Medicinal Chemistry and Computational Chemistry: Mutual Influence and Harmonization

Author(s): Alla P. Toropova

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 14 , 2020


Become EABM
Become Reviewer
Call for Editor

[1]
Mauk, A.G. Biological electron-transfer reactions. Essays Biochem., 1999, 34, 101-124.
[http://dx.doi.org/10.1042/bse0340101] [PMID: 10730191]
[2]
Otero, T.F. Structural and conformational chemistry from electrochemical molecular machines. replicating biological functions: A review. Chem. Rec., 2018, 18(7-8), 788-806.
[http://dx.doi.org/10.1002/tcr.201700059] [PMID: 29239095]
[3]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019., 88102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[4]
Mauk, A.G.; Mauk, M.R.; Moore, G.R.; Northrup, S.H. Experimental and theoretical analysis of the interaction between cytochrome c and cytochrome b5. J. Bioenerg. Biomembr., 1995, 27(3), 311-330.
[http://dx.doi.org/10.1007/BF02110101] [PMID: 8847345]
[5]
Hillard, E.A.; de Abreu, F.C.; Ferreira, D.C.M.; Jaouen, G.; Goulart, M.O.F.; Amatore, C. Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds. Chem. Commun. (Camb.), 2008, (23), 2612-2628.
[http://dx.doi.org/10.1039/b718116g] [PMID: 18535688]
[6]
Dao, V.T-V.; Casas, A.I.; Maghzal, G.J.; Seredenina, T.; Kaludercic, N.; Robledinos-Anton, N.; Di Lisa, F.; Stocker, R.; Ghezzi, P.; Jaquet, V.; Cuadrado, A.; Schmidt, H.H.H.W. Pharmacology and clinical drug candidates in redox medicine. Antioxid. Redox Signal., 2015, 23(14), 1113-1129.
[http://dx.doi.org/10.1089/ars.2015.6430] [PMID: 26415051]
[7]
Keyzer, H.; Eckert, G.M.; Gutmann, F. Electropharmacology; CRC Press: Boca Raton, 1990.
[8]
Almeida, M.O.; Maltarollo, V.G.; de Toledo, R.A.; Shim, H.; Santos, M.C.; Honorio, K.M. Medicinal electrochemistry: Integration of electrochemistry, medicinal chemistry and computational chemistry. Curr. Med. Chem., 2014, 21(20), 2266-2275.
[http://dx.doi.org/10.2174/0929867321666140217120655] [PMID: 24533810]
[9]
Pal, A.K.; Hanan, G.S. Design, synthesis and excited-state properties of mononuclear Ru(II) complexes of tridentate heterocyclic ligands. Chem. Soc. Rev., 2014, 43(17), 6184-6197.
[http://dx.doi.org/10.1039/C4CS00123K] [PMID: 24919706]
[10]
Gordon, J.A.; Fishwick, C.W.G.; McPhillie, M.J. New opportunities in the structure-based design of anti-protozoan agents. Curr. Top. Med. Chem., 2017, 17(1), 79-90.
[http://dx.doi.org/10.2174/1568026616666160719164542] [PMID: 27531028]
[11]
Lohmann, W.; Karst, U. Biomimetic modeling of oxidative drug metabolism: Strategies, advantages and limitations. Anal. Bioanal. Chem., 2008, 391(1), 79-96.
[http://dx.doi.org/10.1007/s00216-007-1794-x] [PMID: 18163163]
[12]
Kovacic, P.; Cooksy, A.L. Electron transfer as a potential cause of diacetyl toxicity in popcorn lung disease. Rev. Environ. Contam. Toxicol., 2010, 204, 133-148.
[http://dx.doi.org/10.1007/978-1-4419-1440-8_2] [PMID: 19957235]
[13]
Kovacic, P.; Pozos, R.S. Cell signaling (mechanism and reproductive toxicity): Redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. Birth Defects Res. C Embryo Today, 2006, 78(4), 333-344.
[http://dx.doi.org/10.1002/bdrc.20083] [PMID: 17315245]
[14]
Hansen, J.M.; Go, Y-M.; Jones, D.P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol., 2006, 46, 215-234.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141122] [PMID: 16402904]
[15]
Hansch, C.; Leo, A. Exploring QSAR. Fundamentals and Applications in Chemistry and Biology; American Chemical Society: Washington, 1995.
[16]
Alber, F.; Carloni, P., Eds.; Quantum Medicinal Chemistry; Wiley: Weinheim, 2003.
[17]
Mercader, A.G.; Duchowicz, P.R.; Sivakumar, P. Chemometrics Applications and Research: QSAR in Medicinal Chemistry;, Apple Academic Press: Oakville. 2016.
