Interaction of Platinum-based Drugs with Proteins: An Overview of Representative Crystallographic Studies

Author(s): Giarita Ferraro, Domenico Loreto, Antonello Merlino*

Journal Name: Current Topics in Medicinal Chemistry

Volume 21 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Pt-based drugs are widely used in clinics for the treatment of cancer. The mechanism of action of these molecules relies on their interaction with DNA. However, the recognition of these metal compounds by proteins plays an important role in defining pharmacokinetics, side effects and their overall pharmacological profiles. Single crystal X-ray diffraction studies provided important information on the molecular mechanisms at the basis of this process. Here, the molecular structures of representative adducts obtained upon reaction with proteins of selected Pt-based drugs, including cisplatin, carboplatin and oxaliplatin, are briefly described and comparatively examined. Data indicate that metal ligands play a significant role in driving the reaction of Pt compounds with proteins; non-covalent interactions that occur in the early steps of Pt compound/protein recognition process play a crucial role in defining the structure of the final Pt-protein adduct. In the metallated protein structures, Pt centers coordinate few protein side chains, such as His, Met, Cys, Asp, Glu and Lys residues upon releasing labile ligands.

Keywords: Protein metalation, Cisplatin analogues, Protein-metallodrug interactions, Metal-based drugs, X-ray crystallography, Metal-protein adducts.

[1]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[2]
Robillard, M.S.; Reedijk, J. Platinum bbased anticancer drugsbased in part on the article platinum based anticancer drugs by Steven J. Brown, Christine S. Chow & Stephen J. Lippard which appeared in the encyclopedia of inorganic chemistry, First Edition .In: Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons Ltd: Chichester , 2011.
[3]
Sherman, S.E.; Gibson, D.; Wang, A.H.; Lippard, S.J. X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-.[Pt(NH3)2(d(pGpG)) Science, 1985, 230(4724), 412-417.
[http://dx.doi.org/10.1126/science.4048939] [PMID: 4048939]
[4]
Zamble, D.B.; Mu, D.; Reardon, J.T.; Sancar, A.; Lippard, S.J. Repair of cisplatin--DNA adducts by the mammalian excision nuclease. Biochemistry, 1996, 35(31), 10004-10013.
[http://dx.doi.org/10.1021/bi960453+] [PMID: 8756462]
[5]
Jung, Y.; Lippard, S.J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev., 2007, 107(5), 1387-1407.
[http://dx.doi.org/10.1021/cr068207j] [PMID: 17455916]
[6]
Messori, L.; Merlino, A. Cisplatin binding to proteins: A structural perspective. Coord. Chem. Rev., 2016, 513, 67-89.
[http://dx.doi.org/10.1016/j.ccr.2016.01.010]
[7]
Pinato, O.; Musetti, C.; Sissi, C. Pt-based drugs: The spotlight will be on proteins. Metallomics: integrated biometal science 2014, 6(3), 380-395.
[http://dx.doi.org/10.1039/C3MT00357D]
[8]
Arnesano, F.; Natile, G. “Platinum on the road”: Interactions of antitumoral cisplatin with proteins. Pure Appl. Chem., 2008, 80(12), 2715-2725.
[http://dx.doi.org/10.1351/pac200880122715]
[9]
Aggarwal, S.K. A histochemical approach to the mechanism of action of cisplatin and its analogues. J. Histochem. Cytochem., 1993, 41(7), 1053-1073.
[http://dx.doi.org/10.1177/41.7.8515048] [PMID: 8515048]
[10]
Karasawa, T.; Sibrian-Vazquez, M.; Strongin, R.M.; Steyger, P.S. Identification of cisplatin-binding proteins using agarose conjugates of platinum compounds. PLoS One, 2013, 8(6)e66220
[http://dx.doi.org/10.1371/journal.pone.0066220] [PMID: 23755301]
[11]
Bruno, P.M.; Liu, Y.; Park, G.Y.; Murai, J.; Koch, C.E.; Eisen, T.J.; Pritchard, J.R.; Pommier, Y.; Lippard, S.J.; Hemann, M.T. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat. Med., 2017, 23(4), 461-471.
