Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity

Author(s): Xinjia Yan, Jing Wen, Lin Zhou, Lei Fan, Xiaobo Wang* and Zhi Xu*

Volume 20, Issue 21, 2020

Page: [1916 - 1937] Pages: 22

DOI: 10.2174/1568026620666200624161151

Price: $65

Abstract

Cancer, which has been cursed for human beings for long time is considered as one of the leading causes of morbidity and mortality across the world. In spite of different types of treatments available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently accessible anticancer agents have developed multidrug resistance along with fatal adverse effects. Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development of novel anticancer agents. This review will provide a comprehensive overview of the recent advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus on the chemical structures, anticancer activity, and mechanisms of action.

Keywords: 1, 3-oxazole, Anticancer, Drug-resistant, Mechanisms of action, Drug-susceptible, Heterocycles.

Graphical Abstract
[1]
Vineis, P.; Wild, C.P. Global cancer patterns: causes and prevention. Lancet, 2014, 383(9916), 549-557.
[http://dx.doi.org/10.1016/S0140-6736(13)62224-2] [PMID: 24351322]
[2]
Rojas, C.; Casablanca, Y. Chemotherapy, biologic, and immunotherapy breakthroughs in cancer care. Obstet. Gynecol. Clin. North Am., 2019, 46(1), 137-154.
[http://dx.doi.org/10.1016/j.ogc.2018.09.009] [PMID: 30683260]
[3]
International Agency for Research on Cancer. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018, 2018.Available from: . https://www.iarc.fr/featured-news/latest-global-cancer-data-cancer-burden-rises-to-18-1-million-new-cases-and-9-6-million-cancer-deaths-in-2018/
[5]
Dickens, E.; Ahmed, S. Principles of cancer treatment by chemotherapy. Surgery, 2018, 36(3), 134-148.
[6]
Siegel, R.L.; Jemal, A.; Wender, R.C.; Gansler, T.; Ma, J.; Brawley, O.W. An assessment of progress in cancer control. CA Cancer J. Clin., 2018, 68(5), 329-339.
[http://dx.doi.org/10.3322/caac.21460] [PMID: 30191964]
[7]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[8]
Moreau-Bachelard, C.; Coquan, E.; Le Tourneau, C. Imputability of adverse events to anticancer drugs. N. Engl. J. Med., 2019, 380(19), 1873-1874.
[http://dx.doi.org/10.1056/NEJMc1900053] [PMID: 31067382]
[9]
Gomstyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48, 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[10]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[11]
Kaur, R.; Palta, K.; Kumar, M.; Bhargava, M.; Dahiya, L. Therapeutic potential of oxazole scaffold: A patent review (2006-2017). Expert Opin. Ther. Pat., 2018, 28(11), 783-812.
[http://dx.doi.org/10.1080/13543776.2018.1526280]]
[12]
Zhou, H.; Cheng, J.Q.; Wang, Z.S.; Chen, F.H.; Liu, X.H. Oxazole: A promising building block for the development of potent antitumor agents. Curr. Top. Med. Chem., 2016, 16(30), 3582-3589.
[http://dx.doi.org/10.2174/1568026616666160414122521] [PMID: 27086791]
[13]
Sharma, V.; Bhatia, P.; Alam, O.; Javed Naim, M.; Nawaz, F.; Ahmad Sheikh, A.; Jha, M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008-2019). Bioorg. Chem., 2019, 89103007
[http://dx.doi.org/10.1016/j.bioorg.2019.103007] [PMID: 31132600]
[14]
Tadesse, S.; Caldon, E.C.; Tilley, W.; Wang, S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update. J. Med. Chem., 2019, 62(9), 4233-4251.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01469] [PMID: 30543440]
[15]
Farag, A.K.; Roh, E.J. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med. Res. Rev., 2019, 39(1), 349-385.
[http://dx.doi.org/10.1002/med.21518] [PMID: 29949198]
[16]
Bao, J.; Liu, H.; Zhi, Y.; Yang, W.; Zhang, J.; Lu, T.; Wang, Y.; Lu, S. Discovery of benzo[d]oxazole derivatives as the potent type-I FLT3-ITD inhibitors. Bioorg. Chem., 2020, 94103248
[http://dx.doi.org/10.1016/j.bioorg.2019.103248] [PMID: 31548092]
[17]
Rodriquez, M.; Aquino, M.; Bruno, I.; De Martino, G.; Taddei, M.; Gomez-Paloma, L. Chemistry and biology of chromatin remodeling agents: state of art and future perspectives of HDAC inhibitors. Curr. Med. Chem., 2006, 13(10), 1119-1139.
[http://dx.doi.org/10.2174/092986706776360905] [PMID: 16719774]
[18]
Dayam, R.; Grande, F.; Al-Mawsawi, L.Q.; Neamati, N. Recent advances in the design and discovery of small-molecule therapeutics targeting HER2/neu. Expert Opin. Ther. Pat., 2007, 17(1), 83-103.
[19]
Li, W.; Sun, H.; Xu, S.; Zhu, Z.; Xu, J. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med. Chem., 2017, 9(15), 1765-1794.
[http://dx.doi.org/10.4155/fmc-2017-0100] [PMID: 28929799]
[20]
Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015-2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142, 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033] [PMID: 28760313]
[21]
Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem., 2019, 11(15), 1929-1952.
[http://dx.doi.org/10.4155/fmc-2018-0416] [PMID: 31313595]
[22]
de Siqueira, L.R.P.; de Moraes Gomes, P.A.T.; de Lima Ferreira, L.P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem., 2019, 170, 237-260.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.024] [PMID: 30904782]
[23]
El-Helby, A.A.; Sakr, H.; Eissa, I.H.; Abulkhair, H.; Al-Karmalawy, A.A.; El-Adl, K. Design, synthesis, molecular docking, and anticancer activity of benzoxazole derivatives as VEGFR-2 inhibitors. Arch. Pharm. (Weinheim), 2019, 352(10)e1900113
[http://dx.doi.org/10.1002/ardp.201900113] [PMID: 31448458]
[24]
El-Arab, E.E.; El-Said, A.I.; Amine, M.S.; Moharram, H.H. Synthesis and antitumor activity evaluation of new 2-(4-aminophenyl)benzothiazole/oxazole/imidazole derivatives. Egypt. J. Chem., 2016, 59(5), 967-984.
[25]
Pinninti, S.K.; Parimi, U. Synthesis and biological evaluation of amide derivatives of thiazoles as anticancer agents. Int. Res. Pharm., 2018, 9, 89-93.
[http://dx.doi.org/10.7897/2230-8407.0910232]
[26]
Lamie, P.F.; Philoppes, J.N. Design and synthesis of three series of novel antitumor-azo derivatives. Med. Chem. Res., 2017, 26, 1228-1240.