[http://dx.doi.org/10.1201/b19853]
[18]
Martin, Y.C.; Kofron, J.L.; Traphagen, L.M. Do structurally similar molecules have similar biological activity? J. Med. Chem., 2002, 45(19), 4350-4358.
[http://dx.doi.org/10.1021/jm020155c] [PMID: 12213076]
[19]
Roy, K.; Kar, S.; Das, R.N. A Primer on QSAR/QSPR Modeling; Springer: Cham, 2005.
[20]
Tetko, I.V.; Sushko, I.; Pandey, A.K.; Zhu, H.; Tropsha, A.; Papa, E.; Oberg, T.; Todeschini, R.; Fourches, D.; Varnek, A. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection. J. Chem. Inf. Model., 2008, 48(9), 1733-1746.
[http://dx.doi.org/10.1021/ci800151m] [PMID: 18729318]
[21]
Zhao, L.; Wang, W.; Sedykh, A.; Zhu, H. Experimental errors in QSAR modeling sets: What we can do and what we cannot do. ACS Omega, 2017, 2(6), 2805-2812.
[http://dx.doi.org/10.1021/acsomega.7b00274] [PMID: 28691113]
[22]
Young, D.; Martin, T.; Venkatapathy, R.; Harten, P. Are the chemical structures in your QSAR correct? QSAR Comb. Sci., 2008, 27, 1337-1345.
[http://dx.doi.org/10.1002/qsar.200810084]
[23]
Todeschini, R.; Consonni, V.; Mannhold, R.; Kubinyi, H.; Folkers, G. Molecular Descriptors for Chemoinformatics; Wiley-VCH: Weinheim, 2009, Vol. 1 and 2, .
[http://dx.doi.org/10.1002/9783527628766]
[24]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed; Wiley: New York, 2001.
[25]
Lister, S.G.; Reynolds, C.A.; Richards, W.G. Theoretical calculation of electrode potentials: Electron-withdrawing compounds. Int. J. Quantum Chem., 1992, 41, 293-310.
[http://dx.doi.org/10.1002/qua.560410206]
[26]
Klibanov, A.M. Improving enzymes by using them in organic solvents. Nature, 2001, 409(6817), 241-246.
[http://dx.doi.org/10.1038/35051719] [PMID: 11196652]
[27]
Serdakowski, A.L.; Dordick, J.S. Enzyme activation for organic solvents made easy. Trends Biotechnol., 2008, 26(1), 48-54.
[http://dx.doi.org/10.1016/j.tibtech.2007.10.007] [PMID: 18037518]
[28]
Montcourrier, P.; Silver, I.; Farnoud, R.; Bird, I.; Rochefort, H. Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin. Exp. Metastasis, 1997, 15(4), 382-392.
[http://dx.doi.org/10.1023/A:1018446104071] [PMID: 9219726]
[29]
Hammerich, O.; Speiser, B. Organic Electrochemistry: Revised and Expanded, 5th ed; CRC Press: Boca Raton, 2016.
[30]
Heyrovsky, J. A Polarographic Study of the Electro-Kinetic Phenomena of Adsorption, Electro-Reduction and Overpotential Displayed at the Dropping Mercury Cathode; Hermann & Cie: Paris, 1934.
[31]
Shikata, M.; Tachi, I. Polarographic studies with the dropping-mercury cathode. LXXIV. The electronegativity rule of the reduction potentials of organic compounds. Collect. Czech. Chem. Commun., 1938, 10, 368-379.
[http://dx.doi.org/10.1135/cccc19380368]
[32]
Zuman, P. Substituent Effects in Organic Polarography; Plenum Press: New York, 1967.
[http://dx.doi.org/10.1007/978-1-4684-8661-2]
[33]
Driebergen, R.J. Qualitative and quantitative aspects of structure-electrochemistry-cytotoxicity relationships of aziridinylquinones. Pharm. Weekblad. Sci. Ed., 1987, 9, 288-290.
[34]
Driebergen, R.J.; Moret, E.E.; Janssen, L.H.M.; Blauw, J.S.; Holthuis, J.J.M.; Postma Kelder, S.J.; Verboom, W.; Reinhoudt, D.N.; van der Linden, W.E. electrochemistry of potentially bioreductive alkylating quinones: Part 3. Quantitative structure electrochemistry relationships of aziridinylquinones. Anal. Chim. Acta, 1992, 257, 257-273.
[http://dx.doi.org/10.1016/0003-2670(92)85179-A]
[35]
Dai, Y.; Liu, H.; Niu, L.; Chen, C.; Chen, X.; Liu, Y. Estimation of half-wave potential of anabolic androgenic steroids by means of QSER approach.J. Cent. South Univ. (Engl. Ed.);; , 2016, pp. 1906-1914.