[http://dx.doi.org/10.1038/nm.4291] [PMID: 28263311]
[12]
Carey, P.R. Raman crystallography and other biochemical applications of Raman microscopy. Annu. Rev. Phys. Chem., 2006, 57, 527-554.
[http://dx.doi.org/10.1146/annurev.physchem.57.032905.104521] [PMID: 16599820]
[13]
Rehr, J.J.; Ankudinov, A.L. Progress in the theory and interpretation of xanes. Coord. Chem. Rev., 2005, 249(1-2), 131-140.
[http://dx.doi.org/10.1016/j.ccr.2004.02.014]
[14]
Pearson, A.R.; Owen, R.L. Combining X-ray crystallography and single-crystal spectroscopy to probe enzyme mechanisms. Biochem. Soc. Trans., 2009, 37(Pt 2), 378-381.
[http://dx.doi.org/10.1042/BST0370378] [PMID: 19290866]
[15]
Cohen, S.L.; Chait, B.T. Mass spectrometry as a tool for protein crystallography. Annu. Rev. Biophys. Biomol. Struct., 2001, 30, 67-85.
[http://dx.doi.org/10.1146/annurev.biophys.30.1.67] [PMID: 11340052]
[16]
Merlino, A.; Marzo, T.; Messori, L. Protein metalation by anticancer metallodrugs: A joint esi ms and xrd investigative strategy. Chemistry, 2017, 23(29), 6942-6947.
[http://dx.doi.org/10.1002/chem.201605801] [PMID: 28071831]
[17]
Messori, L.; Merlino, A. Protein metalation by metal-based drugs: X-ray crystallography and mass spectrometry studies. Chem. Commun. (Camb.), 2017, 53(85), 11622-11633.
[http://dx.doi.org/10.1039/C7CC06442J] [PMID: 29019481]
[18]
Serratrice, M.; Maiore, L.; Zucca, A.; Stoccoro, S.; Landini, I.; Mini, E.; Massai, L.; Ferraro, G.; Merlino, A.; Messori, L.; Cinellu, M.A. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives. Dalton Trans., 2016, 45(2), 579-590.
[http://dx.doi.org/10.1039/C5DT02714D] [PMID: 26609781]
[19]
Miodragović, D.U.; Quentzel, J.A.; Kurutz, J.W.; Stern, C.L.; Ahn, R.W.; Kandela, I.; Mazar, A.; O’Halloran, T.V. Robust structure and reactivity of aqueous arsenous acid-platinum(II) anticancer complexes. Angew. Chem. Int. Ed. Engl., 2013, 52(41), 10749-10752.
[http://dx.doi.org/10.1002/anie.201303251] [PMID: 24038962]
[20]
Marzo, T.; Navas, F.; Cirri, D.; Merlino, A.; Ferraro, G.; Messori, L.; Quiroga, A.G. Reactions of a tetranuclear Pt-thiosemicarbazone complex with model proteins. J. Inorg. Biochem., 2018, 181, 11-17.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.01.002] [PMID: 29353085]
[21]
Quiroga, A.G.; Pérez, J.M.; López-Solera, I.; Masaguer, J.R.; Luque, A.; Román, P.; Edwards, A.; Alonso, C.; Navarro-Ranninger, C. Novel tetranuclear orthometalated complexes of Pd(II) and Pt(II) derived from p-isopropylbenzaldehyde thiosemicarbazone with cytotoxic activity in cis-DDP resistant tumor cell lines. Interaction of these complexes with DNA. J. Med. Chem., 1998, 41(9), 1399-1408.
[http://dx.doi.org/10.1021/jm970520d] [PMID: 9554873]
[22]
Cucciolito, M.E.; D’Amora, A.; De Feo, G.; Ferraro, G.; Giorgio, A.; Petruk, G.; Monti, D.M.; Merlino, A.; Ruffo, F. Five-coordinate platinum(ii) compounds containing sugar ligands: Synthesis, characterization, cytotoxic activity, and interaction with biological macromolecules. Inorg. Chem., 2018, 57(6), 3133-3143.
