Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy

Author(s): Soraia Fernandes*, Marco Cassani, Stefania Pagliari, Petr Filipensky, Francesca Cavalieri, Giancarlo Forte*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 42 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


Nanodrugs represent novel solutions to reshuffle repurposed drugs for cancer therapy. They might offer different therapeutic options by combining targeted drug delivery and imaging in unique platforms. Such nanomaterials are deemed to overcome the limitations of currently available treatments, ultimately improving patients’ life quality. However, despite these promises being made for over three decades, the poor clinical translation of nanoparticle- based therapies calls for deeper in vitro and in vivo investigations. Translational issues arise very early during the development of nanodrugs, where complex and more reliable cell models are often replaced by easily accessible and convenient 2D monocultures. This is particularly true in the field of cancer therapy. In fact, 2D monocultures provide poor information about the real impact of the nanodrugs in a complex living organism, especially given the poor mimicry of the solid Tumors Microenvironment (TME). The dense and complex extracellular matrix (ECM) of solid tumors dramatically restricts nanoparticles efficacy, impairing the successful implementation of nanodrugs in medical applications. Herein, we propose a comprehensive guideline of the 3D cell culture models currently available, including their potential and limitations for the evaluation of nanodrugs activity. Advanced culture techniques, more closely resembling the physiological conditions of the TME, might give a better prediction of the reciprocal interactions between cells and nanoparticles and eventually help reconsider the use of old drugs for new applications.

Keywords: Nanodrugs, drug delivery, nanomedicine, tumor, 3D in vitro cell models, physiological conditions.

Maman, S.; Witz, I.P. A history of exploring cancer in context. Nat. Rev. Cancer, 2018, 18(6), 359-376.
[http://dx.doi.org/10.1038/s41568-018-0006-7] [PMID: 29700396]
Junttila, M.R.; de Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 2013, 501(7467), 346-354.
[http://dx.doi.org/10.1038/nature12626] [PMID: 24048067]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
Bogart, L.K.; Pourroy, G.; Murphy, C.J.; Puntes, V.; Pellegrino, T.; Rosenblum, D.; Peer, D.; Lévy, R. Nanoparticles for imaging, sensing and therapeutic intervention. ACS Nano, 2014, 8(4), 3107-3122.
[http://dx.doi.org/10.1021/nn500962q] [PMID: 24641589]
Kedmi, R.; Veiga, N.; Ramishetti, S.; Goldsmith, M.; Rosenblum, D.; Dammes, N.; Hazan-Halevy, I.; Nahary, L.; Leviatan-Ben-Arye, S.; Harlev, M.; Behlke, M.; Benhar, I.; Lieberman, J.; Peer, D. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol., 2018, 13(3), 214-219.
[http://dx.doi.org/10.1038/s41565-017-0043-5] [PMID: 29379205]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
Avvakumova, S.; Galbiati, E.; Pandolfi, L.; Mazzucchelli, S.; Cassani, M.; Gori, A.; Longhi, R.; Prosperi, D. Development of U11-functionalized gold nanoparticles for selective targeting of urokinase plasminogen activator receptor-positive breast cancer cells. Bioconjug. Chem., 2014, 25(8), 1381-1386.
[http://dx.doi.org/10.1021/bc500202b] [PMID: 25080049]
Galbiati, E.; Cassani, M.; Verderio, P.; Martegani, E.; Colombo, M.; Tortora, P.; Mazzucchelli, S.; Prosperi, D. Peptide-nanoparticle ligation mediated by cutinase fusion for the development of cancer cell-targeted nanoconjugates. Bioconjug. Chem., 2015, 26(4), 680-689.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00005] [PMID: 25741889]
Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano, 2016, 10(2), 2436-2446.
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]
Lak, A.; Cassani, M.; Mai, B.T.; Winckelmans, N.; Cabrera, D.; Sadrollahi, E.; Marras, S.; Remmer, H.; Fiorito, S.; Cremades-Jimeno, L.; Litterst, F.J.; Ludwig, F.; Manna, L.; Teran, F.J.; Bals, S.; Pellegrino, T. Fe2+ deficiencies, FeO subdomains, and structural defects favor magnetic hyperthermia performance of iron oxide nanocubes into intracellular environment. Nano Lett., 2018, 18(11), 6856-6866.
[http://dx.doi.org/10.1021/acs.nanolett.8b02722] [PMID: 30336062]
Yan, S.; Xia, P.; Xu, S.; Zhang, K.; Li, G.; Cui, L.; Yin, J. Nanocomposite porous microcarriers based on strontium-substituted HA- g-poly(γ-benzyl-l-glutamate) for bone tissue engineering. ACS Appl. Mater. Interfaces, 2018, 10(19), 16270-16281.
[http://dx.doi.org/10.1021/acsami.8b02448] [PMID: 29688701]
Zyuzin, M.V.; Cassani, M.; Barthel, M.J.; Gavilan, H.; Silvestri, N.; Escudero, A.; Scarpellini, A.; Lucchesi, F.; Teran, F.J.; Parak, W.J.; Pellegrino, T. Confining iron oxide nanocubes inside submicrometric cavities as a key strategy to preserve magnetic heat losses in an intracellular environment. ACS Appl. Mater. Interfaces, 2019, 11(45), 41957-41971.
[http://dx.doi.org/10.1021/acsami.9b15501] [PMID: 31584801]
Ahmed, S.; Chauhan, V.M.; Ghaemmaghami, A.M.; Aylott, J.W. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol. Lett., 2019, 41(1), 1-25.
[http://dx.doi.org/10.1007/s10529-018-2611-7] [PMID: 30368691]
Mirshafiee, V.; Jiang, W.; Sun, B.; Wang, X.; Xia, T. Facilitating translational nanomedicine via predictive safety assessment. Mol. Ther., 2017, 25(7), 1522-1530.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.011] [PMID: 28412168]
Singh, R.; Lillard, J.W. Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 2017, 17(8), 457-474.