[http://dx.doi.org/10.1007/s11771-016-3246-2]
[36]
Jurlina, J.L.; Lindsay, A.; Packer, J.E.; Baguley, B.C.; Denny, W.A. Redox chemistry of the 9-anilinoacridine class of antitumor agents. J. Med. Chem., 1987, 30(3), 473-480.
[http://dx.doi.org/10.1021/jm00386a006] [PMID: 3820217]
[37]
Honarasa, F.; Yousefinejad, S.; Nasr, S.; Nekoeina, M. Structure-electrochemistry relationship in non-aqueous solutions: Predicting the reduction potential of anthraquinones derivatives in some organic solvents. J. Mol. Liq., 2015, 212, 52-57.
[http://dx.doi.org/10.1016/j.molliq.2015.08.055]
[38]
Elhabiri, M.; Sidorov, P.; Cesar-Rodo, E.; Marcou, G.; Lanfranchi, D.A.; Davioud-Charvet, E.; Horvath, D.; Varnek, A. Electrochemical properties of substituted 2-methyl-1,4-naphthoquinones: Redox behavior predictions. Chemistry, 2015, 21(8), 3415-3424.
[http://dx.doi.org/10.1002/chem.201403703] [PMID: 25556761]
[39]
Nesmerak, K.; Nemec, I.; Sticha, M.; Waisser, K.; Palat, K. Quantitative structure-property relationships of new benzoxazines and their electrooxidation as a model of metabolic degradation. Electrochim. Acta, 2005, 50, 1431-1437.
[http://dx.doi.org/10.1016/j.electacta.2004.08.031]
[40]
Liu, H.; Wen, Y.; Luan, F.; Gao, Y.; Li, X. QSPR study for the prediction of half-wave potentials of benzoxazines by heuristic method and radial basis function neural network. Cent. Eur. J. Chem., 2009, 7, 439-445.
[http://dx.doi.org/10.2478/s11532-009-0033-z]
[41]
Nesměrák, K.; Toropov, A.A.; Toropova, A.P. Model for electrochemical parameters for 4-(benzylsulfanyl)pyridines calculated from the molecular structure. J. Electroanal. Chem. (Lausanne Switz.), 2016, 766, 24-29.
[http://dx.doi.org/10.1016/j.jelechem.2016.01.032]
[42]
Nesmerak, K.; Dolezal, R.; Hudska, V.; Bartl, J.; Sticha, M.; Waisser, K. Quantitative structure-electrochemistry relationship of 1-phenyl-5-benzyl-sulfanyltetrazoles and their electrooxidation as a metabolic model. Electroanalysis, 2010, 22, 2117-2122.
[http://dx.doi.org/10.1002/elan.201000092]
[43]
Kleinová, M.; Hewitt, M.; Brezová, V.; Madden, J.C.; Cronin, M.T.D.; Valko, M. Antioxidant properties of carotenoids: QSAR prediction of their redox potentials. Gen. Physiol. Biophys., 2007, 26(2), 97-103.
[PMID: 17660583]
[44]
Riahi, S.; Norouzi, P.; Moghaddam, A.B.; Ganjali, M.R.; Karimipour, G.R.; Sharghi, H. Theoretical and experimental report on the determination of oxidation potentials of dihydroxyanthracene and thioxanthene derivatives. Chem. Phys., 2007, 337, 33-38.
[http://dx.doi.org/10.1016/j.chemphys.2007.06.018]
[45]
Tömpe, P.; Clementis, G.; Petneházy, I.; Jászay, Z.M.; Toke, L. Quantitative structure-electro-chemistry relationships of α,β-unsaturated ketones. Anal. Chim. Acta, 1995, 305, 295-303.
[http://dx.doi.org/10.1016/0003-2670(94)00354-O]
[46]
Moraleda, D.; El Abed, D.; Pellissier, H.; Santelli, M. Linear relationships in α,β-unsaturated carbonyl compounds between the half-wave reduction potentials, the frontier orbital energies and the Hammett σp values. J. Mol. Struct. THEOCHEM, 2006, 760, 113-119.
[http://dx.doi.org/10.1016/j.theochem.2005.12.001]
[47]
Xue, Z-M.; Chen, C-H. The relationship between structure and electrochemical property of cyanoimino derivatives of squaric acid. Mol. Simul., 2006, 32, 401-408.
[http://dx.doi.org/10.1080/08927020600669999]
[48]
Li, H.; Xu, L.; Su, Q. Structure-property relationship between half-wave potentials of organic compounds and their topology. Anal. Chim. Acta, 1995, 316, 39-45.
[http://dx.doi.org/10.1016/0003-2670(95)00356-5]
[49]
Garkani-Nejad, Z.; Rashidi-Nodeh, H. Comparison of conventional artificial neural network and wavelet neural network in modeling the half-wave potential of aldehydes and ketones. Electrochim. Acta, 2010, 55, 2597-2605.