[http://dx.doi.org/10.1021/acs.inorgchem.7b03118] [PMID: 29509011]
[23]
Ferraro, G.; Marzo, T.; Cucciolito, M.E.; Ruffo, F.; Messori, L.; Merlino, A. Reaction with proteins of a five-coordinate platinum(ii) compound. Inter. J. Mol. Sci., 2019, 20(3)
[http://dx.doi.org/10.3390/ijms20030520] [PMID: 30691130]
[24]
Casini, A.; Mastrobuoni, G.; Temperini, C.; Gabbiani, C.; Francese, S.; Moneti, G.; Supuran, C.T.; Scozzafava, A.; Messori, L. ESI mass spectrometry and X-ray diffraction studies of adducts between anticancer platinum drugs and hen egg white lysozyme. Chem. Commun. (Camb.), 2007, 2(2), 156-158.
[http://dx.doi.org/10.1039/B611122J] [PMID: 17180231]
[25]
Tanley, S.W.M.; Schreurs, A.M.M.; Kroon-Batenburg, L.M.J.; Helliwell, J.R. Room-temperature X-ray diffraction studies of cisplatin and carboplatin binding to His15 of HEWL after prolonged chemical exposure. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2012, 68(Pt 11), 1300-1306.
[http://dx.doi.org/10.1107/S1744309112042005] [PMID: 23143236]
[26]
Tanley, S.W.M.; Schreurs, A.M.M.; Kroon-Batenburg, L.M.J.; Meredith, J.; Prendergast, R.; Walsh, D.; Bryant, P.; Levy, C.; Helliwell, J.R. Structural studies of the effect that dimethyl sulfoxide (DMSO) has on cisplatin and carboplatin binding to histidine in a protein. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(Pt 5), 601-612.
[http://dx.doi.org/10.1107/S0907444912006907] [PMID: 22525758]
[27]
Tanley, S.W.M.; Diederichs, K.; Kroon-Batenburg, L.M.J.; Schreurs, A.M.M.; Helliwell, J.R. Experiences with archived raw diffraction images data: capturing cisplatin after chemical conversion of carboplatin in high salt conditions for a protein crystal. J. Synchrotron Radiat., 2013, 20(Pt 6), 880-883.
[http://dx.doi.org/10.1107/S0909049513020724] [PMID: 24121332]
[28]
Helliwell, J.R.; Tanley, S.W.M. The crystal structure analysis of the relative binding of cisplatin and carboplatin in a mixture with histidine in a protein studied at 100 and 300 K with repeated X-ray irradiation. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(Pt 1), 121-125.
[http://dx.doi.org/10.1107/S090744491204423X] [PMID: 23275170]
[29]
Tanley, S.W.M.; Helliwell, J.R. Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallized under sodium iodide conditions. Acta Crystallogr. F Struct. Biol. Commun., 2014, 70(Pt 9), 1127-1131.
[http://dx.doi.org/10.1107/S2053230X14013995] [PMID: 25195879]
[30]
Tanley, S.W.M.; Helliwell, J.R. Structural dynamics of cisplatin binding to histidine in a protein. Struct. Dyn., 2014, 1(3), 034701-034708.
[http://dx.doi.org/10.1063/1.4883975] [PMID: 26798779]
[31]
Ferraro, G.; Pica, A.; Russo Krauss, I.; Pane, F.; Amoresano, A.; Merlino, A. Effect of temperature on the interaction of cisplatin with the model protein hen egg white lysozyme. J. Biol. Inorg. Chem., 2016, 21(4), 433-442.
[http://dx.doi.org/10.1007/s00775-016-1352-0] [PMID: 27040953]
[32]
Tanley, S.W.M.; Diederichs, K.; Kroon-Batenburg, L.M.J.; Levy, C.; Schreurs, A.M.M.; Helliwell, J.R. Carboplatin binding to histidine. Acta Crystallog. Sect. F Struc. Biol. Commun., 2014, 70, 1135-1142.
[33]
Tanley, S.W.M.; Diederichs, K.; Kroon-Batenburg, L.M.J.; Levy, C.; Schreurs, A.M.M.; Helliwell, J.R. Response from Tanley et al. to Crystallography and chemistry should always go together: a cautionary tale of protein complexes with cisplatin and carboplatin. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(Pt 9), 1982-1983.