[http://dx.doi.org/10.1007/s00044-017-1839-4]
[27]
Urda, C. Fernandez, Rodriguez, J.; Perez, M.; Jimenez, C.; Cuevas, C. Bistratamides M and N, oxazole-thiazole containing cyclic hexapeptides isolated from Lissoclinum bistratum interaction of Zinc (II) with bistratamide K. Mar. Drugs, 2017, 15, 209-219.
[http://dx.doi.org/10.3390/md15070209]
[28]
Zhou, J.; Jin, J.; Zhang, Y.; Yin, Y.; Chen, X.; Xu, B. Synthesis and antiproliferative evaluation of novel benzoimidazole-contained oxazole-bridged analogs of combretastatin A-4. Eur. J. Med. Chem., 2013, 68, 222-232.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.006] [PMID: 23981529]
[29]
Lamie, P.F.; Philoppes, J.N.; Rárová, L. Design, synthesis, and biological evaluation of novel 1,2-diaryl-4-substituted-benzylidene-5(4H)-imidazolone derivatives as cytotoxic agents and COX-2/LOX inhibitors. Arch. Pharm. (Weinheim), 2018, 351(3-4)e1700311
[http://dx.doi.org/10.1002/ardp.201700311] [PMID: 29400411]
[30]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183111700
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[31]
Kaur, P.; Chawla, A. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: A review. Int. Res. J. Pharm., 2017, 8, 10-29.
[http://dx.doi.org/10.7897/2230-8407.087112]
[32]
Hedidi, M.; Bentabed-Ababsa, G.; Derdour, A.; Roisnel, T.; Dorcet, V.; Chevallier, F.; Picot, L.; Thiéry, V.; Mongin, F. Synthesis of C,N′-linked bis-heterocycles using a deprotometalation-iodination-N-arylation sequence and evaluation of their antiproliferative activity in melanoma cells. Bioorg. Med. Chem., 2014, 22(13), 3498-3507.
[http://dx.doi.org/10.1016/j.bmc.2014.04.028] [PMID: 24831678]
[33]
Li, Z.H.; Zhang, X.B.; Han, X.Q.; Feng, C.R.; Wang, F.S.; Wang, P.G.; Shen, J.; Shi, Y.K. Antitumor effects of a novel histone deacetylase inhibitor NK-HDAC-1 on breast cancer. Oncol. Rep., 2013, 30(1), 499-505.
[http://dx.doi.org/10.3892/or.2013.2434] [PMID: 23624828]
[34]
Sun, S.; Zhang, Z.; Pokrovskaia, N.; Chowdhury, S.; Jia, Q.; Chang, E.; Khakh, K.; Kwan, R.; McLaren, D.G.; Radomski, C.C.; Ratkay, L.G.; Fu, J.; Dales, N.A.; Winther, M.D. Discovery of triazolone derivatives as novel, potent stearoyl-CoA desaturase-1 (SCD1) inhibitors. Bioorg. Med. Chem., 2015, 23(3), 455-465.
[http://dx.doi.org/10.1016/j.bmc.2014.12.014] [PMID: 25555732]
[35]
El-Nezhawy, A.O.H.; Eweas, A.F.; Radwan, M.A.A.; El-Naggar, T.B.A. Synthesis and molecular docking studies of novel 2-phenyl-4-substituted oxazole derivatives as potential anti-cancer agents. J. Heterocycl. Chem., 2016, 53, 271-279.
[http://dx.doi.org/10.1002/jhet.2422]
[36]
Abu-Bakr, S.M.; Roaiah, H.M.; Fawzy, N.M.; Omar, M.A.; Youns, M.M. Design, synthesis and antitumor activities of some novel benzoxazole carbohydrazide derivatives. Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 68-78.
[37]
Murty, M.S.R.; Rao, B.R.; Katiki, M.R.; Nath, L.R.; Anto, R.J. Synthesis of piperazinyl benzothiazole/benzoxazole derivatives coupled with 1,3,4-oxadiazole-2-thiol: Novel hybrid heterocycles as anticancer agents. Med. Chem. Res., 2013, 22, 4980-4991.
[http://dx.doi.org/10.1007/s00044-013-0510-y]
[38]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89103021
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[39]
Garg, V.; Maurya, R.K.; Thanikachalam, P.V.; Bansal, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem., 2019, 180, 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[40]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[41]
Kaur, K.; Jaitak, V. Recent development in indole derivatives as anticancer agents for breast cancer. Anticancer. Agents Med. Chem., 2019, 19(8), 962-983.
[http://dx.doi.org/10.2174/1871520619666190312125602] [PMID: 30864529]
[42]
Patil, S.A.; Patil, R.; Miller, D.D. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents. Future Med. Chem., 2012, 4(16), 2085-2115.
[http://dx.doi.org/10.4155/fmc.12.141] [PMID: 23157240]
[43]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183111691
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[44]
Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin-azole hybrids and their anticancer activities. Arch. Pharm. (Weinheim), 2020, 353(1)e1900272
[http://dx.doi.org/10.1002/ardp.201900272] [PMID: 31691360]
[45]
Li, Y.; Woster, P.M. Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group. MedChemComm, 2015, 6(4), 613-618.
[http://dx.doi.org/10.1039/C4MD00401A] [PMID: 26005563]
[46]
Liu, H.M.; Suo, F.Z.; Li, X.B.; You, Y.H.; Lv, C.T.; Zheng, C.X.; Zhang, G.C.; Liu, Y.J.; Kang, W.T.; Zheng, Y.C.; Xu, H.W. Discovery and synthesis of novel indole derivatives-containing 3-methylenedihydrofuran-2(3H)-one as irreversible LSD1 inhibitors. Eur. J. Med. Chem., 2019, 175, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.065] [PMID: 31096156]
[47]
Schmitt, C.; Kail, D.; Mariano, M.; Empting, M.; Weber, N.; Paul, T.; Hartmann, R.W.; Engel, M. Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors. PLoS One, 2014, 9(3)e87851
[http://dx.doi.org/10.1371/journal.pone.0087851] [PMID: 24676346]
[48]
Qin, M.; Tian, Y.; Sun, X.; Yu, S.; Xia, J.; Gong, P.; Zhang, H.; Zhao, Y. Novel methyl indolinone-6-carboxylates containing an indole moiety as angiokinase inhibitors. Eur. J. Med. Chem., 2017, 139, 492-502.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.031] [PMID: 28826084]
[49]
El-Nakkady, S.S.; Hanna, M.M.; Roaiah, H.M.; Ghannam, I.A.Y. Synthesis, molecular docking study and antitumor activity of novel 2-phenylindole derivatives. Eur. J. Med. Chem., 2012, 47(1), 387-398.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.007] [PMID: 22119129]
[50]
Swamy, P.V.; Kumar, V.K.; Raju, R.R.; Reddy, R.V.; Chatterjee, A.; Kiran, G.; Sridhar, G. Amide derivatives of 4-azaindole: Design, synthesis, and EGFR targeting anticancer agents. Synth. Commun., 2020, 50, 71-84.