[http://dx.doi.org/10.1016/j.electacta.2009.11.083]
[50]
Shamsipur, M.; Siroueinejad, A.; Hemmateenejad, B.; Abbaspour, A.; Sharghi, H.; Alizadeh, K.; Arshadi, S. Cyclic voltammetric, computational, and quantitative structure-electrochemistry relationship studies of the reduction of several 9,10-anthra-quinone derivatives. J. Electroanal. Chem. (Lausanne Switz.), 2007, 600, 345-358.
[http://dx.doi.org/10.1016/j.jelechem.2006.09.006]
[51]
Nikolic, S.; Milicevic, A.; Trinajstic, N. QSPR study of polarographic half-wave reduction potentials of benzenoid hydrocarbons. Croat. Chem. Acta, 2006, 79, 155-159.
[52]
Noorizadeh, H.; Farmany, A. Quantitative structure electrochemistry relationship for substituted benzenoids using levenberg-marquardt artificial neural network. Russ. J. Electrochem., 2015, 51, 249-257.
[http://dx.doi.org/10.1134/S102319351503009X]
[53]
Wang, L.; Cao, C.; Cao, C. Substituent effects on reduction potentials of meta-substituted and para-substituted benzylideneanilines. Chin. J. Chem. Phys., 2016, 29, 260-264.
[http://dx.doi.org/10.1063/1674-0068/29/cjcp1508173]
[54]
Beheshti, A.; Riahi, S.; Ganjali, M.R. Quantitative structure property relationship study on first reduction and oxidation potentials of donor-substituted phenylquinolinylethynes and phenylisoquinolinylethynes: Quantum chemical investigation. Electrochim. Acta, 2009, 54, 5368-5375.
[http://dx.doi.org/10.1016/j.electacta.2009.04.020]
[55]
Beheshti, A.; Norouzi, P.; Ganjali, M.R. A simple and robust model for predicting the reduction potential of quinones family; electrophilicity index effect. Int. J. Electrochem. Sci., 2012, 7, 4811-4821.
[56]
Hadjmohammadi, M.R.; Kamel, K.; Biparva, P. Quantitative structure-reduction potential relationship study of some quinones in five solvents. J. Solution Chem., 2011, 40, 224-230.
[http://dx.doi.org/10.1007/s10953-010-9646-2]
[57]
Alizadeh, K.; Shamsipur, M. Calculation of the two-step reduction potentials of some quinones in acetonitrile. J. Mol. Struct. THEOCHEM, 2008, 862, 39-43.
[http://dx.doi.org/10.1016/j.theochem.2008.04.021]
[58]
Namazian, M.; Norouzi, P.; Ranjbar, R. Prediction of electrode potentials of some quinone derivatives in acetonitrile. J. Mol. Struct. THEOCHEM, 2003, 625, 235-241.
[http://dx.doi.org/10.1016/S0166-1280(03)00070-8]
[59]
Namazian, M.; Norouzi, P. Prediction of one-electron electrode potentials of some quinones in dimethylsulfoxide. J. Electroanal. Chem. (Lausanne Switz.), 2004, 573, 49-53.
[http://dx.doi.org/10.1016/j.jelechem.2004.06.020]
[60]
Cape, J.L.; Bowman, M.K.; Kramer, D.M. Computation of the redox and protonation properties of quinones: Towards the prediction of redox cycling natural products. Phytochemistry, 2006, 67(16), 1781-1788.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.015] [PMID: 16872647]
[61]
Gillet, N.; Lévy, B.; Moliner, V.; Demachy, I.; de la Lande, A. Theoretical estimation of redox potential of biological quinone cofactors. J. Comput. Chem., 2017, 38(18), 1612-1621.
[http://dx.doi.org/10.1002/jcc.24802] [PMID: 28470751]
[62]
Hemmateenejad, B.; Yazdani, M. QSPR models for half-wave reduction potential of steroids: A comparative study between feature selection and feature extraction from subsets of or entire set of descriptors. Anal. Chim. Acta, 2009, 634(1), 27-35.
[http://dx.doi.org/10.1016/j.aca.2008.11.062] [PMID: 19154806]
[63]
Hunter, A.D. ACD/ChemSketch 2.0 and its tautomers, dictionary, and 3D Plug-Ins. J. Chem. Educ., 1997, 74, 905-906.
[http://dx.doi.org/10.1021/ed074p905]
[64]
Caballero, J.; Fernández, M. Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): Application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1). Curr. Top. Med. Chem., 2008, 8(18), 1580-1605.
[http://dx.doi.org/10.2174/156802608786786570] [PMID: 19075769]
[65]
Cui, Q.; Elstner, M.; Kaxiras, E.; Frauenheim, T.; Karplus, M. A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J. Phys. Chem. B, 2001, 105, 569-585.