[http://dx.doi.org/10.1038/nrc.2017.51] [PMID: 28706266]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
Brunetti, C.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. CPX-351 in acute myeloid leukemia: can a new formulation maximize the efficacy of old compounds? Expert Rev. Hematol., 2017, 10(10), 853-862.
[http://dx.doi.org/10.1080/17474086.2017.1369400] [PMID: 28814164]
Release, U.S.F.D.A. FDA approves first treatment for certain types of poor-prognosis acute myeloid leukemia. Available at: https://www.fda.gov/NewsEvents/Newsroom/Press-Ann-ouncements/ucm569883.htm (Accessed Date: January, 2020)
Pharmaceuticals, J. Phase III study of CPX-351 versus 7+3 in patients 60-75 years old with untreated high risk (secondary) acute myeloid leukemia (301) 2012. Available at: https://clinicaltrials.gov/ct2/show/NCT01696084 (Accessed Date: January, 2020).
Salvioni, L.; Rizzuto, M.A.; Bertolini, J.A.; Pandolfi, L.; Colombo, M.; Prosperi, D. Thirty years of cancer nanomedicine: success, frustration and hope. Cancers (Basel), 2019, 11(12)E1855
[http://dx.doi.org/10.3390/cancers11121855] [PMID: 31769416]
Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.
[http://dx.doi.org/10.1016/j.nantod.2019.02.005] [PMID: 31360214]
van der Meel, R.; Lammers, T.; Hennink, W.E. Cancer nanomedicines: oversold or underappreciated? Expert Opin. Drug Deliv., 2017, 14(1), 1-5.
[http://dx.doi.org/10.1080/17425247.2017.1262346] [PMID: 27852113]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate na-nomedicines: pathways for translational development and commercialization. Front. Pharmacol., 2018, 9(790), 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol., 2014, 12(4), 207-218.
[http://dx.doi.org/10.1089/adt.2014.573] [PMID: 24831787]
Langhans, S.A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol., 2018, 9(6), 6.
[http://dx.doi.org/10.3389/fphar.2018.00006] [PMID: 29410625]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine devel-opment: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
Gould, S.E.; Junttila, M.R.; de Sauvage, F.J. Translational value of mouse models in oncology drug development. Nat. Med., 2015, 21(5), 431-439.
[http://dx.doi.org/10.1038/nm.3853] [PMID: 25951530]
Curzer, H.J.; Perry, G.; Wallace, M.C.; Perry, D. The three Rs of animal research: what they mean for the institutional animal care and use committee and why. Sci. Eng. Ethics, 2016, 22(2), 549-565.
[http://dx.doi.org/10.1007/s11948-015-9659-8] [PMID: 26026966]
Caballero, D.; Kaushik, S.; Correlo, V.M.; Oliveira, J.M.; Reis, R.L.; Kundu, S.C. Organ-on-chip models of cancer metastasis for future personalized medicine: from chip to the patient. Biomaterials, 2017, 149, 98-115.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.005] [PMID: 29024838]
Wang, Y.; Cuzzucoli, F.; Escobar, A.; Lu, S.; Liang, L.; Wang, S. Tumor-on-a-chip platforms for assessing nanoparticle-based cancer therapy. Nanotechnology, 2018, 29(33)332001
[http://dx.doi.org/10.1088/1361-6528/aac7a4] [PMID: 29794338]
Fornari, F.A. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol. Pharmacol., 1994, 45(4), 649-656.
[PMID: 8183243]
Rivankar, S. An overview of doxorubicin formulations in cancer therapy. J. Cancer Res. Ther., 2014, 10(4), 853-858.
[http://dx.doi.org/10.4103/0973-1482.139267] [PMID: 25579518]
Gabizon, A. Enhancement of adriamycin delivery to liver metastatic cells with increased tumoricidal effect using liposomes as drug carriers. Cancer Res., 1983, 43(10), 4730-4735.
[PMID: 6883331]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
Morse, D.L. Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Mol. Cancer Res., 2005, 4(10), 1495-1504.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0130] [PMID: 16227398]
Autio, K.A.; Dreicer, R.; Anderson, J.; Garcia, J.A.; Alva, A.; Hart, L.L.; Milowsky, M.I.; Posadas, E.M.; Ryan, C.J.; Graf, R.P.; Dit-tamore, R.; Schreiber, N.A.; Summa, J.M.; Youssoufian, H.; Morris, M.J.; Scher, H.I. Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: a phase 2 clinical trial. JAMA Oncol., 2018, 4(10), 1344-1351.
[http://dx.doi.org/10.1001/jamaoncol.2018.2168] [PMID: 29978216]
ClinicalTrials.gov. A study of BIND-014 in patients with urothelial carcinoma, cholangiocarcinoma, cervical cancer and squamous cell carcinoma of the head and neck (iNSITE2), NCT02479178, 2016.
Ma, P.; Mumper, R.J. Paclitaxel nano-delivery systems: a comprehensive review. J. Nanomed. Nanotechnol., 2013, 4(2), 1000164-1000164.
[http://dx.doi.org/10.4172/2157-7439.1000164] [PMID: 24163786]
van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
Newman, D.J.; Cragg, G.M. Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar. Drugs, 2017, 15(4), 99.
[http://dx.doi.org/10.3390/md15040099] [PMID: 28353637]
Cunningham, D.; Parajuli, K.R.; Zhang, C.; Wang, G.; Mei, J.; Zhang, Q.; Liu, S.; You, Z. Monomethyl auristatin E phosphate inhibits human prostate cancer growth. Prostate, 2016, 76(15), 1420-1430.
[http://dx.doi.org/10.1002/pros.23226] [PMID: 27325602]
Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody-drug conjugates for cancer. Lancet, 2019, 394(10200), 793-804.
[http://dx.doi.org/10.1016/S0140-6736(19)31774-X] [PMID: 31478503]
Chudasama, V.; Maruani, A.; Caddick, S. Recent advances in the construction of antibody-drug conjugates. Nat. Chem., 2016, 8(2), 114-119.