[http://dx.doi.org/10.1080/00397911.2019.1683206]
[51]
Gudipati, R.; Anreddy, R.N.R.; Manda, S. Synthesis, anticancer and antioxidant activities of some novel N-(benzo[d]oxazol-2-yl)-2-(7- or 5-substituted-2-oxoindolin-3-ylidene) hydrazinecarboxamide derivatives. J. Enzyme Inhib. Med. Chem., 2011, 26(6), 813-818.
[http://dx.doi.org/10.3109/14756366.2011.556630] [PMID: 21476831]
[52]
Wang, L.; Mei, X.; Wang, C.; Zhu, W. Biomimetic semi-synthesis of fradcarbazole A and its analogues. Tetrahedron, 2015, 71, 7990-7997.
[http://dx.doi.org/10.1016/j.tet.2015.08.065]
[53]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[54]
Srikrishna, D.; Godugu, C.; Dubey, P.K. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 2018, 18(2), 113-141.
[http://dx.doi.org/10.2174/1389557516666160801094919] [PMID: 27488585]
[55]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[56]
Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181111587
[http://dx.doi.org/10.1016/j.ejmech.2019.111587] [PMID: 31404864]
[57]
Kakkar, S.; Kumar, S.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A.; Narasimhan, B. Design, synthesis and biological evaluation of 3-(2-aminooxazol-5-yl)-2H-chromen-2-one derivatives. Chem. Cent. J., 2018, 12, 1-13.
[http://dx.doi.org/10.1186/s13065-018-0499-x]]
[58]
Yamaguchi, Y.; Nishizono, N.; Kobayashi, D.; Yoshimura, T.; Wada, K.; Oda, K. Evaluation of synthesized coumarin derivatives on aromatase inhibitory activity. Bioorg. Med. Chem. Lett., 2017, 27(12), 2645-2649.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.062] [PMID: 28512028]
[59]
Wu, L.T.; Jiang, Z.; Shen, J.J.; Yi, H.; Zhan, Y.C.; Sha, M.Q.; Wang, Z.; Xue, S.T.; Li, Z.R. Design, synthesis and biological evaluation of novel benzimidazole-2-substituted phenyl or pyridine propyl ketene derivatives as antitumour agents. Eur. J. Med. Chem., 2016, 114, 328-336.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.029] [PMID: 27017265]
[60]
Rathi, A.K.; Syed, R.; Shin, H.S.; Patel, R.V. Piperazine derivatives for therapeutic use: A patent review (2010-present). Expert Opin. Ther. Pat., 2016, 26(7), 777-797.
[61]
Al-Ghorbani, M.; Bushra, B.A.; Zabiulla, S.; Mamatha, S.V.; Khanum, S.A. Piperazine and morpholine: Synthetic preview and pharmaceutical applications. J. Chem. Pharm. Res., 2015, 7(5), 281-301.
[http://dx.doi.org/10.5958/0974-360X.2015.00100.6]
[62]
Choi, M.J.; No, E.S.; Thorat, D.A.; Jang, J.W.; Yang, H.; Lee, J.; Choo, H.; Kim, S.J.; Lee, C.S.; Ko, S.Y.; Lee, J.; Nam, G.; Pae, A.N. Synthesis and biological evaluation of aryloxazole derivatives as antimitotic and vascular-disrupting agents for cancer therapy. J. Med. Chem., 2013, 56(22), 9008-9018.
[http://dx.doi.org/10.1021/jm400840p] [PMID: 24160376]
[63]
Sen, M.; Johnston, P.A.; Pollock, N.I.; DeGrave, K.; Joyce, S.C.; Freilino, M.L.; Hua, Y.; Camarco, D.P.; Close, D.A.; Huryn, D.M.; Wipf, P.; Grandis, J.R. Mechanism of action of selective inhibitors of IL-6 induced STAT3 pathway in head and neck cancer cell lines. J. Chem. Biol., 2017, 10(3), 129-141.
[http://dx.doi.org/10.1007/s12154-017-0169-9] [PMID: 28684999]
[64]
Yang, H.; Yan, R.; Jiang, Y.; Yang, Z.; Zhang, X.; Zhou, M.; Wu, X.; Zhang, T.; Zhang, J. Design, synthesis and biological evaluation of 2-amino-4-(1,2,4-triazol)pyridine derivatives as potent EGFR inhibitors to overcome TKI-resistance. Eur. J. Med. Chem., 2020, 187111966
[http://dx.doi.org/10.1016/j.ejmech.2019.111966] [PMID: 31869655]
[65]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[http://dx.doi.org/10.2174/1389557516666160923125801] [PMID: 27670581]
[66]
Wei, M.; Peng, X.; Xing, L.; Dai, Y.; Huang, R.; Geng, M.; Zhang, A.; Ai, J.; Song, Z. Design, synthesis and biological evaluation of a series of novel 2-benzamide-4-(6-oxy-N-methyl-1-naphthamide)-pyridine derivatives as potent fibroblast growth factor receptor (FGFR) inhibitors. Eur. J. Med. Chem., 2018, 154, 9-28.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.005] [PMID: 29775937]
[67]
Lintnerová, L.; García-Caballero, M.; Gregáň, F.; Melicherčík, M.; Quesada, A.R.; Dobiaš, J.; Lác, J.; Sališová, M.; Boháč, A. A development of chimeric VEGFR2 TK inhibitor based on two ligand conformers from PDB: 1Y6A complex--medicinal chemistry consequences of a TKs analysis. Eur. J. Med. Chem., 2014, 72, 146-159.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.023] [PMID: 24368209]
[68]
Li, Y.B.; Yan, X.; Li, R.D.; Liu, P.; Sun, S.Q.; Wang, X.; Cui, J.R.; Zhou, D.M.; Ge, Z.M.; Li, R.T. Discovery of novel heteroarylmethylcarbamodithioates as potent anticancer agents: Synthesis, structure-activity relationship analysis and biological evaluation. Eur. J. Med. Chem., 2016, 112, 217-230.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.015] [PMID: 26900655]
[69]
Shaw, A.Y.; Henderson, M.C.; Flynn, G.; Samulitis, B.; Han, H.; Stratton, S.P.; Chow, H.H.S.; Hurley, L.H.; Dorr, R.T. Characterization of novel diaryl oxazole-based compounds as potential agents to treat pancreatic cancer. J. Pharmacol. Exp. Ther., 2009, 331(2), 636-647.
[http://dx.doi.org/10.1124/jpet.109.156406] [PMID: 19657049]
[70]
Landowski, T.H.; Samulitis, B.K.; Dorr, R.T. The diaryl oxazole PC-046 is a tubulin-binding agent with experimental anti-tumor efficacy in hematologic cancers. Invest. New Drugs, 2013, 31(6), 1616-1625.