[http://dx.doi.org/10.1107/S1399004715014340] [PMID: 26327388]
[34]
Messori, L.; Marzo, T.; Merlino, A. The X-ray structure of the complex formed in the reaction between oxaliplatin and lysozyme. Chem. Commun. (Camb.), 2014, 50(61), 8360-8362.
[http://dx.doi.org/10.1039/c4cc02254h] [PMID: 24943911]
[35]
Marasco, D.; Messori, L.; Marzo, T.; Merlino, A. Oxaliplatin vs. cisplatin: competition experiments on their binding to lysozyme. Dalton Trans., 2015, 44(22), 10392-10398.
[http://dx.doi.org/10.1039/C5DT01279A] [PMID: 25974859]
[36]
Messori, L.; Marzo, T.; Gabbiani, C.; Valdes, A.A.; Quiroga, A.G.; Merlino, A. Peculiar features in the crystal structure of the adduct formed between cis-PtI2(NH3)2 and hen egg white lysozyme. Inorg. Chem., 2013, 52(24), 13827-13829.
[http://dx.doi.org/10.1021/ic402611m] [PMID: 24256441]
[37]
Marzo, T.; Pillozzi, S.; Hrabina, O.; Kasparkova, J.; Brabec, V.; Arcangeli, A.; Bartoli, G.; Severi, M.; Lunghi, A.; Totti, F.; Gabbiani, C.; Quiroga, A.G.; Messori, L. cis-Pt I2(NH3)2: a reappraisal. Dalton Trans., 2015, 44(33), 14896-14905.
[http://dx.doi.org/10.1039/C5DT01196E] [PMID: 26226326]
[38]
Mügge, C.; Marzo, T.; Massai, L.; Hildebrandt, J.; Ferraro, G.; Rivera-Fuentes, P.; Metzler-Nolte, N.; Merlino, A.; Messori, L.; Weigand, W. Platinum(ii) complexes with O,S bidentate ligands: Biophysical characterization, antiproliferative activity, and crystallographic evidence of protein binding. Inorg. Chem., 2015, 54(17), 8560-8570.
[http://dx.doi.org/10.1021/acs.inorgchem.5b01238] [PMID: 26280387]
[39]
Messori, L.; Marzo, T.; Michelucci, E.; Russo Krauss, I.; Navarro-Ranninger, C.; Quiroga, A.G.; Merlino, A. Interactions between an-ticancer trans-platinum compounds and proteins: crystal structures and ESI-MS spectra of two protein adducts of trans-(dimethylamino)(methylamino)dichloridoplatinum(II). Inorg. Chem., 2014, 53(15), 7806-7808.
[http://dx.doi.org/10.1021/ic5012583] [PMID: 25025479]
[40]
Florio, D.; Malfitano, A.M.; Di Somma, S.; Mügge, C.; Weigand, W.; Ferraro, G.; Iacobucci, I.; Monti, M.; Morelli, G.; Merlino, A.; Marasco, D. Platinum(ii) O,S complexes inhibit the aggregation of amyloid model systems. Int. J. Mol. Sci., 2019, 20(4), 829.
[http://dx.doi.org/10.3390/ijms20040829] [PMID: 30769904]
[41]
Barnham, K.J.; Kenche, V.B.; Ciccotosto, G.D.; Smith, D.P.; Tew, D.J.; Liu, X.; Perez, K.; Cranston, G.A.; Johanssen, T.J.; Volitakis, I.; Bush, A.I.; Masters, C.L.; White, A.R.; Smith, J.P.; Cherny, R.A.; Cappai, R. Platinum-based inhibitors of amyloid-beta as therapeutic agents for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2008, 105(19), 6813-6818.
[http://dx.doi.org/10.1073/pnas.0800712105] [PMID: 18463291]
[42]
Ma, G.; Wang, E.; Wei, H.; Wei, K.; Zhu, P.; Liu, Y. PtCl2(phen) disrupts the metal ions binding to amyloid-β peptide. Metallomics, 2013, 5(7), 879-887.
[http://dx.doi.org/10.1039/c3mt20262c] [PMID: 23689733]
[43]
Suh, J.M.; Kim, G.; Kang, J.; Lim, M.H. Strategies employing transition metal complexes to modulate amyloid-beta aggregation. Inorg. Chem., 2019, 58(1), 8-17.