[http://dx.doi.org/10.1038/nchem.2415] [PMID: 26791893]
Tang, H.; Liu, Y.; Yu, Z.; Sun, M.; Lin, L.; Liu, W.; Han, Q.; Wei, M.; Jin, Y. The analysis of key factors related to ADCs structural design. Front. Pharmacol., 2019, 10, 373-373.
[http://dx.doi.org/10.3389/fphar.2019.00373] [PMID: 31068807]
Qi, R.; Wang, Y.; Bruno, P.M.; Xiao, H.; Yu, Y.; Li, T.; Lauffer, S.; Wei, W.; Chen, Q.; Kang, X.; Song, H.; Yang, X.; Huang, X.; Detappe, A.; Matulonis, U.; Pepin, D.; Hemann, M.T.; Birrer, M.J.; Ghoroghchian, P.P. Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer. Nat. Commun., 2017, 8(1), 2166.
[http://dx.doi.org/10.1038/s41467-017-02390-7] [PMID: 29255160]
Tang, A.; Gao, K.; Chu, L.; Zhang, R.; Yang, J.; Zheng, J. Aurora kinases: novel therapy targets in cancers. Oncotarget, 2017, 8(14), 23937-23954.
[http://dx.doi.org/10.18632/oncotarget.14893] [PMID: 28147341]
Kantarjian, H.M.; Martinelli, G.; Jabbour, E.J.; Quintás-Cardama, A.; Ando, K.; Bay, J.O.; Wei, A.; Gröpper, S.; Papayannidis, C.; Owen, K.; Pike, L.; Schmitt, N.; Stockman, P.K.; Giagounidis, A. SPARK-AML1 investigators. Stage I of a phase 2 study assessing the efficacy, safety and tolerability of barasertib (AZD1152) versus low-dose cytosine arabinoside in elderly patients with acute myeloid leukemia. Cancer, 2013, 119(14), 2611-2619.
[http://dx.doi.org/10.1002/cncr.28113] [PMID: 23605952]
Bavetsias, V.; Linardopoulos, S. Aurora kinase inhibitors: current status and outlook. Front. Oncol., 2015, 5, 278-278.
[http://dx.doi.org/10.3389/fonc.2015.00278] [PMID: 26734566]
Ashton, S. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci. Transl. Med., 2016, 8(325)325ra17
[http://dx.doi.org/10.1126/scitranslmed.aad2355] [PMID: 26865565]
Lancet. J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; Stone, R.M.; Bixby, D.L.; Kolitz, J.E.; Schiller, G.J.; Wieduwilt, M.J.; Ryan, D.H.; Hoering, A.; Banerjee, K.; Chiarella, M.; Louie, A.C.; Medeiros, B.C. CPX-351 (cytarabine and daunorubicin). J. Clin. Oncol., 2018, 36(26), 2684-2692.
[http://dx.doi.org/10.1200/JCO.2017.77.6112] [PMID: 30024784]
Zhang, H. Onivyde for the therapy of multiple solid tumors. OncoTargets Ther., 2016, 9, 3001-3007.
[http://dx.doi.org/10.2147/OTT.S105587] [PMID: 27284250]
Oasmia launches the ovarian cancer treatment drug Apealea® in Sweden, Denmark and Finland. Available at: https://www.oasmia.com/en/oasmia-launches-the-ovarian-cancer-treatment-drug-apealea-in-sweden-denmark-and-finland/ (Accessed Date: January, 2020).
Petersen, G.H.; Alzghari, S.K.; Chee, W.; Sankari, S.S.; La-Beck, N.M. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J. Control. Release, 2016, 232, 255-264.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.028] [PMID: 27108612]
Wilhelm, S. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1(5), 16014.
Palumbo, A., Jr Da Costa, Nde.O.; Bonamino, M.H.; Pinto, L.F.; Nasciutti, L.E. Genetic instability in the tumor microenvironment: a new look at an old neighbor. Mol. Cancer, 2015, 14, 145-145.
[http://dx.doi.org/10.1186/s12943-015-0409-y] [PMID: 26227631]
Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
Liu, T.; Han, C.; Wang, S.; Fang, P.; Ma, Z.; Xu, L.; Yin, R. Cancer-associated fibroblasts: an emerging target of anti-cancer immuno-therapy. J. Hematol. Oncol., 2019, 12(1), 86.
[http://dx.doi.org/10.1186/s13045-019-0770-1] [PMID: 31462327]
Levental, K.R.; Yu, H.; Kass, L.; Lakins, J.N.; Egeblad, M.; Erler, J.T.; Fong, S.F.; Csiszar, K.; Giaccia, A.; Weninger, W.; Yamauchi, M.; Gasser, D.L.; Weaver, V.M. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009, 139(5), 891-906.
[http://dx.doi.org/10.1016/j.cell.2009.10.027] [PMID: 19931152]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic ac-cumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to en-hance patient responses. Adv. Drug Deliv. Rev., 2018, 130, 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control., 2016, 244(A), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
Björnmalm, M.; Thurecht, K.J.; Michael, M.; Scott, A.M.; Caruso, F. Bridging bio-nano science and cancer nanomedicine. ACS Nano, 2017, 11(10), 9594-9613.
[http://dx.doi.org/10.1021/acsnano.7b04855] [PMID: 28926225]
Sindhwani, S.; Syed, A.M.; Ngai, J.; Kingston, B.R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y.; Rajesh, N.U.; Hoang, T.; Wu, J.L.Y.; Wilhelm, S.; Zilman, A.; Gadde, S.; Sulaiman, A.; Ouyang, B.; Lin, Z.; Wang, L.; Egeblad, M.; Chan, W.C.W. The entry of nanoparticles into solid tumours. Nat. Mater., 2020, 19(5), 566-575.