[http://dx.doi.org/10.1007/s10637-013-0019-8] [PMID: 24037082]
[71]
Robles, A.J.; McCowen, S.; Cai, S.; Glassman, M.; Ruiz, F.I.I.; Cichewicz, R.H.; McHardy, S.F.; Mooberry, S.L. Structure-activity relationships of new natural product-based diaryloxazoles with selective activity against androgen receptor-positive breast cancer cells. J. Med. Chem., 2017, 60(22), 9275-9289.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01228] [PMID: 29053266]
[72]
Ogino, Y.; Sato, A.; Uchiumi, F.; Tanuma, S.I. Cross resistance to diverse anticancer nicotinamide phosphoribosyltransferase inhibitors induced by FK866 treatment. Oncotarget, 2018, 9(23), 16451-16461.
[http://dx.doi.org/10.18632/oncotarget.24731] [PMID: 29662658]
[73]
Verga, D.; N’Guyen, C.H.; Dakir, M.; Coll, J.L.; Teulade-Fichou, M.P.; Molla, A. Polyheteroaryl oxazole/pyridine-based compounds selected in vitro as G-quadruplex ligands inhibit rock kinase and exhibit antiproliferative activity. J. Med. Chem., 2018, 61(23), 10502-10518.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01023] [PMID: 30457335]
[74]
Cherukupalli, S.; Karpoormath, R.; Chandrasekaran, B.; Hampannavar, G.A.; Thapliyal, N.; Palakollu, V.N. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold. Eur. J. Med. Chem., 2017, 126, 298-352.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.019] [PMID: 27894044]
[75]
Balupuri, A.; Balasubramanian, P.K.; Cho, S.J. 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. Arab. J. Chem., 2020, 13(1), 1052-1078.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.009]
[76]
Zhao, B.; Zhao, C.; Hu, X.; Xu, S.; Lan, Z.; Guo, Y.; Yang, Z.; Zhu, W.; Zheng, P. Design, synthesis and 3D-QSAR analysis of novel thiopyranopyrimidine derivatives as potential antitumor agents inhibiting A549 and Hela cancer cells. Eur. J. Med. Chem., 2020, 185111809
[http://dx.doi.org/10.1016/j.ejmech.2019.111809] [PMID: 31683104]
[77]
Chai, X.X.; Cai, Z.P.; Yang, M.T.; Zhou, Y.; Fu, Y.J.; Xiong, Y.Z. 2-Aminoxazole and 2-aminothiazole Dasatinib derivatives as potent inhibitors of chronic myeloid leukemia K562 cells. Arch. Pharm. (Weinheim), 2016, 349(7), 523-531.
[http://dx.doi.org/10.1002/ardp.201600010] [PMID: 27188682]
[78]
Cha, M.Y.; Lee, K.O.; Kang, S.J.; Jung, Y.H.; Song, J.Y.; Choi, K.J.; Byun, J.Y.; Lee, H.J.; Lee, G.S.; Park, S.B.; Kim, M.S. Synthesis and biological evaluation of pyrimidine-based dual inhibitors of human epidermal growth factor receptor 1 (HER-1) and HER-2 tyrosine kinases. J. Med. Chem., 2012, 55(6), 2846-2857.
[http://dx.doi.org/10.1021/jm201758g] [PMID: 22372864]
[79]
Chikhale, R.; Thorat, S.; Choudhary, R.K.; Gadewal, N.; Khedekar, P. Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors. Bioorg. Chem., 2018, 77, 84-100.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.008] [PMID: 29342447]
[80]
Reiter, L.A.; Freeman-Cook, K.D.; Jones, C.S.; Martinelli, G.J.; Antipas, A.S.; Berliner, M.A.; Datta, K.; Downs, J.T.; Eskra, J.D.; Forman, M.D.; Greer, E.M.; Guzman, R.; Hardink, J.R.; Janat, F.; Keene, N.F.; Laird, E.R.; Liras, J.L.; Lopresti-Morrow, L.L.; Mitchell, P.G.; Pandit, J.; Robertson, D.; Sperger, D.; Vaughn-Bowser, M.L.; Waller, D.M.; Yocum, S.A. Potent, selective pyrimidinetrione-based inhibitors of MMP-13. Bioorg. Med. Chem. Lett., 2006, 16(22), 5822-5826.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.066] [PMID: 16942871]
[81]
Shah, M.; Huang, D.; Blick, T.; Connor, A.; Reiter, L.A.; Hardink, J.R.; Lynch, C.C.; Waltham, M.; Thompson, E.W. An MMP13-selective inhibitor delays primary tumor growth and the onset of tumor-associated osteolytic lesions in experimental models of breast cancer. PLoS One, 2012, 7(1)e29615
[http://dx.doi.org/10.1371/journal.pone.0029615] [PMID: 22253746]
[82]
OuYang, Y.; Wang, C.; Zhao, B.; Xiong, H.; Xiao, Z.; Zhang, B.; Zheng, P.; Hu, J.; Gao, Y.; Zhang, M.; Zhu, W.; Xu, S. Design, synthesis, antiproliferative activity and docking studies of quinazoline derivatives bearing oxazole or imidazole as potential EGFR inhibitors. New J. Chem., 2018, 42, 17203-17215.
[http://dx.doi.org/10.1039/C8NJ03594F]
[83]
Yin, S.; Zhou, L.; Lin, J.; Xue, L.; Zhang, C. Design, synthesis and biological activities of novel oxazolo[4,5-g]quinazolin-2(1H)-one derivatives as EGFR inhibitors. Eur. J. Med. Chem., 2015, 101, 462-475.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.008] [PMID: 26188620]
[84]
Hua, Z.; Bregman, H.; Buchanan, J.L.; Chakka, N.; Guzman-Perez, A.; Gunaydin, H.; Huang, X.; Gu, Y.; Berry, V.; Liu, J.; Teffera, Y.; Huang, L.; Egge, B.; Emkey, R.; Mullady, E.L.; Schneider, S.; Andrews, P.S.; Acquaviva, L.; Dovey, J.; Mishra, A.; Newcomb, J.; Saffran, D.; Serafino, R.; Strathdee, C.A.; Turci, S.M.; Stanton, M.; Wilson, C.; Dimauro, E.F. Development of novel dual binders as potent, selective, and orally bioavailable tankyrase inhibitors. J. Med. Chem., 2013, 56(24), 10003-10015.
[http://dx.doi.org/10.1021/jm401317z] [PMID: 24294969]
[85]
Arulmurugan, S.; Kavitha, H.P. Synthesis and potential cytotoxic activity of some new benzoxazoles, imidazoles, benzimidazoles and tetrazoles. Acta Pharm., 2013, 63(2), 253-264.