[http://dx.doi.org/10.1021/jp0029109]
[66]
Karelson, M.; Maran, U.; Wang, Y.; Katritzky, A.R. QSPR and QSAR models derived using large molecular descriptor spaces: A review of CODESSA applications. Collect. Czech. Chem. Commun., 1999, 64, 1551-1571.
[http://dx.doi.org/10.1135/cccc19991551]
[67]
Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Nicolotti, O.; Carotti, A.; Nesmerak, K.; Veselinović, A.M.; Veselinović, J.B.; Duchowicz, P.R.; Bacelo, D.; Castro, E.A.; Rasulev, B.F.; Leszczynska, D.; Leszczynski, J. QSPR/QSAR Analyses by Means of the CORAL Software: Results, Challenges, Perspectives.Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment; Roy, K; Ed.; IGI Global:Hershey,. , 2015, pp. 560-585.
[http://dx.doi.org/10.4018/978-1-4666-8136-1.ch015]
[68]
Lučić, B.; Trinajstić, N. multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J. Chem. Inf. Comput. Sci., 1999, 39, 121-132.
[http://dx.doi.org/10.1021/ci980090f]
[69]
Řezáč, J. Cuby: An integrative framework for computational chemistry. J. Comput. Chem., 2016, 37(13), 1230-1237.
[http://dx.doi.org/10.1002/jcc.24312] [PMID: 26841135]
[70]
Aradi, B.; Hourahine, B.; Frauenheim, T. DFTB+, a sparse matrix based implementation of the DFTB method. J. Phys. Chem. A, 2007, 111(26), 5678-5684.
[http://dx.doi.org/10.1021/jp070186p] [PMID: 17567110]
[71]
Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. Dragon software: An easy approach to molecular descriptor calculations. Match (Mulh.), 2006, 56, 237-248.
[72]
Rappoport, D.; Furche, F. Property-optimized gaussian basis sets for molecular response calculations. J. Chem. Phys., 2010, 133(13), 134105.
[http://dx.doi.org/10.1063/1.3484283] [PMID: 20942521]
[73]
Liu, P.; Long, W. Current mathematical methods used in QSAR/QSPR studies. Int. J. Mol. Sci., 2009, 10(5), 1978-1998.
[http://dx.doi.org/10.3390/ijms10051978] [PMID: 19564933]
[74]
Froimowitz, M. HyperChem: A software package for computational chemistry and molecular modeling. Biotechniques, 1993, 14(6), 1010-1013.
[PMID: 8333944]
[75]
Mannhold, R.; Petrauskas, A. Substructure versus whole-molecule approaches for calculating log P. QSAR Comb. Sci., 2003, 22, 466-475.
[http://dx.doi.org/10.1002/qsar.200390036]
[76]
Werner, H-J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 242-253.
[http://dx.doi.org/10.1002/wcms.82]
[77]
Stewart, J.J.P. MOPAC: A semiempirical molecular orbital program. J. Comput. Aided Mol. Des., 1990, 4(1), 1-105.
[http://dx.doi.org/10.1007/BF00128336] [PMID: 2197373]
[78]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[79]
Yao, X.J.; Panaye, A.; Doucet, J.P.; Zhang, R.S.; Chen, H.F.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J. Chem. Inf. Comput. Sci., 2004, 44(4), 1257-1266.
[http://dx.doi.org/10.1021/ci049965i] [PMID: 15272833]
[80]
Tang, H.; Ji, P. Using the statistical program R instead of SPSS to analyze data. ACS Symposium Series, 2014, pp. 135-151.
[http://dx.doi.org/10.1021/bk-2014-1166.ch008]
[81]
Kenett, R.S.; Zacks, S. Modern Industrial Statistics: With Applications in R, MINITAB and JMP, 2nd ed; Wiley: New York, 2013.
[http://dx.doi.org/10.1002/9781118763667]
[82]
Dearden, J.C.; Rayner, H. QSAR-PC: PAR-A review. Biopharm. Drug Dispos., 1991, 12, 247-248.
[http://dx.doi.org/10.1002/bdd.2510120309]
[83]
Agostinelli, C. Robust stepwise regression. J. Appl. Stat., 2002, 29, 825-840.
[http://dx.doi.org/10.1080/02664760220136168]
[84]
Haiech, J.; Koscielniak, T.; Grassy, G. Use of TSAR as a new tool to analyze the molecular dynamics trajectories of proteins. J. Mol. Graph., 1995, 13(1), 46-48, 59-60.
[http://dx.doi.org/10.1016/0263-7855(94)00012-H] [PMID: 7794834]
[85]
Toropov, A.; Nesmerak, K.; Raska, I., Jr; Waisser, K.; Palat, K. QSPR modeling of the half-wave potentials of benzoxazines by optimal descriptors calculated with the SMILES. Comput. Biol. Chem., 2006, 30(6), 434-437.
