Selective Targeted Drug Delivery Mechanism via Molecular Imprinted Polymers in Cancer Therapeutics

Author(s): Renuka Suravajhala*, Harshavardhan Reddy Burri, Babita Malik*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 22 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Artificial receptor-like structures such as molecular imprinted polymers (MIPs) are biomimetic molecules are used to replicate target specific antibody-antigen mechanism. In MIPs, selective binding of template molecule can be significantly correlated with lock and key mechanism, which play a major role in the drug delivery mechanism. The MIPs are biocompatible with high efficiency and are considered in several drug delivery and biosensor applications besides continuous and controlled drug release leading to better therapeutics. There is a need to explore the potential synthetic methods to improve MIPs with respect to the imprinting capacity in cancer therapeutics. In this review, we focus on MIPs as drug delivery mechanism in cancer and the challenges related to their synthesis and applications.

Keywords: Molecular imprinting polymers, Biomimetic, Artificial receptor, Drug delivery mechanism, Antibody-antigen, Selective binding, Biocompatible, Cancer.

[1]
Alizadeh, T.; Nayeri, S.; Mirzaee, S. A high performance potentiometric sensor for lactic acid determination based on molecularly imprinted polymer/MWCNTs/PVC nanocomposite film covered carbon rod electrode. Talanta, 2019, 192, 103-111.
[http://dx.doi.org/10.1016/j.talanta.2018.08.027] [PMID: 30348364]
[2]
BelBruno, J.J. J.J.; . Molecularly imprinted polymers. Chem. Rev., 2019, 119(1), 94-119.
[http://dx.doi.org/10.1021/acs.chemrev.8b00171] [PMID: 30246529]
[3]
Cheong, W.J. Zaidi, S. A.; & Kim.; Y. S. An open tubular CEC column of excellent separation efficiency for proteomic analysis. Bull. Korean Chem. Soc., 2014, 35, 3115-3118.
[http://dx.doi.org/10.5012/bkcs.2014.35.10.3115]
[4]
Canfarotta, F.; Lezina, L.; Guerreiro, A.; Czulak, J.; Petukhov, A.; Daks, A.; Smolinska-Kempisty, K.; Poma, A.; Piletsky, S.; Barlev, N.A. Specific drug delivery to cancer cells with double-imprinted nanoparticles against epidermal growth factor receptor. Nano Lett., 2018, 18(8), 4641-4646.
[http://dx.doi.org/10.1021/acs.nanolett.7b03206] [PMID: 29969563]
[5]
Couvreur, P. Nanoparticles in drug delivery: past, present and future. Adv. Drug Deliv. Rev., 2013, 65(1), 21-23.
[http://dx.doi.org/10.1016/j.addr.2012.04.010] [PMID: 22580334]
[6]
Chen, H.T.; Neerman, M.F.; Parrish, A.R.; Simanek, E.E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc., 2004, 126(32), 10044-10048.
[http://dx.doi.org/10.1021/ja048548j] [PMID: 15303879]
[7]
Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens. Bioelectron., 2018, 102, 17-26.
[http://dx.doi.org/10.1016/j.bios.2017.10.045] [PMID: 29101784]
[8]
Deka, S.; Saxena, V.; Hasan, A.; Chandra, P.; Pandey, L.M. Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Mater. Sci. Eng. C, 2018, 92, 932-941.
[http://dx.doi.org/10.1016/j.msec.2018.07.042] [PMID: 30184823]
[9]
Dreaden, E.C.; Austin, L.A.; Mackey, M.A.; El-Sayed, M.A. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Deliv., 2012, 3(4), 457-478.
[http://dx.doi.org/10.4155/tde.12.21] [PMID: 22834077]
[10]
Esfandyari-Manesh, M.; Darvishi, B.; Ishkuh, F.A.; Shahmoradi, E.; Mohammadi, A.; Javanbakht, M.; Dinarvand, R.; Atyabi, F. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity. Mater. Sci. Eng. C, 2016, 62, 626-633.
[http://dx.doi.org/10.1016/j.msec.2016.01.059] [PMID: 26952466]
[11]
Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron., 2018, 100, 56-70.