[http://dx.doi.org/10.1021/acs.inorgchem.8b02813] [PMID: 30556393]
[44]
Cantini, F.; Calderone, V.; Di Cesare Mannelli, L.; Korsak, M.; Gonnelli, L.; Francesconi, O.; Ghelardini, C.; Banci, L.; Nativi, C. Interaction of half oxa-/half cis-platin complex with human superoxide dismutase and induced reduction of neurotoxicity. ACS Med. Chem. Lett., 2018, 9(11), 1094-1098.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00199] [PMID: 30429951]
[45]
Banci, L.; Bertini, I.; Blaževitš, O.; Calderone, V.; Cantini, F.; Mao, J.; Trapananti, A.; Vieru, M.; Amori, I.; Cozzolino, M.; Carrì, M.T. Interaction of cisplatin with human superoxide dismutase. J. Am. Chem. Soc., 2012, 134(16), 7009-7014.
[http://dx.doi.org/10.1021/ja211591n] [PMID: 22471402]
[46]
Ferraro, G.; Marzo, T.; Infrasca, T.; Cilibrizzi, A.; Vilar, R.; Messori, L.; Merlino, A. A case of extensive protein platination: the reaction of lysozyme with a Pt(ii)-terpyridine complex. Dalton Trans., 2018, 47(26), 8716-8723.
[http://dx.doi.org/10.1039/C8DT01254G] [PMID: 29904761]
[47]
Suntharalingam, K.; Mendoza, O.; Duarte, A.A.; Mann, D.J.; Vilar, R. A platinum complex that binds non-covalently to DNA and induces cell death via a different mechanism than cisplatin. Metallomics, 2013, 5(5), 514-523.
[http://dx.doi.org/10.1039/c3mt20252f] [PMID: 23487034]
[48]
Ferraro, G.; Mansour, A.M.; Merlino, A. Exploring the interactions between model proteins and Pd(ii) or Pt(ii) compounds bearing charged N,N-pyridylbenzimidazole bidentate ligands by X-ray crystallography. Dalton Trans., 2018, 47(30), 10130-10138.
[http://dx.doi.org/10.1039/C8DT01663A] [PMID: 30004541]
[49]
Russo Krauss, I.; Ferraro, G.; Merlino, A. Cisplatin-protein interactions: Unexpected drug binding to n-terminal amine and lysine side chains. Inorg. Chem., 2016, 55(16), 7814-7816.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01234] [PMID: 27482735]
[50]
Lo, Y.C.; Su, W.C.; Ko, T.P.; Wang, N.C.; Wang, A.H.J. Terpyridine platinum(II) complexes inhibit cysteine proteases by binding to active-site cysteine. J. Biomol. Struct. Dyn., 2011, 29(2), 267-282.
[http://dx.doi.org/10.1080/073911011010524993] [PMID: 21875148]
[51]
Lo, Y.C.; Ko, T.P.; Su, W.C.; Su, T.L.; Wang, A.H. Terpyridine-platinum(II) complexes are effective inhibitors of mammalian topoisomerases and human thioredoxin reductase 1. J. Inorg. Biochem., 2009, 103(7), 1082-1092.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.05.006] [PMID: 19525010]
[52]
Solomatina, A.I.; Chelushkin, P.S.; Abakumova, T.O.; Zhemkov, V.A.; Kim, M.; Bezprozvanny, I.; Gurzhiy, V.V.; Melnikov, A.S.; Anufrikov, Y.A.; Koshevoy, I.O.; Su, S.H.; Chou, P.T.; Tunik, S.P. Reactions of cyclometalated platinum(II) [Pt(NC)(Pr3)Cl] complexes with imidazole and imidazole-containing biomolecules: Fine-tuning of reactivity and photophysical properties via ligand design. Inorg. Chem., 2019, 58(1), 204-217.
[http://dx.doi.org/10.1021/acs.inorgchem.8b02204] [PMID: 30376305]
[53]
Mansour, A.M.; Shehab, O.R. Lysozyme and DNA binding affinity of Pd(ii) and Pt(ii) complexes bearing charged N,N-pyridylbenzimidazole bidentate ligands. Dalton Trans., 2018, 47(10), 3459-3468.