[http://dx.doi.org/10.2478/acph-2013-0018] [PMID: 23846147]
[86]
Zhao, J.; Zhang, D.; Zhang, W.; Stashko, M.A.; DeRyckere, D.; Vasileiadi, E.; Parker, R.E.; Hunter, D.; Liu, Q.; Zhang, Y.; Norris-Drouin, J.; Li, B.; Drewry, D.H.; Kireev, D.; Graham, D.K.; Earp, H.S.; Frye, S.V.; Wang, X. Highly selective MERTK inhibitors achieved by a single methyl group. J. Med. Chem., 2018, 61(22), 10242-10254.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01229] [PMID: 30347155]
[87]
Riggs, J.R.; Nagy, M.; Elsner, J.; Erdman, P.; Cashion, D.; Robinson, D.; Harris, R.; Huang, D.; Tehrani, L.; Deyanat-Yazdi, G.; Narla, R.K.; Peng, X.; Tran, T.; Barnes, L.; Miller, T.; Katz, J.; Tang, Y.; Chen, M.; Moghaddam, M.F.; Bahmanyar, S.; Pagarigan, B.; Delker, S.; LeBrun, L.; Chamberlain, P.P.; Calabrese, A.; Canan, S.S.; Leftheris, K.; Zhu, D.; Boylan, J.F.; Boylan, J.F. The discovery of a dual TTK protein kinase/CDC2-like kinase (CLK2) inhibitor for the treatment of triple negative breast cancer initiated from a phenotypic screen. J. Med. Chem., 2017, 60(21), 8989-9002.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01223] [PMID: 28991472]
[88]
Jain, S.; Chandra, V.; Kumar-Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[89]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[90]
De, S.; Chaudhuri, S.R.; Panda, A.; Jadhav, G.R.; Kumar, R.S.; Manohar, P.; Ramesh, N.; Mondal, A.; Moorthy, A.; Banerjee, S.; Paira, P.; Kuamr, S.K.A. Synthesis, characterisation, molecular docking, biomolecular interaction and cytotoxicity studies of novel ruthenium(II)-arene-2-heteroarylbenzoxazole complexes. New J. Chem., 2019, 43, 3291-3302.
[http://dx.doi.org/10.1039/C8NJ04999H]
[91]
Khan, T.A.; Bhar, K.; Thirumoorthi, R.; Roy, T.K.; Sharma, A.K. Design, synthesis, characterization and evaluation of the anticancer activity of water-soluble half-sandwich ruthenium(II) arene halido complexes. New J. Chem., 2020, 44, 239-257.
[http://dx.doi.org/10.1039/C9NJ03663F]
[92]
Kandeel, M.M.; Ali, S.M.; Abdelgawad, M.A.; Abdel-Bakky, M.S.; Monhamed, E.A. Synthesis and cytotoxic activity of acridine derivatives substituted with benzimidazole, benzoxazole and benzothiazole. Pharma Chem., 2016, 8(1), 117-123.
[93]
Lu, D.; Shen, A.; Liu, Y.; Peng, X.; Xing, W.; Ai, J.; Geng, M.; Hu, Y. Design and synthesis of novel benzo[d]oxazol-2(3H)-one derivatives bearing 7-substituted-4-enthoxyquinoline moieties as c-Met kinase inhibitors. Eur. J. Med. Chem., 2016, 115, 191-200.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.027] [PMID: 27017548]
[94]
Li, W.; Sun, H.; Xu, F.; Shuai, W.; Liu, J.; Xu, S.; Yao, H.; Ma, C.; Zhu, Z.; Xu, J. Synthesis, molecular properties prediction and biological evaluation of indole-vinyl sulfone derivatives as novel tubulin polymerization inhibitors targeting the colchicine binding site. Bioorg. Chem., 2019, 85, 49-59.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.015] [PMID: 30599412]
[95]
Nocentini, A.; Moi, D.; Deplano, A.; Osman, S.M.; AlOthman, Z.A.; Balboni, G.; Supuran, C.T.; Onnis, V. Sulfonamide/sulfamate switch with a series of piperazinylureido derivatives: Synthesis, kinetic and in silico evaluation as carbonic anhydrase isoforms I, II, IV, and IX inhibitors. Eur. J. Med. Chem., 2020, 186111896
[http://dx.doi.org/10.1016/j.ejmech.2019.111896] [PMID: 31784185]
[96]
Murár, M.; Dobiaš, J.; Šramel, P.; Addová, G.; Hanquet, G.; Boháč, A. Novel CLK1 inhibitors based on N-aryloxazol-2-amine skeleton - A possible way to dual VEGFR2 TK/CLK ligands. Eur. J. Med. Chem., 2017, 126, 754-761.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.003] [PMID: 27940419]
[97]
Sultana, R.; McNeill, D.R.; Abbotts, R.; Mohammed, M.Z.; Zdzienicka, M.Z.; Qutob, H.; Seedhouse, C.; Laughton, C.A.; Fischer, P.M.; Patel, P.M.; Wilson, D.M., III; Madhusudan, S. Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. Int. J. Cancer, 2012, 131(10), 2433-2444.
[http://dx.doi.org/10.1002/ijc.27512] [PMID: 22377908]
[98]
Kachaeva, M.V.; Hodyna, D.M.; Obernikhina, N.V.; Pilyo, S.G.; Kobalenko, Y.S.; Prokopenko, V.M.; Kachkovsky, O.D.; Brovarets, V.S. Dependence of the anticancer activity of 1,3-oxazole derivatives on the donor/acceptor nature of his substitutes. J. Heterocycl. Chem., 2019, 56, 3122-3134.
[http://dx.doi.org/10.1002/jhet.3711]
[99]
Kachaeva, M.V.; Pilyo, S.G.; Zhirnov, V.V.; Brovarets, V.S. Synthesis, characterization, and in vitro anticancer evaluation of 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles. Med. Chem. Res., 2019, 28, 71-80.
[http://dx.doi.org/10.1007/s00044-018-2265-y]
[100]
Puratchikody, A.; Umamaheswari, A.; Irfan, N.; Sinha, S.; Manju, S.L.; Ramanan, M.; Ramamoorthy, G.; Doble, M. A novel class of tyrosine derivatives as dual 5-LOX and COX-2/mPGES1 inhibitors with PGE2 mediated anticancer properties. New J. Chem., 2019, 43, 834-846.
[http://dx.doi.org/10.1039/C8NJ04385J]
[101]
Yang, J.; Zhou, S.; Ji, L.; Zhang, C.; Yu, S.; Li, Z.; Meng, X. Synthesis and structure-activity relationship of 4-azaheterocycle benzenesulfonamide derivatives as new microtubule-targeting agents. Bioorg. Med. Chem. Lett., 2014, 24(21), 5055-5058.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.016] [PMID: 25278233]
[102]
Yang, J.; Yang, S.; Zhou, S.; Lu, D.; Ji, L.; Li, Z.; Yu, S.; Meng, X. Synthesis, anti-cancer evaluation of benzenesulfonamide derivatives as potent tubulin-targeting agents. Eur. J. Med. Chem., 2016, 122, 488-496.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.002] [PMID: 27423028]
[103]
Zhang, J.; Yao, D.; Jiang, Y.; Huang, J.; Yang, S.; Wang, J.; Wang, J. Synthesis and biological evaluation of benzimidazole derivatives as the G9a Histone Methyltransferase inhibitors that induce autophagy and apoptosis of breast cancer cells. Bioorg. Chem., 2017, 72, 168-181.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.005] [PMID: 28460359]
[104]
Nafie, M.S.; Tantawy, M.A.; Elmgeed, G.A. Screening of different drug design tools to predict the mode of action of steroidal derivatives as anti-cancer agents. Steroids, 2019, 152108485
[http://dx.doi.org/10.1016/j.steroids.2019.108485] [PMID: 31491446]
[105]
El-Kady, D.S.; Abd Rabou, A.A.; Tantawy, M.A.; Abdel-Rahman, A.A.H.; Abdel-Megeed, A.A.S. AbdElhalim, M.M.; Elmegeed, G.A. AbdElhalim, M. M.; Elmegeed, G. A. Synthesis and evaluation of novel cholestanoheterocyclic steroids as anticancer agents. Appl. Biochem. Biotechnol., 2019, 188(3), 635-662.