[http://dx.doi.org/10.1016/j.bios.2017.08.058] [PMID: 28863325]
[12]
Gu, Y.; Zhong, Y.; Meng, F.; Cheng, R.; Deng, C.; Zhong, Z. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromolecules, 2013, 14(8), 2772-2780.
[http://dx.doi.org/10.1021/bm400615n] [PMID: 23777504]
[13]
Hashemi-Moghaddam, H.; Zavareh, S.; Karimpour, S.; Madanchi, H. Evaluation of molecularly imprinted polymer based on HER2 epitope for targeted drug delivery in ovarian cancer mouse model. React. Funct. Polym., 2017, 121, 82-90.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.10.025]
[14]
Han, L. Su.; M. Zhai, L.; Ma, S.; Liu, Y.; Teng.; A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells. J. Mater. Sci., 2019, 54, 3331-3341.
[http://dx.doi.org/10.1007/s10853-018-3023-8]
[15]
Hemmati, K.; Sahraei, R.; Ghaemy, M. Synthesis and characterization of a novel magnetic molecularly imprinted polymer with incorporated graphene oxide for drug delivery. Polymer (Guildf.), 2016, 101, 257-268.
[http://dx.doi.org/10.1016/j.polymer.2016.08.074]
[16]
Hainey, P.; Huxham, I.M.; Rowatt, B.; Sherrington, D.C.; Tetley, L. Synthesis and ultrastructural studies of styrene-divinylbenzene polyhipe polymers. Macromolecules, 1991, 24, 117-121.
[http://dx.doi.org/10.1021/ma00001a019]
[17]
Hemmati, K.; Masoumi, A.; Ghaemy, M. Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release. Carbohydr. Polym., 2016, 136, 630-640.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.006] [PMID: 26572395]
[18]
Idris, N.M.; Gnanasammandhan, M.K.; Zhang, J.; Ho, P.C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med., 2012, 18(10), 1580-1585.
[http://dx.doi.org/10.1038/nm.2933] [PMID: 22983397]
[19]
Jang, R.; Kim, K.H.; Zaidi, S.A.; Cheong, W.J.; Moon, M.H. Analysis of phospholipids using an open-tubular capillary column with a monolithic layer of molecularly imprinted polymer in capillary electrochromatography-electrospray ionization-tandem mass spectrometry. Electrophoresis, 2011, 32(16), 2167-2173.
[http://dx.doi.org/10.1002/elps.201100205] [PMID: 21766477]
[20]
Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev., 2018, 47(15), 5574-5587.
[http://dx.doi.org/10.1039/C7CS00854F] [PMID: 29876564]
[21]
Saylan, Y.; Akgönüllü, S.; Yavuz, H.; Ünal, S.; Denizli, A. Molecularly imprinted polymerbased sensors for medical applications. Sensors (Basel), 2019, 19(6), 1279.
[http://dx.doi.org/10.3390/s19061279] [PMID: 30871280]
[22]
Tan, S.; Saito, K.; Hearn, M.T. Stimuli-responsive polymeric materials for separation of biomolecules. Curr. Opin. Biotechnol., 2018, 53, 209-223.
[http://dx.doi.org/10.1016/j.copbio.2018.02.011] [PMID: 29549873]
[23]
Kumari, S.; Ram, B.; Kumar, D.; Ranote, S.; Chauhan, G.S. Nanoparticles of oxidized cellulose synthesized by green method. Materials Science for Energy Technologies., 2018, 1(1), 22-28.
[http://dx.doi.org/10.1016/j.mset.2018.04.003]
[24]
Ky, K. Nanotechnology platforms and physiological challenges for cancer therapeutic. Nanomedicine (Lond.), 2007, 3, 103.
[25]
Li, L.; Chen, L.; Zhang, H.; Yang, Y.; Liu, X.; Chen, Y. Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil. Mater. Sci. Eng. C, 2016, 61, 158-168.
[http://dx.doi.org/10.1016/j.msec.2015.12.027] [PMID: 26838836]
[26]
Liu, S.; Bi, Q.; Long, Y.; Li, Z.; Bhattacharyya, S.; Li, C. Inducible epitope imprinting: ‘generating’ the required binding site in membrane receptors for targeted drug delivery. Nanoscale, 2017, 9(17), 5394-5397.
