Unravelling the Role of Rhizospheric Plant-Microbe Synergy in Phytoremediation: A Genomic Perspective

Author(s): Priyanka Agarwal, Balendu Shekher Giri, Radha Rani*

Journal Name: Current Genomics

Volume 21 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Accretion of organic and inorganic contaminants in soil interferes in the food chain, thereby posing a serious threat to the ecosystem and adversely affecting crop productivity and human life. Both endophytic and rhizospheric microbial communities are responsible for the biodegradation of toxic organic compounds and have the capability to enhance the uptake of heavy metals by plants via phytoremediation approaches. The diverse set of metabolic genes encoding for the production of biosurfactants and biofilms, specific enzymes for degrading plant polymers, modification of cell surface hydrophobicity and various detoxification pathways for the organic pollutants, plays a significant role in bacterial driven bioremediation. Various genetic engineering approaches have been demonstrated to modulate the activity of specific microbial species in order to enhance their detoxification potential. Certain rhizospheric bacterial communities are genetically modified to produce specific enzymes that play a role in degrading toxic pollutants. Few studies suggest that the overexpression of extracellular enzymes secreted by plant, fungi or rhizospheric microbes can improve the degradation of specific organic pollutants in the soil. Plants and microbes dwell synergistically, where microbes draw benefit by nutrient acquisition from root exudates whereas they assist in plant growth and survival by producing certain plant growth promoting metabolites, nitrogen fixation, phosphate solubilization, auxin production, siderophore production, and inhibition or suppression of plant pathogens. Thus, the plant-microbe interaction establishes the foundation of the soil nutrient cycle as well as decreases soil toxicity by the removal of harmful pollutants.

Conclusion: The perspective of integrating genetic approach with bioremediation is crucial to evaluate connexions among microbial communities, plant communities and ecosystem processes with a focus on improving phytoremediation of contaminated sites.

Keywords: Phytoremediation, plant-microbe synergy, transgenic plants, endophytes, CRISPR, pollutants.

Zhu, Y.G.; Shaw, G. Soil contamination with radionuclides and potential remediation. Chemosphere, 2000, 41(1-2), 121-128.
[http://dx.doi.org/10.1016/S0045-6535(99)00398-7] [PMID: 10819188]
Kumar, B.; Gaur, R.; Goel, G.; Mishra, M.; Singh, S.K.; Prakash, D.; Sharma, C.S. Residues of pesticides and herbicides in soils from agriculture areas of Delhi region, India. Electronic J. Environ. Agri. Food Chem., 2012, 11, 328-338.
Vane, C.H.; Kim, A.W.; Beriro, D.J.; Cave, M.R.; Knights, K.; Moss-Hayes, V.; Nathanail, P.C. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Appl. Geochem., 2014, 51, 303-314.
Afzal, M.; Khan, Q.M.; Sessitsch, A. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere, 2014, 117, 232-242.
[http://dx.doi.org/10.1016/j.chemosphere.2014.06.078] [PMID: 25078615]
Smith, M.J.; Flowers, T.H.; Duncan, H.J.; Alder, J. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Pollut., 2006, 141(3), 519-525.
[http://dx.doi.org/10.1016/j.envpol.2005.08.061] [PMID: 16246476]
Ahmad, I.; Akhtar, M.J.; Zahir, Z.A.; Jamil, A. Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot., 2012, 44, 1569-1574.
Ahmad, I.; Akhtar, M.J.; Asghar, H.N.; Zahir, Z.A. Comparative efficacy of growth media in causing cadmium toxicity to wheat at seed germination stage. Int. J. Agric. Biol., 2013, 15, 517-522.
Ahmad, I.; Akhtar, M.J.; Zahir, Z.A.; Naveed, M.; Mitter, B.; Sessitsch, A. Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ. Sci. Pollut. Res. Int., 2014, 21(18), 11054-11065.