[http://dx.doi.org/10.1007/s12010-018-02943-6] [PMID: 30613863]
[106]
Minorics, R.; Zupko, I. Steroidal anticancer agents: An overview of estradiol-related compounds. Anticancer. Agents Med. Chem., 2018, 18(5), 652-666.
[http://dx.doi.org/10.2174/1871520617666171114111721] [PMID: 29141561]
[107]
Gupta, A.; Kumar, B.S.; Negi, A.S. Current status on development of steroids as anticancer agents. J. Steroid Biochem. Mol. Biol., 2013, 137, 242-270.
[http://dx.doi.org/10.1016/j.jsbmb.2013.05.011] [PMID: 23727548]
[108]
Grishko, V.V.; Tolmacheva, I.A.; Nebogatikov, V.O.; Galaiko, N.V.; Nazarov, A.V.; Dmitriev, M.V.; Ivshina, I.B. Preparation of novel ring-A fused azole derivatives of betulin and evaluation of their cytotoxicity. Eur. J. Med. Chem., 2017, 125, 629-639.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.065] [PMID: 27721148]
[109]
Li, L.; Xie, L.; Wang, F.; He, W.; Xiang, J. Synthesis and antitumor activity of 17-(2′,5′-disubstituted-oxazolyl)-androsta-4,16-dien-3-one derivatives. Youji Huaxue, 2014, 34, 1864-1869.
[http://dx.doi.org/10.6023/cjoc201402032]
[110]
Kostin, V.A.; Latysheva, A.S.; Zolottsev, V.A.; Tkachev, Y.V.; Timofeev, V.P.; Kuzikov, A.V.; Shumyantseva, V.V.; Morozevich, G.E.; Misharin, A.Y. Oxazoline derivatives of [17(20)E]-21-norpregnene-inhibitors of CYP17A1 activity and proliferation of prostate carcinoma cells. Russ. Chem. Bull., 2018, 67, 682-687.
[http://dx.doi.org/10.1007/s11172-018-2122-7]
[111]
Zolottsev, V.A.; Tkachev, Y.V.; Latysheva, A.S.; Kostin, V.A.; Novikov, R.A.; Timofeev, V.P.; Morozevich, G.E.; Kuzikov, A.V.; Shumyantseva, V.V.; Misharin, A.Y. Comparison of [17(20)E]-21-Norpregnene oxazolinyl and benzoxazolyl derivatives as inhibitors of CYP17A1 activity and prostate carcinoma cells growth. Steroids, 2018, 129, 24-34.
[http://dx.doi.org/10.1016/j.steroids.2017.11.009] [PMID: 29183745]
[112]
Kuzikov, A.V.; Dugin, N.O.; Stulov, S.V.; Shcherbinin, D.S.; Zharkova, M.S.; Tkachev, Y.V.; Timofeev, V.P.; Veselovsky, A.V.; Shumyantseva, V.V.; Misharin, A.Y. Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17α-hydroxylase/17,20-lyase (CYP17A1) inhibitors. Steroids, 2014, 88, 66-71.
[http://dx.doi.org/10.1016/j.steroids.2014.06.014] [PMID: 24971814]
[113]
Latysheva, A.S.; Zolottsev, V.A.; Veselovsky, A.V.; Scherbakov, K.A.; Morozevich, G.E. Pokrovsky, Novikov, R. A.; Timofeev, V. P.; Tkachev, Y. V.; Misharin, A. Y. New steroidal oxazolines, benzoxazoles and benzimidazoles related to abiraterone and galeterone. Steroids, 2020, 158e108534
[http://dx.doi.org/10.1016/j.steroids.2019.108534]
[114]
Fröhlich, T.; Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S.B. Artemisinin-derived dimers: Potent antimalarial and anti-cancer agents. J. Med. Chem., 2016, 59(16), 7360-7388.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01380] [PMID: 27010926]
[115]
Zhang, B. Artemisinin-derived dimers as potential anticancer agents: Current developments, action mechanisms, and structure-activity relationships. Arch. Pharm. (Weinheim), 2020, 353(2)e1900240
[http://dx.doi.org/10.1002/ardp.201900240] [PMID: 31797422]
[116]
Zhang, Y.Z.; Du, H.Z.; Liu, H.L.; He, Q.S.; Xu, Z. Isatin dimers and their biological activities. Arch. Pharm. (Weinheim), 2020, 353(3)e1900299
[http://dx.doi.org/10.1002/ardp.201900299] [PMID: 31985855]
[117]
Ohnmacht, S.A.; Micco, M.; Petrucci, V.; Todd, A.K.; Reszka, A.P.; Gunaratnam, M.; Carvalho, M.A.; Zloh, M.; Neidle, S. Sequences in the HSP90 promoter form G-quadruplex structures with selectivity for disubstituted phenyl bis-oxazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(18), 5930-5935.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.065] [PMID: 22892119]
[118]
Ohnmacht, S.A.; Ciancimino, C.; Vignaroli, G.; Gunaratnam, M.; Neidle, S. Optimization of anti-proliferative activity using a screening approach with a series of bis-heterocyclic G-quadruplex ligands. Bioorg. Med. Chem. Lett., 2013, 23(19), 5351-5355.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.057] [PMID: 23972440]
[119]
Mabkhot, Y.N.; Barakat, A.; Al-Majid, A.M.; Alshahrani, S.; Yousuf, S.; Choudhary, M.I. Synthesis, reactions and biological activity of some new bis-heterocyclic ring compounds containing sulphur atom. Chem. Cent. J., 2013, 7(1), 112.