[http://dx.doi.org/10.1039/C7DT04347C] [PMID: 29431787]
[54]
Coulter, C.V.; Kelso, G.F.; Lin, T.K.; Smith, R.A.; Murphy, M.P. Mitochondrially targeted antioxidants and thiol reagents. Free Radic. Biol. Med., 2000, 28(10), 1547-1554.
[http://dx.doi.org/10.1016/S0891-5849(00)00255-0] [PMID: 10927180]
[55]
Ferraro, G.; Giorgio, A.; Mansour, A.M.; Merlino, A. Protein-mediated disproportionation of Au(i): insights from the structures of adducts of Au(iii) compounds bearing N,N-pyridylbenzimidazole derivatives with lysozyme. Dalton Trans., 2019, 48(37), 14027-14035.
[http://dx.doi.org/10.1039/C9DT02729G] [PMID: 31490509]
[56]
Mansour, A.M.; Shehab, O.R.; Radacki, K. Role of sulfonate appendage in the protein binding affinity of half‐sandwich ruthenium(ii)(η6‐p‐cym) complexes. Eur. J. Inorg. Chem., 2020, 2020(3), 299-307.
[http://dx.doi.org/10.1002/ejic.201901089]
[57]
Messori, L.; Marzo, T.; Merlino, A. Interactions of carboplatin and oxaliplatin with proteins: Insights from X-ray structures and mass spectrometry studies of their ribonuclease A adducts. J. Inorg. Biochem., 2015, 153, 136-142.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.07.011] [PMID: 26239545]
[58]
Messori, L.; Merlino, A. Cisplatin binding to proteins: molecular structure of the ribonuclease a adduct. Inorg. Chem., 2014, 53(8), 3929-3931.
[http://dx.doi.org/10.1021/ic500360f] [PMID: 24694179]
[59]
Picone, D.; Donnarumma, F.; Ferraro, G.; Russo Krauss, I.; Fagagnini, A.; Gotte, G.; Merlino, A. Platinated oligomers of bovine pancreatic ribonuclease: Structure and stability. J. Inorg. Biochem., 2015, 146, 37-43.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.02.011] [PMID: 25756333]
[60]
Picone, D.; Donnarumma, F.; Ferraro, G.; Gotte, G.; Fagagnini, A.; Butera, G.; Donadelli, M.; Merlino, A. A comparison study on RNase A oligomerization induced by cisplatin, carboplatin and oxaliplatin. J. Inorg. Biochem., 2017, 173, 105-112.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.05.005] [PMID: 28511060]
[61]
Casini, A.; Gabbiani, C.; Mastrobuoni, G.; Pellicani, R.Z.; Intini, F.P.; Arnesano, F.; Natile, G.; Moneti, G.; Francese, S.; Messori, L. Insights into the molecular mechanisms of protein platination from a case study: the reaction of anticancer platinum(II) iminoethers with horse heart cytochrome c. Biochemistry, 2007, 46(43), 12220-12230.
[http://dx.doi.org/10.1021/bi701516q] [PMID: 17924668]
[62]
Casini, A.; Gabbiani, C.; Mastrobuoni, G.; Messori, L.; Moneti, G.; Pieraccini, G. Exploring metallodrug-protein interactions by ESI mass spectrometry: the reaction of anticancer platinum drugs with horse heart cytochrome c. ChemMedChem, 2006, 1(4), 413-417.
[http://dx.doi.org/10.1002/cmdc.200500079] [PMID: 16892376]
[63]
Zhang, N.; Du, Y.; Cui, M.; Xing, J.; Liu, Z.; Liu, S. Probing the interaction of cisplatin with cytochrome C by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem., 2012, 84(14), 6206-6212.
[http://dx.doi.org/10.1021/ac301122w] [PMID: 22746312]
[64]
Gabbiani, C.; Casini, A.; Mastrobuoni, G.; Kirshenbaum, N.; Moshel, O.; Pieraccini, G.; Moneti, G.; Messori, L.; Gibson, D. Peculiar mechanistic and structural features of the carboplatin-cytochrome c system revealed by ESI-MS analysis. J. Biol. Inorg. Chem., 2008, 13(5), 755-764.