[http://dx.doi.org/10.1038/s41563-019-0566-2] [PMID: 31932672]
Hinshaw, D.C.; Shevde, L.A. Tumor microenvironment innately modulates cancer progression. Cancer Res., 2019, 79(18), 4557-4566.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3962] [PMID: 31350295]
Singh, Y.; Pawar, V.K.; Meher, J.G.; Raval, K.; Kumar, A.; Shrivastava, R.; Bhadauria, S.; Chourasia, M.K. Targeting tumor associated macrophages (TAMs) via nanocarriers. J. Control. Release, 2017, 254, 92-106.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.395] [PMID: 28377038]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D.I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol., 2016, 37(3), 208-220.
[http://dx.doi.org/10.1016/j.it.2016.01.004] [PMID: 26858199]
Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; Vonderheide, R.H.; Pittet, M.J.; Jain, R.K.; Zou, W.; Howcroft, T.K.; Woodhouse, E.C.; Weinberg, R.A.; Krummel, M.F. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med., 2018, 24(5), 541-550.
[http://dx.doi.org/10.1038/s41591-018-0014-x] [PMID: 29686425]
Son, B.; Lee, S.; Youn, H.; Kim, E.; Kim, W.; Youn, B. The role of tumor microenvironment in therapeutic resistance. Oncotarget, 2017, 8(3), 3933-3945.
[http://dx.doi.org/10.18632/oncotarget.13907] [PMID: 27965469]
Yu, D.D.; Wu, Y.; Shen, H.Y.; Lv, M.M.; Chen, W.X.; Zhang, X.H.; Zhong, S.L.; Tang, J.H.; Zhao, J.H. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci., 2015, 106(8), 959-964.
[http://dx.doi.org/10.1111/cas.12715] [PMID: 26052865]
Au Yeung, C.L.; Co, N.N.; Tsuruga, T.; Yeung, T.L.; Kwan, S.Y.; Leung, C.S.; Li, Y.; Lu, E.S.; Kwan, K.; Wong, K.K.; Schmandt, R.; Lu, K.H.; Mok, S.C. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun., 2016, 7(1), 11150.
[http://dx.doi.org/10.1038/ncomms11150] [PMID: 27021436]
Shen, M.; Kang, Y.J.F.o.M. Complex interplay between tumor microenvironment and cancer therapy. Front. Med., 2018, 12(4), 426-439.
[http://dx.doi.org/10.1007/s11684-018-0663-7] [PMID: 30097962]
Qu, Y.; Dou, B.; Tan, H.; Feng, Y.; Wang, N.; Wang, D. Tumor microenvironment-driven non-cell-autonomous resistance to antineo-plastic treatment. Mol. Cancer, 2019, 18(1), 69.
[http://dx.doi.org/10.1186/s12943-019-0992-4] [PMID: 30927928]
Sun, Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett., 2016, 380(1), 205-215.
[http://dx.doi.org/10.1016/j.canlet.2015.07.044] [PMID: 26272180]
Kadel, D.; Zhang, Y.; Sun, H.R.; Zhao, Y.; Dong, Q.Z.; Qin, L.X. Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biol. Toxicol., 2019, 35(5), 407-421.
[http://dx.doi.org/10.1007/s10565-019-09461-z] [PMID: 30680600]
Nunes, A.S. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol. Bioeng., 2019, 116(1), 206-226.
[http://dx.doi.org/10.1002/bit.26845] [PMID: 30367820]
Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol., 2014, 12(4), 207-218.
[http://dx.doi.org/10.1089/adt.2014.573] [PMID: 24831787]
Zietarska, M. Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Mol. Carcinog., 2007, 46(10), 872-885.
[http://dx.doi.org/10.1002/mc.20315] [PMID: 17455221]
Fontoura, J.C.; Viezzer, C.; Dos Santos, F.G.; Ligabue, R.A.; Weinlich, R.; Puga, R.D.; Antonow, D.; Severino, P.; Bonorino, C. Com-parison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater. Sci. Eng. C, 2020, 107110264
[http://dx.doi.org/10.1016/j.msec.2019.110264] [PMID: 31761183]
Imamura, Y.; Mukohara, T.; Shimono, Y.; Funakoshi, Y.; Chayahara, N.; Toyoda, M.; Kiyota, N.; Takao, S.; Kono, S.; Nakatsura, T.; Minami, H. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep., 2015, 33(4), 1837-1843.
[http://dx.doi.org/10.3892/or.2015.3767] [PMID: 25634491]
Breslin, S.; O’Driscoll, L. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Oncotarget, 2016, 7(29), 45745-45756.
[http://dx.doi.org/10.18632/oncotarget.9935] [PMID: 27304190]
Friedrich, J.; Seidel, C.; Ebner, R.; Kunz-Schughart, L.A. Spheroid-based drug screen: considerations and practical approach. Nat. Protoc., 2009, 4(3), 309-324.
[http://dx.doi.org/10.1038/nprot.2008.226] [PMID: 19214182]
Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, Ł.; Lam-perska, K. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch. Med. Sci., 2018, 14(4), 910-919.
[http://dx.doi.org/10.5114/aoms.2016.63743] [PMID: 30002710]
Weiswald, L-B.; Bellet, D.; Dangles-Marie, V. Spherical cancer models in tumor biology. Neoplasia, 2015, 17(1), 1-15.
[http://dx.doi.org/10.1016/j.neo.2014.12.004] [PMID: 25622895]
Nath, S.; Devi, G.R. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol. Ther., 2016, 163, 94-108.
[http://dx.doi.org/10.1016/j.pharmthera.2016.03.013] [PMID: 27063403]
Lee, G.Y.; Kenny, P.A.; Lee, E.H.; Bissell, M.J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods, 2007, 4(4), 359-365.
[http://dx.doi.org/10.1038/nmeth1015] [PMID: 17396127]
Weigelt, B.; Ghajar, C.M.; Bissell, M.J. The need for complex 3D culture models to unravel novel pathways and identify accurate bi-omarkers in breast cancer. Adv. Drug Deliv. Rev., 2014, 69-70, 42-51.