[http://dx.doi.org/10.1039/C6NR09449J] [PMID: 28422195]
[27]
Luliński, P. Molecularly imprinted polymers based drug delivery devices: a way to application in modern pharmacotherapy. A review. Mater. Sci. Eng. C, 2017, 76, 1344-1353.
[http://dx.doi.org/10.1016/j.msec.2017.02.138] [PMID: 28482502]
[28]
Li, Z.; Tan, S.; Li, S.; Shen, Q.; Wang, K. Cancer drug delivery in the nano era: An overview and perspectives. Oncol. Rep., 2017, 38(2), 611-624.
[http://dx.doi.org/10.3892/or.2017.5718] [PMID: 28627697]
[29]
Liu, D.; He, C.; Wang, A.Z.; Lin, W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int. J. Nanomedicine, 2013, 8, 3309-3319.
[PMID: 24023517]
[30]
Mahato, K.; Nagpal, S.; Shah, M. A.; Srivastava, A.; Maurya, P. K.; Roy, S.; Jaiswal, A.; Chandra, P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech., , 2019, 9(2), 57.
[31]
Miele, E.; Spinelli, G.P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine, 2009, 4, 99-105.
[PMID: 19516888]
[32]
Moghimi, S.M.; Symonds, P.; Murray, J.C.; Hunter, A.C.; Debska, G.; Szewczyk, A. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther., 2005, 11(6), 990-995.
[http://dx.doi.org/10.1016/j.ymthe.2005.02.010] [PMID: 15922971]
[33]
Ndunda, E.N.; Mizaikoff, B. Molecularly imprinted polymers for the analysis and removal of polychlorinated aromatic compounds in the environment: a review. Analyst (Lond.), 2016, 141(11), 3141-3156.
[http://dx.doi.org/10.1039/C6AN00293E] [PMID: 27109025]
[34]
Narvekar, M.; Xue, H.Y.; Eoh, J.Y.; Wong, H.L. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech, 2014, 15(4), 822-833.
[http://dx.doi.org/10.1208/s12249-014-0107-x] [PMID: 24687241]
[35]
Peng, S.; Wang, Y.; Li, N.; Li, C. Enhanced cellular uptake and tumor penetration of nanoparticles by imprinting the “hidden” part of membrane receptors for targeted drug delivery. Chem. Commun. (Camb.), 2017, 53(81), 11114-11117.
[http://dx.doi.org/10.1039/C7CC05894B] [PMID: 28929142]
[36]
Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Iemma, F.; Picci, N. Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert Opin. Drug Deliv., 2011, 8(10), 1379-1393.
[http://dx.doi.org/10.1517/17425247.2011.609166] [PMID: 21933031]
[37]
Paul, P.K.; Treetong, A.; Suedee, R. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. Acta Pharm., 2017, 67(2), 149-168.
[http://dx.doi.org/10.1515/acph-2017-0020] [PMID: 28590908]
[38]
Parisi, O.I.; Ruffo, M.; Malivindi, R.; Vattimo, A.F.; Pezzi, V.; Puoci, F. Molecularly imprinted polymers (MIPs) as theranostic systems for sunitinib controlled release and self-monitoring in cancer therapy. Pharmaceutics, 2020, 12(1), 41.
[http://dx.doi.org/10.3390/pharmaceutics12010041] [PMID: 31947815]
[39]
Parisi, O.I.; Morelli, C.; Scrivano, L.; Sinicropi, M.S.; Cesario, M.G.; Candamano, S.; Puoci, F.; Sisci, D. Controlled release of sunitinib in targeted cancer therapy: smart magnetically responsive hydrogels as restricted access materials. RSC Advances, 2015, 5(80), 65308-65315.
[http://dx.doi.org/10.1039/C5RA12229E]
[40]
Qin, Y.T.; Peng, H.; He, X.W.; Li, W.Y.; Zhang, Y.K. Highly effective drug delivery and cell imaging using fluorescent double-imprinted nanoparticles by targeting recognition of the epitope of membrane protein. Anal. Chem., 2019, 1891(20), 12696-12703.
[http://dx.doi.org/10.1021/acs.analchem.9b02123]
[41]
Sellergren, B.; Allender, C.J. Molecularly imprinted polymers: a bridge to advanced drug delivery. Adv. Drug Deliv. Rev., 2005, 57(12), 1733-1741.