[http://dx.doi.org/10.1007/s00775-008-0361-z] [PMID: 18350322]
[65]
Yang, G.; Miao, R.; Jin, C.; Mei, Y.; Tang, H.; Hong, J.; Guo, Z.; Zhu, L. Determination of binding sites in carboplatin-bound cytochrome c using electrospray ionization mass spectrometry and tandem mass spectrometry. J. Mass Spectrom., 2005, 40(8), 1005-1016.
[http://dx.doi.org/10.1002/jms.875] [PMID: 15934026]
[66]
Mügge, C.; Michelucci, E.; Boscaro, F.; Gabbiani, C.; Messori, L.; Weigand, W. Reactions of metallodrugs with proteins: selective binding of phosphane-based platinum(II) dichlorides to horse heart cytochrome c probed by ESI MS coupled to enzymatic cleavage. Metallomics, 2011, 3(10), 987-990.
[http://dx.doi.org/10.1039/C1MT00069A] [PMID: 21947338]
[67]
Ferraro, G.; Messori, L.; Merlino, A. The X-ray structure of the primary adducts formed in the reaction between cisplatin and cytochrome c. Chem. Commun. (Camb.), 2015, 51(13), 2559-2561.
[http://dx.doi.org/10.1039/C4CC09056J] [PMID: 25567806]
[68]
Moreno-Gordaliza, E.; Cañas, B.; Palacios, M.A.; Gómez-Gómez, M.M. Characterization of Pt-protein complexes by nHPLC-ESI-LTQ MS/MS using a gel-based bottom-up approach. Talanta, 2012, 88, 599-608.
[http://dx.doi.org/10.1016/j.talanta.2011.11.044] [PMID: 22265547]
[69]
Ferraro, G.; Massai, L.; Messori, L.; Merlino, A. Cisplatin binding to human serum albumin: a structural study. Chem. Commun. (Camb.), 2015, 51(46), 9436-9439.
[http://dx.doi.org/10.1039/C5CC01751C] [PMID: 25873085]
[70]
Ivanov, A.I.; Christodoulou, J.; Parkinson, J.A.; Barnham, K.J.; Tucker, A.; Woodrow, J.; Sadler, P.J. Cisplatin binding sites on human albumin. J. Biol. Chem., 1998, 273(24), 14721-14730.
[http://dx.doi.org/10.1074/jbc.273.24.14721] [PMID: 9614070]
[71]
Huličiak, M.; Vacek, J.; Sebela, M.; Orolinová, E.; Znaleziona, J.; Havlíková, M.; Kubala, M. Covalent binding of cisplatin impairs the function of Na(+)/K(+)-ATPase by binding to its cytoplasmic part. Biochem. Pharmacol., 2012, 83(11), 1507-1513.
[http://dx.doi.org/10.1016/j.bcp.2012.02.015] [PMID: 22394404]
[72]
Huliciak, M.; Reinhard, L.; Laursen, M.; Fedosova, N.; Nissen, P.; Kubala, M. Crystals of na(+)/k(+)-atpase with bound cisplatin. Biochem. Pharmacol., 2014, 92(3), 494-498.
[http://dx.doi.org/10.1016/j.bcp.2014.08.029] [PMID: 25199459]
[73]
De Luca, A.; Parker, L.J.; Ang, W.H.; Rodolfo, C.; Gabbarini, V.; Hancock, N.C.; Palone, F.; Mazzetti, A.P.; Menin, L.; Morton, C.J.; Parker, M.W.; Lo Bello, M.; Dyson, P.J. A structure-based mechanism of cisplatin resistance mediated by glutathione transferase P1-1. Proc. Natl. Acad. Sci. USA, 2019, 116(28), 13943-13951.
[http://dx.doi.org/10.1073/pnas.1903297116] [PMID: 31221747]
[74]
Ferraro, G.; Ciambellotti, S.; Messori, L.; Merlino, A. Cisplatin binding sites in human h-chain ferritin. Inorg. Chem., 2017, 56(15), 9064-9070.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01072] [PMID: 28737381]
[75]
Pontillo, N.; Pane, F.; Messori, L.; Amoresano, A.; Merlino, A. Cisplatin encapsulation within a ferritin nanocage: a high-resolution crystallographic study. Chem. Commun. (Camb.), 2016, 52(22), 4136-4139.
