Žukauskaitė, A.; Vlčková, M.; Urbánek, L.; Novák, O.; Mareš, J.; Kaňovský, P.; Strnad, M. Stable isotope dilution ultra-high performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan-related neuroactive substances in human serum and cerebrospinal fluid. J. Chromatogr. A, 2016, 1437, 145-157.
[http://dx.doi.org/10.1016/j.chroma.2016.02.009] [PMID: 26879452]
[15]
Zieliński, H.; Szawara-Nowak, D.; Wiczkowski, W. Determination of melatonin in bakery products using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). Chem. Pap., 2017, 71, 1083-1089.
[http://dx.doi.org/10.1007/s11696-016-0029-z]
[16]
Mercolini, L.; Mandrioli, R.; Raggi, M.A. Content of melatonin and other antioxidants in grape-related foodstuffs: measurement using a MEPS-HPLC-F method. J. Pineal Res., 2012, 53(1), 21-28.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00967.x] [PMID: 22017461]
[17]
Hassanpour, M.; Safardoust-Hojaghan, H.; Salaviti-Niasari, M. Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J. Mol. Liq., 2017, 229, 293-299.
[http://dx.doi.org/10.1016/j.molliq.2016.12.090]
[18]
Xu, M.; Ma, Z.R.; Huang, L.; Chen, F.J.; Zeng, Z.Z. Spectroscopic studies on the interaction between Pr(III) complex of an ofloxacin derivative and bovine serum albumin or DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78(1), 503-511.
[http://dx.doi.org/10.1016/j.saa.2010.11.018] [PMID: 21156349]
[19]
Sandip, P.; Chabita, S.; Subrata, K.D. Infuence of galloyl moiety in C-ring of tea catechins on interaction with bovine serum albumin. International Conference on Chemical, Biological and Medical Sciences (ICCBMS ’12), Kuala Lumpur, Malaysia August;2012
[20]
Bourassa, P.; Kanakis, C.D.; Tarantilis, P.; Pollissiou, M.G.; Tajmir-Riahi, H.A. Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B, 2010, 114(9), 3348-3354.
[http://dx.doi.org/10.1021/jp9115996] [PMID: 20148537]
[21]
Stefan-van Staden, R.I.; Lungu-Moscalu, A.; van Staden, J.F. Pattern recognition of melatonin using stochastic sensors. New J. Chem., 2019, 43, 5196-5201.
[http://dx.doi.org/10.1039/C9NJ00588A]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 10
Year: 2020
Page: [1080 - 1089]
Pages: 10
DOI: 10.2174/1386207323666200628111958
Price: $65

Article Metrics

PDF: 26