[http://dx.doi.org/10.1016/j.compbiolchem.2006.09.003] [PMID: 17092778]
[86]
Toropov, A.A.; Nesmerak, K. SMILES-based QSPR model for half-wave potentials of 1-phenyl-5-benzyl-sulfanyltetrazoles using CORAL. Chem. Phys. Lett., 2012, 539–540, 204-208.
[http://dx.doi.org/10.1016/j.cplett.2012.04.061]
[87]
Nesmerak, K.; Toropov, A.A.; Toropova, A.P.; Kohoutova, P.; Waisser, K. SMILES-based quantitative structure-property relationships for half-wave potential of N-benzylsalicylthioamides. Eur. J. Med. Chem., 2013, 67, 111-114.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.031] [PMID: 23850571]
[88]
Nesměrák, K.; Toropov, A.A.; Toropova, A.P.; Ertan-Bolelli, T.; Yildiz, I. QSAR of antimycobacterial activity of benzoxazoles by optimal smiles-based descriptors. Med. Chem. Res., 2017, 26, 3203-3208.
[http://dx.doi.org/10.1007/s00044-017-2013-8]
[89]
Pan, S.S.; Gonzalez, H. Mitomycin antibiotic reductive potential and related pharmacological activities. Mol. Pharmacol., 1990, 37(6), 966-970.
[PMID: 2113607]
[90]
Kontogiorgis, A.C.; Pontiki, A.E.; Hadjipavlou-Litina, D. A review on quantitative structure-activity relationships (QSARs) of natural and synthetic antioxidants compounds. Mini Rev. Med. Chem., 2005, 5(6), 563-574.
[http://dx.doi.org/10.2174/1389557054023233] [PMID: 15974934]
[91]
Galato, D.; Ckless, K.; Susin, M.F.; Giacomelli, C.; Ribeiro-do-Valle, R.M.; Spinelli, A. Antioxidant capacity of phenolic and related compounds: Correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox Rep., 2001, 6(4), 243-250.
[http://dx.doi.org/10.1179/135100001101536391] [PMID: 11642715]
[92]
Yang, B.; Kotani, A.; Arai, K.; Kusu, F. Relationship of electrochemical oxidation of catechins on their antioxidant activity in microsomal lipid peroxidation. Chem. Pharm. Bull. (Tokyo), 2001, 49(6), 747-751.
[http://dx.doi.org/10.1248/cpb.49.747] [PMID: 11411529]
[93]
Cheng, Z.; Li, Y. Reducing power: The measure of antioxidant activities of reductant compounds? Redox Rep., 2004, 9(4), 213-217.
[http://dx.doi.org/10.1179/135100004225005994] [PMID: 15479565]
[94]
Boiko, M.A.; Terakh, E.I.; Prosenko, A.E. Relationship between the electrochemical and antioxidant activities of alkyl-substituted phenols. Kinet. Catal., 2006, 47, 677-681.
[http://dx.doi.org/10.1134/S0023158406050041]
[95]
Cheng, Z.; Chen, Q.; Pontius, F.W.; Gao, X.; Tan, Y.; Ma, Y.; Shen, Z. Two new predictors combined with quantum chemical parameters for the selection of oxidants and degradation of organic contaminants: A QSAR modeling study. Chemosphere, 2020, 240, 124928.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124928] [PMID: 31563101]
[96]
Goulart, M.O.F.; Zani, C.L.; Tonholo, J.; Freitas, L.R.; De Abreu, F.C.; Oliveria, A.B.; Raslan, D.S.; Starling, S.; Chiari, E. Trypanocidal activity and redox potential of heterocyclic- and 2-hydroxy-naphthoquinones. Bioorg. Med. Chem. Lett., 1997, 7, 2043-2048.
[http://dx.doi.org/10.1016/S0960-894X(97)00354-5]
[97]
de Paiva, Y.G.; de Souza, A.A.; Lima, C.G., Jr; Silva, F.P.L.; Filho, E.B.A.; de Vasconcelos, C.C.; de Abreu, F.C.; Goulart, M.O.F.; Vasconcellos, M.L.A.A. Correlation between electrochemical and theoretical studies on the leishmanicidal activity of twelve Morita-Baylis-Hillman Adducts. J. Braz. Chem. Soc., 2012, 23, 894-904.
[http://dx.doi.org/10.1590/S0103-50532012000500015]
[98]
de Paiva, Y.G. Pinho-Junior, W.; de Souza, A.A.; Costa, C.O.; Silva, F.P.L.; Lima-Junior, C.G.; Vasconcellos, M.L.A.A.; Goulart, M.O.F. Electrochemical and computational studies, in protic medium, of Morita-Baylis-Hillman adducts and correlation with leishmanicidal activity. Electrochim. Acta, 2014, 140, 557-563.