[http://dx.doi.org/10.1016/j.addr.2014.01.001] [PMID: 24412474]
Shi, W.; Kwon, J.; Huang, Y.; Tan, J.; Uhl, C.G.; He, R.; Zhou, C.; Liu, Y. Facile tumor spheroids formation in large quantity with controllable size and high uniformity. Sci. Rep., 2018, 8(1), 6837.
[http://dx.doi.org/10.1038/s41598-018-25203-3] [PMID: 29717201]
Song, Y.; Kim, J.S.; Kim, S.H.; Park, Y.K.; Yu, E.; Kim, K.H.; Seo, E.J.; Oh, H.B.; Lee, H.C.; Kim, K.M.; Seo, H.R. Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 109.
[http://dx.doi.org/10.1186/s13046-018-0752-0] [PMID: 29801504]
Todaro, M.; Alea, M.P.; Di Stefano, A.B.; Cammareri, P.; Vermeulen, L.; Iovino, F.; Tripodo, C.; Russo, A.; Gulotta, G.; Medema, J.P.; Stassi, G. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 2007, 1(4), 389-402.
[http://dx.doi.org/10.1016/j.stem.2007.08.001] [PMID: 18371377]
Miyoshi, H.; Maekawa, H.; Kakizaki, F.; Yamaura, T.; Kawada, K.; Sakai, Y.; Taketo, M.M. An improved method for culturing patient-derived colorectal cancer spheroids. Oncotarget, 2018, 9(31), 21950-21964.
[http://dx.doi.org/10.18632/oncotarget.25134] [PMID: 29774115]
Zanoni, M.; Piccinini, F.; Arienti, C.; Zamagni, A.; Santi, S.; Polico, R.; Bevilacqua, A.; Tesei, A. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep., 2016, 6(1), 19103.
[http://dx.doi.org/10.1038/srep19103] [PMID: 26752500]
Lu, H.; Stenzel, M.H. Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles. Small, 2018, 14(13)e1702858
[http://dx.doi.org/10.1002/smll.201702858] [PMID: 29450963]
Amann, A.; Zwierzina, M.; Koeck, S.; Gamerith, G.; Pechriggl, E.; Huber, J.M.; Lorenz, E.; Kelm, J.M.; Hilbe, W.; Zwierzina, H.; Kern, J. Development of a 3D angiogenesis model to study tumour - endothelial cell interactions and the effects of anti-angiogenic drugs. Sci. Rep., 2017, 7(1), 2963.
[http://dx.doi.org/10.1038/s41598-017-03010-6] [PMID: 28592821]
Kenny, P.A.; Lee, G.Y.; Myers, C.A.; Neve, R.M.; Semeiks, J.R.; Spellman, P.T.; Lorenz, K.; Lee, E.H.; Barcellos-Hoff, M.H.; Petersen, O.W.; Gray, J.W.; Bissell, M.J. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol., 2007, 1(1), 84-96.
[http://dx.doi.org/10.1016/j.molonc.2007.02.004] [PMID: 18516279]
Tchoryk, A.; Taresco, V.; Argent, R.H.; Ashford, M.; Gellert, P.R.; Stolnik, S.; Grabowska, A.; Garnett, M.C. Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug. Chem., 2019, 30(5), 1371-1384.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00136] [PMID: 30946570]
Lee, J.; Lilly, G.D.; Doty, R.C.; Podsiadlo, P.; Kotov, N.A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small, 2009, 5(10), 1213-1221.
[http://dx.doi.org/10.1002/smll.200801788] [PMID: 19263430]
Singh, M.S.; Goldsmith, M.; Thakur, K.; Chatterjee, S.; Landesman-Milo, D.; Levy, T.; Kunz-Schughart, L.A.; Barenholz, Y.; Peer, D. An ovarian spheroid based tumor model that represents vascularized tumors and enables the investigation of nanomedicine therapeutics. Nanoscale, 2020, 12(3), 1894-1903.
[http://dx.doi.org/10.1039/C9NR09572A] [PMID: 31904048]
Rijal, G.; Li, W. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening. Sci. Adv., 2017, 3(9)e1700764
[http://dx.doi.org/10.1126/sciadv.1700764] [PMID: 28924608]
Pal, M.; Chen, H.; Lee, B.H.; Lee, J.Y.H.; Yip, Y.S.; Tan, N.S.; Tan, L.P. Epithelial-mesenchymal transition of cancer cells using bio-engineered hybrid scaffold composed of hydrogel/3D-fibrous framework. Sci. Rep., 2019, 9(1), 8997-8997.
[http://dx.doi.org/10.1038/s41598-019-45384-9] [PMID: 31222037]
Liverani, C.; De Vita, A.; Minardi, S.; Kang, Y.; Mercatali, L.; Amadori, D.; Bongiovanni, A.; La Manna, F.; Ibrahim, T.; Tasciotti, E. A biomimetic 3D model of hypoxia-driven cancer progression. Sci. Rep., 2019, 9(1), 12263.
[http://dx.doi.org/10.1038/s41598-019-48701-4] [PMID: 31439905]
Fong, E.L.; Santoro, M.; Farach-Carson, M.C.; Kasper, F.K.; Mikos, A.G. Tissue engineering perfusable cancer models. Curr. Opin. Chem. Eng., 2014, 3, 112-117.
[http://dx.doi.org/10.1016/j.coche.2013.12.008] [PMID: 24634812]
Santoro, M.; Lamhamedi-Cherradi, S.E.; Menegaz, B.A.; Ludwig, J.A.; Mikos, A.G. Flow perfusion effects on three-dimensional culture and drug sensitivity of Ewing sarcoma. Proc. Natl. Acad. Sci. USA, 2015, 112(33), 10304-10309.