[http://dx.doi.org/10.1039/C5CC10365G] [PMID: 26888424]
[76]
Annunziata, A.; Cucciolito, M.E.; Esposito, R.; Imbimbo, P.; Petruk, G.; Ferraro, G.; Pinto, V.; Tuzi, A.; Monti, D.M.; Merlino, A.; Ruffo, F. A highly efficient and selective antitumor agent based on a glucoconjugated carbene platinum(ii) complex. Dalton Trans., 2019, 48(22), 7794-7800.
[http://dx.doi.org/10.1039/C9DT01614G] [PMID: 31069352]
[77]
Van Niekerk, A.; Chellan, P.; Mapolie, S.F. Heterometallic multinuclear complexes as anti-cancer agents-an overview of recent de-velopments. Eur. J. Inorg. Chem., 2019, 2019(30), 3432-3455.
[http://dx.doi.org/10.1002/ejic.201900375]
[78]
Miodragović, Đ.; Merlino, A.; Swindell, E.P.; Bogachkov, A.; Ahn, R.W.; Abuhadba, S.; Ferraro, G.; Marzo, T.; Mazar, A.P.; Messori, L.; O’Halloran, T.V. Arsenoplatin-1 is a dual pharmacophore anticancer agent. J. Am. Chem. Soc., 2019, 141(16), 6453-6457.
[http://dx.doi.org/10.1021/jacs.8b13681] [PMID: 30943017]
[79]
Maham, A.; Tang, Z.; Wu, H.; Wang, J.; Lin, Y. Protein-based nanomedicine platforms for drug delivery. Small, 2009, 5(15), 1706-1721.
[http://dx.doi.org/10.1002/smll.200801602] [PMID: 19572330]
[80]
He, D.; Marles-Wright, J. Ferritin family proteins and their use in bionanotechnology. N. Biotechnol., 2015, 32(6), 651-657.
[http://dx.doi.org/10.1016/j.nbt.2014.12.006] [PMID: 25573765]
[81]
Monti, D.M.; Ferraro, G.; Merlino, A. Ferritin-based anticancer metallodrug delivery: Crystallographic, analytical and cytotoxicity studies. Nanomedicine (Lond.), 2019, 20101997
[http://dx.doi.org/10.1016/j.nano.2019.04.001] [PMID: 31028889]
[82]
Yang, Z.; Wang, X.; Diao, H.; Zhang, J.; Li, H.; Sun, H.; Guo, Z. Encapsulation of platinum anticancer drugs by apoferritin. Chem. Commun. (Camb.), 2007, 33(33), 3453-3455.
[http://dx.doi.org/10.1039/b705326f] [PMID: 17700879]
[83]
Pontillo, N.; Ferraro, G.; Helliwell, J.R.; Amoresano, A.; Merlino, A. X-ray structure of the carboplatin-loaded apo-ferritin nanocage. ACS Med. Chem. Lett., 2017, 8(4), 433-437.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00025] [PMID: 28435532]
[84]
Ferraro, G.; Pica, A.; Petruk, G.; Pane, F.; Amoresano, A.; Cilibrizzi, A.; Vilar, R.; Monti, D.M.; Merlino, A. Preparation, structure, cytotoxicity and mechanism of action of ferritin-Pt(II) terpyridine compound nanocomposites. Nanomedicine (Lond.), 2018, 13(23), 2995-3007.
[http://dx.doi.org/10.2217/nnm-2018-0259] [PMID: 30501559]
[85]
Ferraro, G.; Petruk, G.; Maiore, L.; Pane, F.; Amoresano, A.; Cinellu, M.A.; Monti, D.M.; Merlino, A. Caged noble metals: Encapsulation of a cytotoxic platinum(II)-gold(I) compound within the ferritin nanocage. Int. J. Biol. Macromol., 2018, 115, 1116-1121.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.142] [PMID: 29709536]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2021
Published on: 24 June, 2020
Page: [6 - 27]
Pages: 22
DOI: 10.2174/1568026620666200624162213
Price: $65

Article Metrics

PDF: 36
HTML: 2