[http://dx.doi.org/10.1016/j.electacta.2014.05.066]
[99]
Wu, X.; Tiekink, E.R.T.; Kostetski, I.; Kocherginsky, N.; Tan, A.L.C.; Khoo, S.B.; Wilairat, P.; Go, M-L. Antiplasmodial activity of ferrocenyl chalcones: Investigations into the role of ferrocene. Eur. J. Pharm. Sci., 2006, 27(2-3), 175-187.
[http://dx.doi.org/10.1016/j.ejps.2005.09.007] [PMID: 16269240]
[100]
Pedron, J.; Boudot, C.; Hutter, S.; Bourgeade-Delmas, S.; Stigliani, J-L.; Sournia-Saquet, A.; Moreau, A.; Boutet-Robinet, E.; Paloque, L.; Mothes, E.; Laget, M.; Vendier, L.; Pratviel, G.; Wyllie, S.; Fairlamb, A.; Azas, N.; Courtioux, B.; Valentin, A.; Verhaeghe, P. Novel 8-nitroquinolin-2(1H)-ones as NTR-bioactivated antikinetoplastid molecules: Synthesis, electrochemical and SAR study. Eur. J. Med. Chem., 2018, 155, 135-152.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.001] [PMID: 29885575]
[101]
Klopman, G.; Tonucci, D.A.; Holloway, M.; Rosenkranz, H.S. Relationship between polarographic reduction potential and mutagenicity of nitroarenes. Mutat. Res., 1984, 126(2), 139-144.
[http://dx.doi.org/10.1016/0027-5107(84)90055-1] [PMID: 6717454]
[102]
Crawford, P.W.; Foye, W.O.; Ryan, M.D.; Kovacic, P. Cyclic voltammetry of quinolinium salts and related compounds: Correlation with structure and anticancer activity. J. Pharm. Sci., 1987, 76(6), 481-484.
[http://dx.doi.org/10.1002/jps.2600760614] [PMID: 3625495]
[103]
Crawford, P.W.; Carlos, E.; Ellegood, J.C.; Cheng, C.C.; Dong, Q.; Liu, D.F.; Luo, Y.L. The Electrochemistry of antineoplastic furanquinones: Electrochemical properties of benzo[b]naphtho-[2,3-d]furan-6,11-dione derivatives. Electrochim. Acta, 1996, 41, 2399-2403.
[http://dx.doi.org/10.1016/0013-4686(96)00020-5]
[104]
Crawford, P.W.; Gross, J.; Lawson, K.; Cheng, C.C.; Dong, Q.; Liu, D.F.; Luo, Y.L.; Szczepankiewicz, B.G.; Heathcock, C.H. Electrochemical properties of some biologically active quinone derivatives: Furanquinones, pyridoquinones, and diplamine, a cytotoxic pyridoacridine alkaloid. J. Electrochem. Soc., 1997, 144, 3710-3715.
[http://dx.doi.org/10.1149/1.1838080]
[105]
Kunz, K.R.; Iyengar, B.S.; Dorr, R.T.; Alberts, D.S.; Remers, W.A. Structure-activity relationships for mitomycin C and mitomycin A analogues. J. Med. Chem., 1991, 34(7), 2281-2286.
[http://dx.doi.org/10.1021/jm00111a051] [PMID: 1906109]
[106]
Sami, S.M.; Iyengar, B.S.; Tarnow, S.E.; Remers, W.A.; Bradner, W.T.; Schurig, J.E. Mitomycin C analogues with aryl substituents on the 7-amino group. J. Med. Chem., 1984, 27(5), 701-708.
[http://dx.doi.org/10.1021/jm00371a026] [PMID: 6425501]
[107]
Bravo-Gómez, M.E.; García-Ramos, J.C.; Gracia-Mora, I.; Ruiz-Azuara, L. Antiproliferative activity and QSAR study of copper(II) mixed chelate [Cu(N-N)(acetylacetonato)]NO3 and [Cu(N-N) (glycinato)]NO3 complexes, (Casiopeínas). J. Inorg. Biochem., 2009, 103(2), 299-309.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.10.006] [PMID: 19027166]
[108]
Bouffier, L.; Gosse, I.; Demeunynck, M.; Mailley, P. Electrochemistry and bioactivity relationship of 6-substituted-4H-pyrido[4,3,2-kl]acridin-4-one antitumor drug candidates. Bioelectrochemistry, 2012, 88, 103-109.
[http://dx.doi.org/10.1016/j.bioelechem.2012.07.001] [PMID: 22885855]
[109]
Koyama, J.; Morita, I.; Yamori, T. Correlation between cytotoxic activities and reduction potentials of heterocyclic quinones. Molecules, 2010, 15(9), 6559-6569.