[http://dx.doi.org/10.1073/pnas.1506684112] [PMID: 26240353]
Hirt, C.; Papadimitropoulos, A.; Muraro, M.G.; Mele, V.; Panopoulos, E.; Cremonesi, E.; Ivanek, R.; Schultz-Thater, E.; Droeser, R.A.; Mengus, C.; Heberer, M.; Oertli, D.; Iezzi, G.; Zajac, P.; Eppenberger-Castori, S.; Tornillo, L.; Terracciano, L.; Martin, I.; Spagnoli, G.C. Bioreactor-engineered cancer tissue-like structures mimic phenotypes, gene expression profiles and drug resistance patterns observed “in vivo”. Biomaterials, 2015, 62, 138-146.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.037] [PMID: 26051518]
Foglietta, F.; Spagnoli, G.C.; Muraro, M.G.; Ballestri, M.; Guerrini, A.; Ferroni, C.; Aluigi, A.; Sotgiu, G.; Varchi, G. Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. Int. J. Nanomedicine, 2018, 13, 4847-4867.
[http://dx.doi.org/10.2147/IJN.S159942] [PMID: 30214193]
Pence, K.A.; Mishra, D.K.; Thrall, M.; Dave, B.; Kim, M.P. Breast cancer cells form primary tumors on ex vivo four-dimensional lung model. J. Surg. Res., 2017, 210, 181-187.
[http://dx.doi.org/10.1016/j.jss.2016.11.019] [PMID: 28457326]
Manfredonia, C.; Muraro, M.G.; Hirt, C.; Mele, V.; Governa, V.; Papadimitropoulos, A.; Däster, S.; Soysal, S.D.; Droeser, R.A.; Mechera, R.; Oertli, D.; Rosso, R.; Bolli, M.; Zettl, A.; Terracciano, L.M.; Spagnoli, G.C.; Martin, I.; Iezzi, G. Maintenance of primary human colorectal cancer microenvironment using a perfusion bioreactor-based 3D culture system. Advanced Biosystems, 2019, 3(4)e1800300
[http://dx.doi.org/10.1002/adbi.201800300] [PMID: 32627426]
Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; Clevers, H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244), 262-265.
[http://dx.doi.org/10.1038/nature07935] [PMID: 19329995]
Bredenoord, A.L.; Clevers, H.; Knoblich, J.A. Human tissues in a dish: The research and ethical implications of organoid technology. Science, 2017, 355(6322)eaaf9414
[http://dx.doi.org/10.1126/science.aaf9414] [PMID: 28104841]
Granat, L.M.; Kambhampati, O.; Klosek, S.; Niedzwecki, B.; Parsa, K.; Zhang, D. The promises and challenges of patient-derived tumor organoids in drug development and precision oncology. Animal Model. Exp. Med., 2019, 2(3), 150-161.
[http://dx.doi.org/10.1002/ame2.12077] [PMID: 31773090]
Goldhammer, N.; Kim, J.; Timmermans-Wielenga, V.; Petersen, O.W. Characterization of organoid cultured human breast cancer. Breast Cancer Res., 2019, 21(1), 141.
[http://dx.doi.org/10.1186/s13058-019-1233-x] [PMID: 31829259]
Mazzucchelli, S.; Piccotti, F.; Allevi, R.; Truffi, M.; Sorrentino, L.; Russo, L.; Agozzino, M.; Signati, L.; Bonizzi, A.; Villani, L.; Corsi, F. Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol. Proced. Online, 2019, 21(1), 12.
[http://dx.doi.org/10.1186/s12575-019-0099-8] [PMID: 31223292]
Kim, M.; Mun, H.; Sung, C.O.; Cho, E.J.; Jeon, H.J.; Chun, S.M.; Jung, D.J.; Shin, T.H.; Jeong, G.S.; Kim, D.K.; Choi, E.K.; Jeong, S.Y.; Taylor, A.M.; Jain, S.; Meyerson, M.; Jang, S.J. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun., 2019, 10(1), 3991.
[http://dx.doi.org/10.1038/s41467-019-11867-6] [PMID: 31488816]
Otte, J.; Dizdar, L.; Behrens, B.; Goering, W.; Knoefel, W.T.; Wruck, W.; Stoecklein, N.H.; Adjaye, J. FGF signalling in the self-renewal of colon cancer organoids. Sci. Rep., 2019, 9(1), 17365.
[http://dx.doi.org/10.1038/s41598-019-53907-7] [PMID: 31758153]
Engel, R.M.; Chan, W.H.; Nickless, D.; Hlavca, S.; Richards, E.; Kerr, G.; Oliva, K.; McMurrick, P.J.; Jardé, T.; Abud, H.E. Patient-derived colorectal cancer organoids upregulate revival stem cell marker genes following chemotherapeutic treatment. J. Clin. Med., 2020, 9(1)E128
[http://dx.doi.org/10.3390/jcm9010128] [PMID: 31906589]
Choi, S.I.; Jeon, A.R.; Kim, M.K.; Lee, Y.S.; Im, J.E.; Koh, J.W.; Han, S.S.; Kong, S.Y.; Yoon, K.A.; Koh, Y.H.; Lee, J.H.; Lee, W.J.; Park, S.J.; Hong, E.K.; Woo, S.M.; Kim, Y.H. Development of patient-derived preclinical platform for metastatic pancreatic cancer: PDOX and a subsequent organoid model system using percutaneous biopsy samples. Front. Oncol., 2019, 9(875), 875.
[http://dx.doi.org/10.3389/fonc.2019.00875] [PMID: 31572675]
Bian, B.; Juiz, N.A.; Gayet, O.; Bigonnet, M.; Brandone, N.; Roques, J.; Cros, J.; Wang, N.; Dusetti, N.; Iovanna, J. Pancreatic cancer organoids for determining sensitivity to bromodomain and extra-terminal inhibitors (BETi). Front. Oncol., 2019, 9, 475-475.