[http://dx.doi.org/10.1007/s11356-014-3010-9] [PMID: 24849374]
Alrumman, S.A.; Standing, D.B.; Paton, G.I. Effects of hydrocarbon contamination on soil microbial community and enzyme activity. J. King Saud University Sci., 2015, 27, 31-41.
Guo, H.; Yao, J.; Cai, M.; Qian, Y.; Guo, Y.; Richnow, H.H.; Blake, R.E.; Doni, S.; Ceccanti, B. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere, 2012, 87(11), 1273-1280.
[http://dx.doi.org/10.1016/j.chemosphere.2012.01.034] [PMID: 22336736]
Mahanty, B.; Pakshirajan, K.; Dasu, V.V. Understanding the complexity and strategic evolution in PAH remediation research. Crit. Rev. Environ. Sci. Technol., 2011, 41, 1697-1746.
Wei, J.; Liu, X.; Wang, Q.; Wang, C.; Chen, X.; Li, H. Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene-lead polluted soil. Chemosphere, 2014, 97, 92-97.
[http://dx.doi.org/10.1016/j.chemosphere.2013.09.105] [PMID: 24188625]
Xia, H.P. Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere, 2004, 54(3), 345-353.
[http://dx.doi.org/10.1016/S0045-6535(03)00763-X] [PMID: 14575747]
Kong, Z.; Glick, B.R. The role of bacteria in phytoremediation. in: applied bioengineering: innovations and future directions, yoshida, t.; ed.; wiley vch: verlag gmbh & co. kgaa,, 2017, pp. 327-353. pp
Weyens, N.; van der Lelie, D.; Taghavi, S.; Newman, L.; Vangronsveld, J. Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol., 2009, 27(10), 591-598.
[http://dx.doi.org/10.1016/j.tibtech.2009.07.006] [PMID: 19683353]
Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem., 2010, 42, 669-678.
Mitter, B.; Petric, A.; Shin, M.W.; Chain, P.S.; Hauberg-Lotte, L.; Reinhold-Hurek, B.; Nowak, J.; Sessitsch, A. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci., 2013, 4, 120.
[http://dx.doi.org/10.3389/fpls.2013.00120] [PMID: 23641251]
Yousaf, S.; Afzal, M.; Reichenauer, T.G.; Brady, C.L.; Sessitsch, A. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ. Pollut., 2011, 159(10), 2675-2683.
[http://dx.doi.org/10.1016/j.envpol.2011.05.031] [PMID: 21700373]
Khan, S.; Afzal, M.; Iqbal, S.; Khan, Q.M. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 2013, 90(4), 1317-1332.
[http://dx.doi.org/10.1016/j.chemosphere.2012.09.045] [PMID: 23058201]
Doty, S.L. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol., 2008, 179(2), 318-333.
[http://dx.doi.org/10.1111/j.1469-8137.2008.02446.x] [PMID: 19086174]
Bell, T.H.; Joly, S.; Pitre, F.E.; Yergeau, E. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol., 2014, 32(5), 271-280.
[http://dx.doi.org/10.1016/j.tibtech.2014.02.008] [PMID: 24735678]
Pires, C.; Franco, A.R.; Pereira, S.I.A.; Henriques, I.; Correia, A.; Magan, N. Metal (loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiol. J., 2017, 34(9), 1-9.
Checcucci, A.; Bazzicalupo, M.; Mengoni, A. Exploiting nitrogen fixing rhizobial symbionts genetic resources for improving phytoremediation of contaminated soils, in:Enhancing Cleanup of Environmental Pollutants: Biological Approaches; Naser, A.; Anjum, A.; Gill, S.S.; Tuteja, N., Eds.; Springer International Publishing: Cham, 2017, Vol. 1, pp. 275-288.
Mishra, J.; Singh, R.; Arora, N.K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front. Microbiol., 2017, 8, 1706.