[http://dx.doi.org/10.3390/molecules15096559] [PMID: 20877243]
[110]
da Cruz, E.H.G.; Hussene, C.M.B.; Dias, G.G.; Diogo, E.B.T.; de Melo, I.M.M.; Rodrigues, B.L.; da Silva, M.G.; Valença, W.O.; Camara, C.A.; de Oliveira, R.N.; de Paiva, Y.G.; Goulart, M.O.F.; Cavalcanti, B.C.; Pessoa, C.; da Silva Júnior, E.N. 1,2,3-triazole-, arylamino- and thio-substituted 1,4-naphthoquinones: Potent antitumor activity, electrochemical aspects, and bioisosteric replacement of C-ring-modified lapachones. Bioorg. Med. Chem., 2014, 22(5), 1608-1619.
[http://dx.doi.org/10.1016/j.bmc.2014.01.033] [PMID: 24530030]
[111]
Koyama, J.; Morita, I.; Tagahara, K.; Osakai, T.; Hotta, H.; Yang, M.X.; Mukainaka, T.; Nishino, H.; Tokuda, H. Correlation with redox potentials and inhibitory effects on Epstein-Barr virus activation of azaanthraquinones. Chem. Pharm. Bull. (Tokyo), 2001, 49(9), 1214-1216.
[http://dx.doi.org/10.1248/cpb.49.1214] [PMID: 11558617]
[112]
Koyama, J.; Morita, I.; Kobayashi, N.; Osakai, T.; Hotta, H.; Takayasu, J.; Nishino, H.; Tokuda, H. Correlation of redox potentials and inhibitory effects on Epstein-Barr virus activation of naphthoquinones. Cancer Lett., 2003, 201(1), 25-30.
[http://dx.doi.org/10.1016/S0304-3835(03)00467-1] [PMID: 14580683]
[113]
Koyama, J.; Morita, I.; Kobayashi, N.; Osakai, T.; Hotta, H.; Takayasu, J.; Nishino, H.; Tokuda, H. Correlation of redox potentials and inhibitory effects on Epstein-Barr virus activation of 2-azaanthraquinones. Cancer Lett., 2004, 212(1), 1-6.
[http://dx.doi.org/10.1016/j.canlet.2004.03.005] [PMID: 15246555]
[114]
Kurihara, N.; Yamakawa, K.; Fujita, T.; Nakajima, M. Studies on BHC isomers and related compounds. XXVI. Anaerobic degradation of tetra-, penta-, and hexachlorocyclohexene isomers by rat liver microsomal P-450. Nippon Noyaku Gakkaishi, 1980, 5, 93-100.
[115]
Kurihara, N.; Yamakawa, K.; Fujita, T.; Nakajima, M. Anaerobic degradation of tetra-, penta-, and hexa-chlorocyclohexene isomers by rat liver microsomal P-450. J. Pestic. Sci., 1980, 5, 93-100.
[http://dx.doi.org/10.1584/jpestics.5.93]
[116]
Kurihara, N.; Ohisa, N.; Nakajima, M.; Kakutani, T.; Senda, M. Relationship between microbial degradability and polarographic half-wave potential of polychlorocyclohexenes and BHC isomers. Agric. Biol. Chem., 1981, 45, 1229-1235.
[http://dx.doi.org/10.1271/bbb1961.45.1229]
[117]
Guengerich, F.P.; Willard, R.J.; Shea, J.P.; Richards, L.E.; Macdonald, T.L. Mechanism-Based Inactivation of cytochrome P-450 by heteroatom-substituted cyclopropanes and formation of ring-opened products. J. Am. Chem. Soc., 1984, 106, 6446-6447.
[http://dx.doi.org/10.1021/ja00333a071]
[118]
Deneer, J.W.; Sinnige, T.L.; Seinen, W.; Hermens, J.L.M. Quantitative structure-activity relationships for the toxicity and bioconcentration factor of nitrobenzene derivatives towards the guppy (Poecilia reticulata). Aquat. Toxicol., 1987, 10, 115-129.
[http://dx.doi.org/10.1016/0166-445X(87)90018-X]
[119]
Fernandez, L.A.; Santo, M.R.; Reta, M.; Giacomelli, L.; Cattana, R.; Silber, J.J.; Risso, M.; Cerecetto, H.; Gonzalez, M.; Olea-Azar, C. Relationship between physicochemical properties and herbicidal activity of 1,2,5-oxadiazole N-oxide derivatives. Molecules, 2005, 10(9), 1197-1208.
[http://dx.doi.org/10.3390/10091197] [PMID: 18007386]


free to download

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 14
Year: 2020
Published on: 31 August, 2020
Page: [1320 - 1321]
Pages: 2
DOI: 10.2174/138955752014200626163614

Article Metrics

PDF: 46
HTML: 2
EPUB: 1
PRC: 1