[http://dx.doi.org/10.3389/fonc.2019.00475] [PMID: 31231611]
Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; Wongvipat, J.; Kossai, M.; Ramazanoglu, S.; Barboza, L.P.; Di, W.; Cao, Z.; Zhang, Q.F.; Sirota, I.; Ran, L.; MacDonald, T.Y.; Beltran, H.; Mosquera, J.M.; Touijer, K.A.; Scardino, P.T.; Laudone, V.P.; Curtis, K.R.; Rathkopf, D.E.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; Solomon, S.B.; Eastham, J.A.; Chi, P.; Carver, B.; Rubin, M.A.; Scher, H.I.; Clevers, H.; Sawyers, C.L.; Chen, Y. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1), 176-187.
[http://dx.doi.org/10.1016/j.cell.2014.08.016] [PMID: 25201530]
Puca, L.; Bareja, R.; Prandi, D.; Shaw, R.; Benelli, M.; Karthaus, W.R.; Hess, J.; Sigouros, M.; Donoghue, A.; Kossai, M.; Gao, D.; Cyrta, J.; Sailer, V.; Vosoughi, A.; Pauli, C.; Churakova, Y.; Cheung, C.; Deonarine, L.D.; McNary, T.J.; Rosati, R.; Tagawa, S.T.; Nanus, D.M.; Mosquera, J.M.; Sawyers, C.L.; Chen, Y.; Inghirami, G.; Rao, R.A.; Grandori, C.; Elemento, O.; Sboner, A.; Demichelis, F.; Rubin, M.A.; Beltran, H. Patient derived organoids to model rare prostate cancer phenotypes. Nat. Commun., 2018, 9(1), 2404.
[http://dx.doi.org/10.1038/s41467-018-04495-z] [PMID: 29921838]
Mullenders, J.; de Jongh, E.; Brousali, A.; Roosen, M.; Blom, J.P.A.; Begthel, H.; Korving, J.; Jonges, T.; Kranenburg, O.; Meijer, R.; Clevers, H.C. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc. Natl. Acad. Sci. USA, 2019, 116(10), 4567-4574.
[http://dx.doi.org/10.1073/pnas.1803595116] [PMID: 30787188]
Nuciforo, S.; Fofana, I.; Matter, M.S.; Blumer, T.; Calabrese, D.; Boldanova, T.; Piscuoglio, S.; Wieland, S.; Ringnalda, F.; Schwank, G.; Terracciano, L.M.; Ng, C.K.Y.; Heim, M.H. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep., 2018, 24(5), 1363-1376.
[http://dx.doi.org/10.1016/j.celrep.2018.07.001] [PMID: 30067989]
Clevers, H.; Tuveson, D.A. Organoid models for cancer research. Ann. Rev. Canc. Biol., 2019, 3(1), 223-234.
Huang, L.; Holtzinger, A.; Jagan, I. BeGora, M.; Lohse, I.; Ngai, N.; Nostro, C.; Wang, R.; Muthuswamy, L.B.; Crawford, H.C.; Ar-rowsmith, C.; Kalloger, S.E.; Renouf, D.J.; Connor, A.A.; Cleary, S.; Schaeffer, D.F.; Roehrl, M.; Tsao, M.S.; Gallinger, S.; Keller, G.; Muthuswamy, S.K. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med., 2015, 21(11), 1364-1371.
[http://dx.doi.org/10.1038/nm.3973] [PMID: 26501191]
Ling, K.; Huang, G.; Liu, J.; Zhang, X. Bioprinting-based high-throughput fabrication of three-dimensional mcf-7 human breast cancer cellular spheroids. Engineering, 2015, 1(2), 269-274.
[http://dx.doi.org/10.15302/J-ENG-2015062 ]
Hribar, K.C.; Finlay, D.; Ma, X.; Qu, X.; Ondeck, M.G.; Chung, P.H.; Zanella, F.; Engler, A.J.; Sheikh, F.; Vuori, K.; Chen, S.C. Non-linear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab Chip, 2015, 15(11), 2412-2418.
[http://dx.doi.org/10.1039/C5LC00159E] [PMID: 25900329]
Meng, F. 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments. Adv. Mater., 2019, 31(10)e1806899
[http://dx.doi.org/10.1002/adma.201806899] [PMID: 30663123]
Langer, E.M.; Allen-Petersen, B.L.; King, S.M.; Kendsersky, N.D.; Turnidge, M.A.; Kuziel, G.M.; Riggers, R.; Samatham, R.; Amery, T.S.; Jacques, S.L.; Sheppard, B.C.; Korkola, J.E.; Muschler, J.L.; Thibault, G.; Chang, Y.H.; Gray, J.W.; Presnell, S.C.; Nguyen, D.G.; Sears, R.C. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep., 2019, 26(3), 608-623.e6.
[http://dx.doi.org/10.1016/j.celrep.2018.12.090] [PMID: 30650355]
Madden, L.R. Bioprinted 3D Primary human intestinal tissues model aspects of native physiology and ADME/tox functions. iScience, 2018, 2, 156-167.
[http://dx.doi.org/10.1016/j.isci.2018.03.015] [PMID: 30428372]
Pang, Y.; Mao, S.S.; Yao, R.; He, J.Y.; Zhou, Z.Z.; Feng, L.; Zhang, K.T.; Cheng, S.J.; Sun, W. TGF-β induced epithelial-mesenchymal transition in an advanced cervical tumor model by 3D printing. Biofabrication, 2018, 10(4)044102
[http://dx.doi.org/10.1088/1758-5090/aadbde] [PMID: 30129928]
Zhao, Y.; Yao, R.; Ouyang, L.; Ding, H.; Zhang, T.; Zhang, K.; Cheng, S.; Sun, W. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, 2014, 6(3)035001
[http://dx.doi.org/10.1088/1758-5082/6/3/035001] [PMID: 24722236]
Xu, F.; Celli, J.; Rizvi, I.; Moon, S.; Hasan, T.; Demirci, U. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J., 2011, 6(2), 204-212.