[http://dx.doi.org/10.3389/fmicb.2017.01706] [PMID: 28932218]
Gupta, P.; Diwan, B. Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. (Amst.), 2016, 13, 58-71.
[http://dx.doi.org/10.1016/j.btre.2016.12.006] [PMID: 28352564]
Ayangbenro, A.S.; Babalola, O.O. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public Health, 2017, 14(1), 94.
[http://dx.doi.org/10.3390/ijerph14010094] [PMID: 28106848]
Wang, W.X.; Barak, T.; Vinocur, B.; Shoseyov, O.; Altman, A. Abiotic resistance and chaperones: possible physiological role of SP1, a stable and stabilizing protein from Populus, in:Plant Biotechnology 2000 and Beyond; Vasil, I.K., Ed.; Kluwer: Dordrecht, 2003, pp. 439-443.
Khare, E.K.; Arora, N.K. Effects of soil environment on field efficacy of microbial inoculants, in: plant microbes symbiosis: applied facets, arora, n.k.; ed.; netherland: springer , 2015; pp. 353-381.
Lata, R.; Chowdhury, S.; Gond, S.K.; White, J.F., Jr Induction of abiotic stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol., 2018, 66(4), 268-276.
[http://dx.doi.org/10.1111/lam.12855] [PMID: 29359344]
Khare, E.; Mishra, J.; Arora, N.K. Multifaceted interactions between endophytes and plant: developments and prospects. Front. Microbiol., 2018, 9, 2732.
[http://dx.doi.org/10.3389/fmicb.2018.02732] [PMID: 30498482]
Madhaiyan, M.; Kim, B.Y.; Poonguzhali, S.; Kwon, S.W.; Song, M.H.; Ryu, J.H.; Go, S.J.; Koo, B.S.; Sa, T.M. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int. J. Syst. Evol. Microbiol., 2007, 57(Pt 2), 326-331.
[http://dx.doi.org/10.1099/ijs.0.64603-0] [PMID: 17267973]
Wan, Y.; Luo, S.; Chen, J.; Xiao, X.; Chen, L.; Zeng, G.; Liu, C.; He, Y. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere, 2012, 89(6), 743-750.
[http://dx.doi.org/10.1016/j.chemosphere.2012.07.005] [PMID: 22858258]
Sessitsch, A.; Hardoim, P.; Döring, J.; Weilharter, A.; Krause, A.; Woyke, T.; Mitter, B.; Hauberg-Lotte, L.; Friedrich, F.; Rahalkar, M.; Hurek, T.; Sarkar, A.; Bodrossy, L.; van Overbeek, L.; Brar, D.; van Elsas, J.D.; Reinhold-Hurek, B. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant Microbe Interact., 2012, 25(1), 28-36.
[http://dx.doi.org/10.1094/MPMI-08-11-0204] [PMID: 21970692]
Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manage., 2016, 174, 14-25.
[http://dx.doi.org/10.1016/j.jenvman.2016.02.047] [PMID: 26989941]
Andria, V.; Reichenauer, T.G.; Sessitsch, A. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ. Pollut., 2009, 157(12), 3347-3350.
[http://dx.doi.org/10.1016/j.envpol.2009.08.023] [PMID: 19773105]
Rosenblueth, M.; Martínez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact., 2006, 19(8), 827-837.
[http://dx.doi.org/10.1094/MPMI-19-0827] [PMID: 16903349]
Khan, A.G.; Kuek, C.; Chaudhry, T.M.; Khoo, C.S.; Hayes, W.J. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 2000, 41(1-2), 197-207.
[http://dx.doi.org/10.1016/S0045-6535(99)00412-9] [PMID: 10819202]
Afzal, M.; Yousaf, S.; Reichenauer, T.G.; Kuffner, M.; Sessitsch, A. Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J. Hazard. Mater., 2011, 186(2-3), 1568-1575.
[http://dx.doi.org/10.1016/j.jhazmat.2010.12.040] [PMID: 21216097]
Gadd, G.M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 2010, 156(Pt 3), 609-643.
[http://dx.doi.org/10.1099/mic.0.037143-0] [PMID: 20019082]
Alka, S.; Shahir, S.; Ibrahim, N.; Chai, T.T.; Bahari, Z.M.; Manan, F.A. The role of plant growth promoting bacteria on arsenic removal: a review of existing perspectives. Environ. Technol. Innovation, 2020, 17, 100602.
Fulekar, M.H.; Singh, A.; Bhaduri, A.M. Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr. J. Biotechnol., 2008, 8(4), 529-535.
Guo, J. Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii hance grown on multiple metal contaminated soil. World J. Microbiol. Biotechnol., 2011, 27(12), 2835-2844.
Ghosh, P.; Rathinasabapathi, B.; Ma, L.Q. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresour. Technol., 2011, 102(19), 8756-8761.
[http://dx.doi.org/10.1016/j.biortech.2011.07.064] [PMID: 21840210]
Ghosh, P.K.; Maiti, T.K.; Pramanik, K.; Ghosh, S.K.; Mitra, S.; De, T.K. The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere, 2018, 211, 407-419.
[http://dx.doi.org/10.1016/j.chemosphere.2018.07.148] [PMID: 30077937]
Saleem, M.; Asghar, H.N.; Zahir, Z.A.; Shahid, M. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere, 2018, 195, 606-614.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.117] [PMID: 29278850]
Flocco, C.G.; Lindblom, S.D.; Smits, E.A.; Smits, P. Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int. J. Phytoremediation, 2004, 6(4), 289-304.
[http://dx.doi.org/10.1080/16226510490888811] [PMID: 15696703]
Bizily, S.P.; Rugh, C.L.; Meagher, R.B. Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotechnol., 2000, 18(2), 213-217.
[http://dx.doi.org/10.1038/72678] [PMID: 10657131]
Mello-Farias, P.C.; Chaves, A.L.S. Biochemical and molecular aspects of toxic metals phytoremediation using transgenic plants. transgenic approach in plant biochemistry and physiology; tiznado-hernandez, m.e.; troncoso-rojas, r.; rivera-domínguez, m.a., eds.; research signpost: kerala, india,, 2008, pp. 253-266.
Pilon-Smits, E.A.; Jouanin, L.; Terry, N. Liang Zhu Y. Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance. Plant Physiol., 1999, 119(1), 73-80.
[http://dx.doi.org/10.1104/pp.119.1.73] [PMID: 9880348]
Karavangeli, M.; Labrou, N.E.; Clonis, Y.D.; Tsaftaris, A. Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol. Eng., 2005, 22(4), 121-128.
[http://dx.doi.org/10.1016/j.bioeng.2005.03.001] [PMID: 16085457]
Vázquez-Núñez, E.; Peña-Castro, J.M.; Fernández-Luqueño, F.; Cejudo, E.; Rosa-Alvarez, M.G.; García-Castañeda, M.C. A review on genetically modified plants designed to phytoremediate polluted soils: biochemical responses and international regulation. Pedosphere, 2018, 28(5), 697-712.
Eapen, S.; D’Souza, S.F. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol. Adv., 2005, 23(2), 97-114.
[http://dx.doi.org/10.1016/j.biotechadv.2004.10.001] [PMID: 15694122]
LeDuc, D.L.; Tarun, A.S.; Montes-Bayon, M.; Meija, J.; Malit, M.F.; Wu, C.P.; AbdelSamie, M.; Chiang, C.Y.; Tagmount, A.; deSouza, M.; Neuhierl, B.; Böck, A.; Caruso, J.; Terry, N. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol., 2004, 135(1), 377-383.
[http://dx.doi.org/10.1104/pp.103.026989] [PMID: 14671009]
Shukla, D.; Kesari, R.; Tiwari, M.; Dwivedi, S.; Tripathi, R.D.; Nath, P.; Trivedi, P.K. Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma, 2013, 250(6), 1263-1272.
[http://dx.doi.org/10.1007/s00709-013-0508-9] [PMID: 23702817]
Wang, G.D.; Li, Q.J.; Luo, B.; Chen, X.Y. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat. Biotechnol., 2004, 22(7), 893-897.
[http://dx.doi.org/10.1038/nbt982] [PMID: 15195102]
Guo, J.; Dai, X.; Xu, W.; Ma, M. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 2008, 72(7), 1020-1026.
[http://dx.doi.org/10.1016/j.chemosphere.2008.04.018] [PMID: 18504054]
Hirschi, K.D.; Korenkov, V.D.; Wilganowski, N.L.; Wagner, G.J. Expression of arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol., 2000, 124(1), 125-133.
[http://dx.doi.org/10.1104/pp.124.1.125] [PMID: 10982428]
Ezaki, B.; Suzuki, M.; Motoda, H.; Kawamura, M.; Nakashima, S.; Matsumoto, H. Mechanism of gene expression of Arabidopsis glutathione S-transferase, AtGST1, and AtGST11 in response to aluminum stress. Plant Physiol., 2004, 134(4), 1672-1682.
[http://dx.doi.org/10.1104/pp.103.037135] [PMID: 15047894]
Goto, F.; Yoshihara, T.; Shigemoto, N.; Toki, S.; Takaiwa, F. Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol., 1999, 17(3), 282-286.
[http://dx.doi.org/10.1038/7029] [PMID: 10096297]
D Souza, M.P.; Pilon-Smits, E.A.H.; Terry, N. The physiology and biochemistry of selenium volatilization by plants. In:Phytoremediation of toxic metals: using plants to clean up the environment,; Raskin, I.; Ensley, B.D. Eds.;. , 2000, pp. 171-188.
Clemens, S.; Palmgren, M.G.; Krämer, U. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci., 2002, 7(7), 309-315.
[http://dx.doi.org/10.1016/S1360-1385(02)02295-1] [PMID: 12119168]
Dhankher, O.P.; Li, Y.; Rosen, B.P.; Shi, J.; Salt, D.; Senecoff, J.F.; Sashti, N.A.; Meagher, R.B. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol., 2002, 20(11), 1140-1145.
[http://dx.doi.org/10.1038/nbt747] [PMID: 12368812]
Grichko, V.P.; Filby, B.; Glick, B.R. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J. Biotechnol., 2000, 81(1), 45-53.
[http://dx.doi.org/10.1016/S0168-1656(00)00270-4] [PMID: 10936659]
Xie, Q.-E.; Yan, X.-L.; Liao, X.-Y.; Li, X. The arsenic hyperaccumulator fern Pteris vittata L. Environ. Sci. Technol., 2009, 43(22), 8488-8495.
[http://dx.doi.org/10.1021/es9014647] [PMID: 20028042]
Briskine, R.V.; Paape, T.; Shimizu-Inatsugi, R.; Nishiyama, T.; Akama, S.; Sese, J.; Shimizu, K.K. Genome assembly and annotation of Arabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology. Mol. Ecol. Resour., 2017, 17(5), 1025-1036.
[http://dx.doi.org/10.1111/1755-0998.12604] [PMID: 27671113]
Rani, R.; Padole, P.; Juwarkar, A.; Chakrabarti, T. Phytotransformation of phorate by Brassica juncea (Indian Mustard). Water Air Soil Pollut., 2011, 223, 1383-1392.
Zaidi, S.S-A.; Mahfouz, M.M.; Mansoor, S. CRISPR-Cpf1: A new tool for plant genome editing. Trends Plant Sci., 2017, 22(7), 550-553.
[http://dx.doi.org/10.1016/j.tplants.2017.05.001] [PMID: 28532598]
Basharat, Z.; Novo, L.A.B.; Yasmin, A. Genome editing weds CRISPR: what is in it for phytoremediation? Plants (Basel), 2018, 7(3), 51.
[http://dx.doi.org/10.3390/plants7030051] [PMID: 30720787]
Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 2014, 32(4), 347-355.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
Yin, K.; Gao, C.; Qiu, J.L. Progress and prospects in plant genome editing. Nat. Plants, 2017, 3, 17107.
[http://dx.doi.org/10.1038/nplants.2017.107] [PMID: 28758991]
Xia, Y.; Qi, Y.; Yuan, Y.; Wang, G.; Cui, J.; Chen, Y.; Zhang, H.; Shen, Z. Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. J. Hazard. Mater., 2012, 233-234, 65-71.
[http://dx.doi.org/10.1016/j.jhazmat.2012.06.047] [PMID: 22818176]
Pianelli, K.; Mari, S.; Marquès, L.; Lebrun, M.; Czernic, P. Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transgenic Res., 2005, 14(5), 739-748.
[http://dx.doi.org/10.1007/s11248-005-7159-3] [PMID: 16245165]
Mandáková, T.; Singh, V.; Krämer, U.; Lysak, M.A. Genome structure of the heavy metal hyperaccumulator noccaea caerulescens and its stability on metalliferous and nonmetalliferous soils. Plant Physiol., 2015, 169(1), 674-689.
[http://dx.doi.org/10.1104/pp.15.00619] [PMID: 26195571]
Kim, S.; Takahashi, M.; Higuchi, K.; Tsunoda, K.; Nakanishi, H.; Yoshimura, E.; Mori, S.; Nishizawa, N.K. Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol., 2005, 46(11), 1809-1818.
[http://dx.doi.org/10.1093/pcp/pci196] [PMID: 16143596]
Auguy, F.; Fahr, M.; Moulin, P.; El Mzibri, M.; Smouni, A.; Filali-Maltouf, A.; Béna, G.; Doumas, P. Transcriptome changes in Hirschfeldia incana in response to lead exposure. Front. Plant Sci., 2016, 6, 1231.
[http://dx.doi.org/10.3389/fpls.2015.01231] [PMID: 26793211]
Mosa, K.A.; Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O.P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci., 2016, 7, 303.
[http://dx.doi.org/10.3389/fpls.2016.00303] [PMID: 27014323]
Boivin, S.; Fonouni-Farde, C.; Frugier, F. How auxin and cytokinin phytohormones modulate root microbe interactions. Front. Plant Sci., 2016, 7, 1240.
[http://dx.doi.org/10.3389/fpls.2016.01240] [PMID: 27588025]
Thode, S.K.; Rojek, E.; Kozlowski, M.; Ahmad, R.; Haugen, P. Distribution of siderophore gene systems on a Vibrionaceae phylogeny: database searches, phylogenetic analyses and evolutionary perspectives. PLoS One, 2018, 13(2), e0191860.
[http://dx.doi.org/10.1371/journal.pone.0191860] [PMID: 29444108]
Kong, Z.; Wu, Z.; Glick, B.R.; He, S.; Huang, C.; Wu, L. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils. Ecotoxicol. Environ. Saf., 2019, 183, 109504.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109504] [PMID: 31421537]
Chinnaswamy, A.; Coba de la Peña, T.; Stoll, A.; de la Peña Rojo, D.; Bravo, J.; Rincón, A.; Lucas, M.M.; Pueyo, J.J. A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances plants growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann. Appl. Biol., 2018, 172, 295-308.
Khan, Z.; Doty, S. Endophyte-assisted phytoremediation. Curr. Topics Plant Biol., 2011, 12, 97-105.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [334 - 342]
Pages: 9
DOI: 10.2174/1389202921999200623133240
Price: $65

Article Metrics

PDF: 35