[http://dx.doi.org/10.1186/1752-153X-7-112] [PMID: 23829861]
[120]
Madia, V.N.; Messore, A.; Pescatori, L.; Saccoliti, F.; Tudino, V.; De Leo, A.; Bortolami, M.; Scipione, L.; Costi, R.; Rivara, S.; Scalvini, L.; Mor, M.; Ferrara, F.F.; Pavoni, E.; Roscilli, G.; Cassinelli, G.; Milazzo, F.M.; Battistuzzi, G.; Di Santo, R.; Giannini, G. Novel benzazole derivatives endowed with potent antiheparanase activity. J. Med. Chem., 2018, 61(15), 6918-6936.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00908] [PMID: 30010344]
[121]
Kim, S.J.; Lin, C.C.; Pan, C.M.; Rananaware, D.P.; Ramsey, D.M.; McAlpine, S.R. A structure-activity relationship study on multi-heterocyclic molecules: two linked thiazoles are required for cytotoxic activity. MedChemComm, 2013, 4(2), 406-410.
[http://dx.doi.org/10.1039/C2MD20291C] [PMID: 23524379]
[122]
Islam, M.A.; Zhang, Y.; Wang, Y.; McAlpine, S.R. Design, synthesis and anticancer mechanistic studies of linked azoles. MedChemComm, 2015, 6, 300-305.
[http://dx.doi.org/10.1039/C4MD00387J]
[123]
Bae, S.Y.; Kim, G.D.; Jeon, J.E.; Shin, J.; Lee, S.K. Anti-proliferative effect of (19Z)-halichondramide, a novel marine macrolide isolated from the sponge Chondrosia corticata, is associated with G2/M cell cycle arrest and suppression of mTOR signaling in human lung cancer cells. Toxicol. In Vitro, 2013, 27(2), 694-699.
[http://dx.doi.org/10.1016/j.tiv.2012.11.001] [PMID: 23147639]
[124]
Blankson, G.A.; Pilch, D.S.; Liu, A.A.; Liu, L.F.; Rice, J.E.; LaVoie, E.J. Macrocyclic biphenyl tetraoxazoles: synthesis, evaluation as G-quadruplex stabilizers and cytotoxic activity. Bioorg. Med. Chem., 2013, 21(15), 4511-4520.
[http://dx.doi.org/10.1016/j.bmc.2013.05.033] [PMID: 23787291]
[125]
Rzuczek, S.G.; Pilch, D.S.; Liu, A.; Liu, L.; LaVoie, E.J.; Rice, J.E. Macrocyclic pyridyl polyoxazoles: selective RNA and DNA G-quadruplex ligands as antitumor agents. J. Med. Chem., 2010, 53(9), 3632-3644.
[http://dx.doi.org/10.1021/jm1000612] [PMID: 20359224]
[126]
Nakamura, T.; Okabe, S.; Yoshida, H.; Iida, K.; Ma, Y.; Sasaki, S.; Yamori, T.; Shin-Ya, K.; Nakano, I.; Nagasawa, K.; Seimiya, H. Targeting glioma stem cells in vivo by a G-quadruplex-stabilizing synthetic macrocyclic hexaoxazole. Sci. Rep., 2017, 7(1), 3605.
[http://dx.doi.org/10.1038/s41598-017-03785-8] [PMID: 28620243]
[127]
Tsai, Y.C.; Qi, H.; Lin, C.P.; Lin, R.K.; Kerrigan, J.E.; Rzuczek, S.G.; LaVoie, E.J.; Rice, J.E.; Pilch, D.S.; Lyu, Y.L.; Liu, L.F. A G-quadruplex stabilizer induces M-phase cell cycle arrest. J. Biol. Chem., 2009, 284(34), 22535-22543.
[http://dx.doi.org/10.1074/jbc.M109.020230] [PMID: 19531483]
[128]
Satyanarayana, M.; Kim, Y-A.; Rzuczek, S.G.; Pilch, D.S.; Liu, A.A.; Liu, L.F.; Rice, J.E.; LaVoie, E.J. Macrocyclic hexaoxazoles: Influence of aminoalkyl substituents on RNA and DNA G-quadruplex stabilization and cytotoxicity. Bioorg. Med. Chem. Lett., 2010, 20(10), 3150-3154.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.086] [PMID: 20409709]
[129]
Satyanarayana, M.; Rzuczek, S.G.; Lavoie, E.J.; Pilch, D.S.; Liu, A.; Liu, L.F.; Rice, J.E. Ring-closing metathesis for the synthesis of a highly G-quadruplex selective macrocyclic hexaoxazole having enhanced cytotoxic potency. Bioorg. Med. Chem. Lett., 2008, 18(13), 3802-3804.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.032] [PMID: 18515097]
[130]
Sansook, S.; Hassell-Hart, S.; Ocasio, C.; Spencer, J. Ferrocenes in medicinal chemistry; A personal perspective. J. Organomet., 2020, 905e121017
[http://dx.doi.org/10.1016/j.jorganchem.2019.121017]
[131]
Skoupilova, H.; Bartosik, M.; Sommerova, L.; Pinkas, J.; Vaculovic, T.; Kanicky, V.; Karban, J.; Hrstka, R. Ferrocenes as new anticancer drug candidates: Determination of the mechanism of action. Eur. J. Pharmacol., 2020, 867172825
[http://dx.doi.org/10.1016/j.ejphar.2019.172825] [PMID: 31770527]
[132]
Jaouen, G.; Vessières, A.; Top, S. Ferrocifen type anti cancer drugs. Chem. Soc. Rev., 2015, 44(24), 8802-8817.
[http://dx.doi.org/10.1039/C5CS00486A] [PMID: 26486993]
[133]
Garcia, J.J.S.; Flores-Alamo, M.; Martinez-Klimova, E.; Apan, T.R.; Klimova, E.I. Diferrocenyl(areno)oxazoles, spiro(arenooxazole)cyclopropenes, quinolines and areno[1,4-]oxazines: Synthesis, characterization and study of their antitumor activity. J. Organomet. Chem., 2018, 867, 312-322.
[http://dx.doi.org/10.1016/j.jorganchem.2018.01.026]
[134]
Chen, C.L.; Liu, F.L.; Lee, C.C.; Chen, T.C.; Chang, W.W.; Guh, J.H.; Ahmed Ali, A.A.; Chang, D.M.; Huang, H.S. Ring fusion strategy for the synthesis of anthra[2,3-d]oxazole-2-thione-5,10-dione homologues as DNA topoisomerase inhibitors and as antitumor agents. Eur. J. Med. Chem., 2014, 87, 30-38.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.016] [PMID: 25240093]
[135]
Huang, H.; Yan, M.; Chen, J.; Yuan, B.; Chen, G.; Cheng, S.; Huang, D.; Gao, Z.; Cao, C. Identification of ortho-naphthoquinones as anti-AML agents by highly efficient oxidation of phenols. Bioorg. Chem., 2019, 86, 97-102.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.025] [PMID: 30685647]
[136]
Li, X.; Bian, J.; Wang, N.; Qian, X.; Gu, J.; Mu, T.; Fan, J.; Yang, X.; Li, S.; Yang, T.; Sun, H.; You, Q.; Zhang, X. Novel naphtho[2,1-d]oxazole-4,5-diones as NQO1 substrates with improved aqueous solubility: Design, synthesis, and in vivo antitumor evaluation. Bioorg. Med. Chem., 2016, 24(5), 1006-1013.