[http://dx.doi.org/10.1002/biot.201000340] [PMID: 21298805]
Dai, X.; Ma, C.; Lan, Q.; Xu, T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication, 2016, 8(4)045005
[http://dx.doi.org/10.1088/1758-5090/8/4/045005] [PMID: 27725343]
Nishimura, R.; Osako, T.; Okumura, Y.; Hayashi, M.; Toyozumi, Y.; Arima, N. Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer. Exp. Ther. Med., 2010, 1(5), 747-754.
[http://dx.doi.org/10.3892/etm.2010.133] [PMID: 22993598]
Monferrer, E.; Martín-Vañó, S.; Carretero, A.; García-Lizarribar, A.; Burgos-Panadero, R.; Navarro, S.; Samitier, J.; Noguera, R. A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior. Sci. Rep., 2020, 10(1), 6370.
[http://dx.doi.org/10.1038/s41598-020-62986-w] [PMID: 32286364]
Carvalho, M.R.; Barata, D.; Teixeira, L.M.; Giselbrecht, S.; Reis, R.L.; Oliveira, J.M.; Truckenmüller, R.; Habibovic, P. Colorectal tumor-on-a-chip system: a 3D tool for precision onco-nanomedicine. Sci. Adv., 2019, 5(5)eaaw1317
[http://dx.doi.org/10.1126/sciadv.aaw1317] [PMID: 31131324]
Farokhzad, O.C.; Khademhosseini, A.; Jon, S.; Hermmann, A.; Cheng, J.; Chin, C.; Kiselyuk, A.; Teply, B.; Eng, G.; Langer, R. Mi-crofluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal. Chem., 2005, 77(17), 5453-5459.
[http://dx.doi.org/10.1021/ac050312q] [PMID: 16131052]
Albanese, A.; Lam, A.K.; Sykes, E.A.; Rocheleau, J.V.; Chan, W.C. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat. Commun., 2013, 4(1), 2718.
[http://dx.doi.org/10.1038/ncomms3718] [PMID: 24177351]
Yang, Y.; Yang, X.; Zou, J.; Jia, C.; Hu, Y.; Du, H.; Wang, H. Evaluation of photodynamic therapy efficiency using an in vitro three-dimensional microfluidic breast cancer tissue model. Lab Chip, 2015, 15(3), 735-744.
[http://dx.doi.org/10.1039/C4LC01065E] [PMID: 25428803]
Lukowski, J.K.; Hummon, A.B. Quantitative evaluation of liposomal doxorubicin and its metabolites in spheroids. Anal. Bioanal. Chem., 2019, 411(27), 7087-7094.
[http://dx.doi.org/10.1007/s00216-019-02084-7] [PMID: 31471684]
Tekkeli, S.E.K.; Kiziltas, M.V. Current HPLC methods for assay of nano drug delivery systems. Curr. Top. Med. Chem., 2017, 17(13), 1588-1594.
[http://dx.doi.org/10.2174/1568026616666161222112305] [PMID: 28017146]
Becher, F.; Ciccolini, J.; Imbs, D.C.; Marin, C.; Fournel, C.; Dupuis, C.; Fakhry, N.; Pourroy, B.; Ghettas, A.; Pruvost, A.; Junot, C.; Duffaud, F.; Lacarelle, B.; Salas, S. A simple and rapid LC-MS/MS method for therapeutic drug monitoring of cetuximab: a GPCO-UNICANCER proof of concept study in head-and-neck cancer patients. Sci. Rep., 2017, 7(1), 2714.
[http://dx.doi.org/10.1038/s41598-017-02821-x] [PMID: 28578404]
Acland, M. Mass spectrometry analyses of multicellular tumor spheroids. Proteomics Clin. Appl., 2018, 12(3)e1700124
[http://dx.doi.org/10.1002/prca.201700124] [PMID: 29227035]
Lukowski, J.K.; Weaver, E.M.; Hummon, A.B. Analyzing liposomal drug delivery systems in three-dimensional cell culture models using MALDI imaging mass spectrometry. Anal. Chem., 2017, 89(16), 8453-8458.
[http://dx.doi.org/10.1021/acs.analchem.7b02006] [PMID: 28731323]
Lin, L.; Zheng, Y.; Wu, Z.; Zhang, W.; Lin, J.M. A tumor microenvironment model coupled with a mass spectrometry system to probe the metabolism of drug-loaded nanoparticles. Chem. Commun. (Camb.), 2019, 55(69), 10218-10221.
[http://dx.doi.org/10.1039/C9CC04628C] [PMID: 31364634]
He, H.; Liu, L.; Morin, E.E.; Liu, M.; Schwendeman, A. Survey of clinical translation of cancer nanomedicines-lessons learned from successes and failures. Acc. Chem. Res., 2019, 52(9), 2445-2461.
[http://dx.doi.org/10.1021/acs.accounts.9b00228] [PMID: 31424909]
Faria, M.; Björnmalm, M.; Thurecht, K.J.; Kent, S.J.; Parton, R.G.; Kavallaris, M.; Johnston, A.P.R.; Gooding, J.J.; Corrie, S.R.; Boyd, B.J.; Thordarson, P.; Whittaker, A.K.; Stevens, M.M.; Prestidge, C.A.; Porter, C.J.H.; Parak, W.J.; Davis, T.P.; Crampin, E.J.; Caruso, F. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol., 2018, 13(9), 777-785.
[http://dx.doi.org/10.1038/s41565-018-0246-4] [PMID: 30190620]
Chetwynd, A.J.; Wheeler, K.E.; Lynch, I. Best practice in reporting corona studies: minimum information about nanomaterial biocorona experiments (MINBE). Nano Today, 2019, 28100758
[http://dx.doi.org/10.1016/j.nantod.2019.06.004] [PMID: 32774443]

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [7234 - 7255]
Pages: 22
DOI: 10.2174/0929867327666200625151134

Article Metrics

PDF: 54