[http://dx.doi.org/10.1016/j.addr.2005.07.010] [PMID: 16253386]
[42]
Srivastava, A.; Chandra, P. Marine biomaterials in therapeutics and diagnostic. In: Handbook of Marine Biotechnolog; Springer: Berlin, Heidelberg, 2015, pp. 1247-1263.
[43]
Suksuwan, A.; Lomlim, L.; Rungrotmongkol, T.; Nakpheng, T.; Dickert, F.L.; Suedee, R. The composite nanomaterials containing (R)‐thalidomide‐molecularly imprinted polymers as a recognition system for enantioselective‐controlled release and targeted drug delivery. J. Appl. Polym. Sci., 2015, 132(18)
[http://dx.doi.org/10.1002/app.41930]
[44]
Tuwahatu, C.A.; Yeung, C.C.; Lam, Y.W.; Roy, V.A.L. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J. Control. Release, 2018, 287, 24-34.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.023] [PMID: 30110614]
[45]
Takeuchi, T.; Kitayama, Y.; Sasao, R.; Yamada, T.; Toh, K.; Matsumoto, Y.; Kataoka, K. Molecularly imprinted nanogels acquire stealth in situ by cloaking themselves with native dysopsonic proteins. Angew. Chem. Int. Ed. Engl., 2017, 56(25), 7088-7092.
[http://dx.doi.org/10.1002/anie.201700647] [PMID: 28455941]
[46]
Tiwari, M.P.; Prasad, A. Molecularly imprinted polymer based enantioselective sensing devices: a review. Anal. Chim. Acta, 2015, 853, 1-18.
[http://dx.doi.org/10.1016/j.aca.2014.06.011] [PMID: 25467446]
[47]
Tan, S.; Gan, C.; Li, R.; Ye, Y.; Zhang, S.; Wu, X.; Yang, Y.Y.; Fan, W.; Wu, M. A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model. Int. J. Nanomedicine, 2015, 10, 1045-1059.
[http://dx.doi.org/10.2147/IJN.S73303] [PMID: 25709431]
[48]
Wang, X.L.; Yao, H.F.; Li, X.Y.; Wang, X.; Huang, Y.P.; Liu, Z.S. pH/temperature-sensitive hydrogel-based molecularly imprinted polymers (hydroMIPs) for drug delivery by frontal polymerization. RSC Advances, 2016, 6(96), 94038-94047.
[http://dx.doi.org/10.1039/C6RA20626C]
[49]
Yang, K.; Zhang, L.; Liang, Z.; Zhang, Y. Protein-imprinted materials: rational design, application and challenges. Anal. Bioanal. Chem., 2012, 403(8), 2173-2183.
[http://dx.doi.org/10.1007/s00216-012-5840-y] [PMID: 22367246]
[50]
Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal. Chim. Acta, 2017, 960, 1-17.
[http://dx.doi.org/10.1016/j.aca.2017.01.003] [PMID: 28193351]
[51]
Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X.; Xing, B. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. Engl., 2012, 51(13), 3125-3129.
[http://dx.doi.org/10.1002/anie.201107919] [PMID: 22241651]
[52]
Zhang, K.; Guan, X.; Qiu, Y.; Wang, D.; Zhang, X.; Zhang, H. A pH/glutathione double responsive drug delivery system using molecular imprint technique for drug loading. Appl. Surf. Sci., 2016, 389, 1208-1213.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.107]
[53]
Zaidi, S.A. Molecular imprinting: A useful approach for drug delivery. Materials Science for Energy Technologies, 2020, 3, 72-77.
[http://dx.doi.org/10.1016/j.mset.2019.10.012]
[54]
Zhao, B.; Zhao, H.; Zhao, J. Risk of fatal adverse events in cancer patients treated with sunitinib. Crit. Rev. Oncol. Hematol., 2019, 137, 115-122.
[http://dx.doi.org/10.1016/j.critrevonc.2019.03.007] [PMID: 31014507]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 22
Year: 2020
Page: [1993 - 1998]
Pages: 6
DOI: 10.2174/1568026620666200622150710
Price: $65

Article Metrics

PDF: 26
HTML: 9