[http://dx.doi.org/10.1016/j.bmc.2016.01.024] [PMID: 26803578]
[137]
Tangellamudi, N.D.; Shinde, S.B.; Pooladanda, V.; Godugu, C.; Balasubramanian, S. Facile synthesis of 2-aryl 5-hydroxy benzo[d]oxazoles and their in vitro anti-proliferative effects on various cancer cell lines. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3639-3647.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.038] [PMID: 30389295]
[138]
Granchi, C.; Rizzolio, F.; Bordoni, V.; Caligiuri, I.; Manera, C.; Macchia, M.; Minutolo, F.; Martinelli, A.; Giordano, A.; Tuccinardi, T. 4-Aryliden-2-methyloxazol-5(4H)-one as a new scaffold for selective reversible MAGL inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 137-146.
[http://dx.doi.org/10.3109/14756366.2015.1010530] [PMID: 25669350]
[139]
Jansen, R.; Sood, S.; Huch, V.; Kunze, B.; Stadler, M.; Müller, R. Pyrronazols, metabolites from the myxobacteria Nannocystis pusilla and N. exedens, are unusual chlorinated pyrone-oxazole-pyrroles. J. Nat. Prod., 2014, 77(2), 320-326.
[http://dx.doi.org/10.1021/np400877r] [PMID: 24460410]
[140]
Li, M.M.; Xia, F.; Li, C.J.; Xu, G.; Qin, H.B. Design, synthesis and cytotoxicity of nitrogen-containing tanshinone derivatives. Tetrahedron Lett., 2018, 59, 46-48.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.046]
[141]
Semenyuta, I.; Kovalishyn, V.; Tanchuk, V.; Pilyo, S.; Zyabrev, V.; Blagodatnyy, V.; Trokhimenko, O.; Brovarets, V.; Metelytsia, L. 1,3-Oxazole derivatives as potential anticancer agents: Computer modeling and experimental study. Comput. Biol. Chem., 2016, 65, 8-15.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.09.012] [PMID: 27684433]
[142]
Rayam, P.; Anireddy, J.S.; Polkam, N.; Allaka, T.R.; Chepuri, K.; Madendla, M. Synthesis and biological activity of novel acyl hydrazone derivatives of 3-(4,5-diphenyl- 1,3-oxazol-2-yl)propanoic acid as anticancer, analgesic and anti-inflammatory agents. J. Pharm. Res., 2015, 9, 157-164.
[143]
Hamidian, H.; Tagizadeh, R.; Fozooni, S.; Abbasalipour, V.; Taheri, A.; Namjou, M. Synthesis of novel azo compounds containing 5(4H)-oxazolone ring as potent tyrosinase inhibitors. Bioorg. Med. Chem., 2013, 21(7), 2088-2092.
[http://dx.doi.org/10.1016/j.bmc.2013.01.014] [PMID: 23411395]
[144]
Tan, S.; Yin, H.; Chen, Z.; Qian, X.; Xu, Y. Oxo-heterocyclic fused naphthalimides as antitumor agents: synthesis and biological evaluation. Eur. J. Med. Chem., 2013, 62, 130-138.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.039] [PMID: 23353750]
[145]
Lu, Y.T.; Chen, T.L.; Chang, K.S.; Chang, C.M.; Wei, T.Y.; Liu, J.W.; Hsiao, C.A.; Shih, T.L. Synthesis of novel C4-benzazole naphthalimide derivatives with potent anti-tumor properties against murine melanoma. Bioorg. Med. Chem., 2017, 25(2), 789-794.
[http://dx.doi.org/10.1016/j.bmc.2016.11.057] [PMID: 27939348]
[146]
Abdou, W.M.; Barghash, R.F. Bekheit. Synthesis of lipophilic-2-mercaptobenzoxazoles and 2-spirothiophene-phosphonate derivatives as potent anticancer agents. J. Heterocycl. Chem., 2017, 54, 923-931.
[http://dx.doi.org/10.1002/jhet.2655]
[147]
Zi, M.; Liu, F.; Wu, D.; Li, K.; Zhang, D.; Zhu, C.; Zhang, Z.; Li, L.; Zhang, C.; Xie, M.; Lin, J.; Zhang, J.; Jin, Y. Discovery of 6-arylurea-2-arylbenzoxazole and 6-arylurea-2-arylbenzimidazole derivatives as angiogenesis inhibitors: Design, synthesis and in vitro biological evaluation. ChemMedChem, 2019, 14(13), 1291-1302.
[http://dx.doi.org/10.1002/cmdc.201900216] [PMID: 31131561]
[148]
Reddy, K.I.; Aruna, C.; Babu, K.S.; Vijayakumar, V.; Manisha, M.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D. General and efficient synthesis of benzoxazol-2(3H)-ones: Evolution of their anti-cancer and antimycobacterial activities. RSC Advances, 2014, 4, 59594-59602.
[http://dx.doi.org/10.1039/C4RA07123A]
[149]
Wu, C.; Miller, P.A.; Miller, M.J. Syntheses and studies of amamistatin B analogs reveals that anticancer activity is relatively independent of stereochemistry, ester or amide linkage and select replacement of one of the metal chelating groups. Bioorg. Med. Chem. Lett., 2011, 21(9), 2611-2615.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.084] [PMID: 21315591]
[150]
Fuwa, H.; Noguchi, T.; Kawakami, M.; Sasaki, M. Synthesis and biological evaluation of (+)-neopeltolide analogues: importance of the oxazole-containing side chain. Bioorg. Med. Chem. Lett., 2014, 24(11), 2415-2419.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.031] [PMID: 24792465]
[151]
Kumar, G.J.; Bomma, H.V.S.S.; Srihari, E.; Shrivastava, S.; Naidu, V.G.M.; Srinivas, K.; Rao, V.J. Synthesis and anticancer activity of some new s-triazine derivatives. Med. Chem. Res., 2013, 22, 5973-5982.
[http://dx.doi.org/10.1007/s00044-013-0584-6]
[152]
Dulla, B.; Kirla, K.T.; Rathore, V.; Deora, G.S.; Kavela, S.; Maddika, S.; Chatti, K.; Reiser, O.; Iqbal, J.; Pal, M. Synthesis and evaluation of 3-amino/guanidine substituted phenyl oxazoles as a novel class of LSD1 inhibitors with anti-proliferative properties. Org. Biomol. Chem., 2013, 11(19), 3103-3107.
[http://dx.doi.org/10.1039/c3ob40217g] [PMID: 23575971]
[153]
Liu, Q.Q.; Lu, K.; Zhu, H.M.; Kong, S.L.; Yuan, J.M.; Zhang, G.H.; Chen, N.Y.; Gu, C.X.; Pan, C.X.; Mo, D.L.; Su, G.F. Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure-based design, synthesis, and bioactive evaluation in vitro and in vivo. Eur. J. Med. Chem., 2019, 165, 293-308.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.004] [PMID: 30685528]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy