Recent Trends in Drug Design and Discovery

Author(s): Devadasan Velmurugan*, R. Pachaiappan, Chandrasekaran Ramakrishnan*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 19 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Introduction: Structure-based drug design is a wide area of identification of selective inhibitors of a target of interest. From the time of the availability of three dimensional structure of the drug targets, mostly the proteins, many computational methods had emerged to address the challenges associated with drug design process. Particularly, drug-likeness, druggability of the target protein, specificity, off-target binding, etc., are the important factors to determine the efficacy of new chemical inhibitors.

Objective: The aim of the present research was to improve the drug design strategies in field of design of novel inhibitors with respect to specific target protein in disease pathology. Recent statistical machine learning methods applied for structural and chemical data analysis had been elaborated in current drug design field.

Methods: As the size of the biological data shows a continuous growth, new computational algorithms and analytical methods are being developed with different objectives. It covers a wide area, from protein structure prediction to drug toxicity prediction. Moreover, the computational methods are available to analyze the structural data of varying types and sizes of which, most of the semi-empirical force field and quantum mechanics based molecular modeling methods showed a proven accuracy towards analysing small structural data sets while statistics based methods such as machine learning, QSAR and other specific data analytics methods are robust for large scale data analysis.

Results: In this present study, the background has been reviewed for new drug lead development with respect specific drug targets of interest. Overall approach of both the extreme methods were also used to demonstrate with the plausible outcome.

Conclusion: In this chapter, we focus on the recent developments in the structure-based drug design using advanced molecular modeling techniques in conjunction with machine learning and other data analytics methods. Natural products based drug discovery is also discussed.

Keywords: Structure-based drug design, SBDD, Machine learning, QSAR, Data analytics, Data science.

(a) Jones, D.T.; Taylor, W.R.; Thornton, J.M. A new approach to protein fold recognition. Nature, 1992, 358(6381), 86-89.
[] [PMID: 1614539]
bBowie, J.U.; Lüthy, R.; Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science, 1991, 253(5016), 164-170.
[] [PMID: 1853201]
(a) Lengauer, T.; Rarey, M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol., 1996, 6(3), 402-406.
[] [PMID: 8804827]
bMorris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.
[] [PMID: 18446297]
Englebienne, P.; Moitessier, N. Docking ligands into flexible and solvated macromolecules. 4. Are popular scoring functions accurate for this class of proteins? J. Chem. Inf. Model., 2009, 49(6), 1568-1580.
[] [PMID: 19445499]
Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V.; Mee, R.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des., 1997, 11(5), 425-445.
[] [PMID: 9385547]
McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of folded proteins. Nature, 1977, 267(5612), 585-590.
[] [PMID: 301613]
Alder, B.J.; Wainwright, T.E. Phase transition for a hard sphere system. J. Chem. Phys., 1957, 27(5), 1208-1209.
Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol., 2002, 9(9), 646-652.
[] [PMID: 12198485]
Weiner, S.J.; Kollman, P.A.; Case, D.A.; Singh, U.C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc., 1984, 106(3), 765-784.
Weiner, S.J.; Kollman, P.A.; Nguyen, D.T.; Case, D.A. An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem., 1986, 7(2), 230-252.
[] [PMID: 29160584]
(a) Fox, T.; Kollman, P.A. Application of the RESP methodology in the parametrization of organic solvents. J. Phys. Chem. B, 1998, 102(41), 8070-8079.
bBayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem., 1993, 97(40), 10269-10280.
cCornell, W.D.; Cieplak, P.; Bayly, C.I.; Kollmann, P.A. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc., 1993, 115(21), 9620-9631.
dCornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A Second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 1995, 117(19), 5179-5197.
(a) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem., 2003, 24(16), 1999-2012.
[] [PMID: 14531054]
bCieplak, P.; Caldwell, J.; Kollman, P. Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J. Comput. Chem., 2001, 22(10), 1048-1057.
cWang, J.; Cieplak, P.; Kollman, P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem., 2000, 21(12), 1049-1074.
(a) Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[] [PMID: 15116359]
bDickson, C.J.; Madej, B.D.; Skjevik, A.A.; Betz, R.M.; Teigen, K.; Gould, I.R.; Walker, R.C. Lipid14: the amber lipid force field. J. Chem. Theory Comput., 2014, 10(2), 865-879.
[] [PMID: 24803855]
MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18), 3586-3616.
[] [PMID: 24889800]
Mackerell, A.D., Jr; Feig, M.; Brooks, C.L., III Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem., 2004, 25(11), 1400-1415.
[] [PMID: 15185334]
MacKerell, A.D., Jr; Banavali, N.; Foloppe, N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 2000-2001, 56(4), 257-265.
[<257:AID-BIP10029>3.0.CO;2-W] [PMID: 11754339]
Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145.
[] [PMID: 23832629]
Stocker, U.; van Gunsteren, W.F. Molecular dynamics simulation of hen egg white lysozyme: a test of the GROMOS96 force field against nuclear magnetic resonance data. Proteins, 2000, 40(1), 145-153.
[<145:AID-PROT160>3.0.CO;2-Y] [PMID: 10813839]
(a) Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; van Gunsteren, W.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J., 2011, 40(7), 843-856.
[] [PMID: 21533652]
bLin, Z.; van Gunsteren, W.F. Refinement of the application of the GROMOS 54A7 force field to β-peptides. J. Comput. Chem., 2013, 34(32), 2796-2805.
[] [PMID: 24122968]
cMarzuoli, I.; Margreitter, C.; Fraternali, F. Lipid Head Group Parameterization for GROMOS 54A8: A consistent approach with protein force field description. J. Chem. Theory Comput., 2019, 15(10), 5175-5193.
[] [PMID: 31433640]
dEichenberger, A.P.; Huang, W.; Riniker, S.; van Gunsteren, W.F. Supra-atomic coarse-grained gromos force field for aliphatic hydrocarbons in the liquid phase. J. Chem. Theory Comput., 2015, 11(7), 2925-2937.
[] [PMID: 26575730]
(a) Jorgensen, W.L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 1988, 110(6), 1657-1666.
[] [PMID: 27557051]
bJorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236.
Connolly, M. Analytical molecular surface calculation. J. Appl. Cryst., 1983, 16(5), 548-558.
Brooks, B.R.; Janežič, D.; Karplus, M. Harmonic analysis of large systems. I. Methodology. J. Comput. Chem., 1995, 16(12), 1522-1542.
Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D.; Wiewiora, R.P.; Brooks, B.R.; Pande, V.S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol., 2017, 13(7)e1005659
[] [PMID: 28746339]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[] [PMID: 16211538]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[] [PMID: 16200636]
Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M. Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R.M.; Woodcock, H.L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M. CHARMM: the biomolecular simulation program. J. Comput. Chem., 2009, 30(10), 1545-1614.
[] [PMID: 19444816]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[] [PMID: 16222654]
Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat., 1992, 46(3), 175-185.
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
Strobl, C.; Malley, J.; Tutz, G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods, 2009, 14(4), 323-348.
[] [PMID: 19968396]
(a) Chiba, S.; Ikeda, K.; Ishida, T.; Gromiha, M.M.; Taguchi, Y.H.; Iwadate, M.; Umeyama, H.; Hsin, K.Y.; Kitano, H.; Yamamoto, K.; Sugaya, N.; Kato, K.; Okuno, T.; Chikenji, G.; Mochizuki, M.; Yasuo, N.; Yoshino, R.; Yanagisawa, K.; Ban, T.; Teramoto, R.; Ramakrishnan, C.; Thangakani, A.M.; Velmurugan, D.; Prathipati, P.; Ito, J.; Tsuchiya, Y.; Mizuguchi, K.; Honma, T.; Hirokawa, T.; Akiyama, Y.; Sekijima, M. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target. Sci. Rep., 2015, 5, 17209.
[] [PMID: 26607293]
bRamakrishnan, C.; Mary Thangakani, A.; Velmurugan, D.; Anantha Krishnan, D.; Sekijima, M.; Akiyama, Y.; Gromiha, M.M. Identification of type I and type II inhibitors of c-Yes kinase using in silico and experimental techniques. J. Biomol. Struct. Dyn., 2018, 36(6), 1566-1576.
[] [PMID: 28589758]
(a) Li, J.; Zheng, S.; Chen, B.; Butte, A.J.; Swamidass, S.J.; Lu, Z. A survey of current trends in computational drug repositioning. Brief. Bioinform., 2016, 17(1), 2-12.
[] [PMID: 25832646]
bDelavan, B.; Roberts, R.; Huang, R.; Bao, W.; Tong, W.; Liu, Z. Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discov. Today, 2018, 23(2), 382-394.
[] [PMID: 29055182]
Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[] [PMID: 26852623]
Suhitha, S.; Devi, S.K.; Gunasekaran, K.; Pakyntein, H.C.; Bhattacharjee, A.; Velmurugan, D. Phytochemical analyses and activity of herbal medicinal plants of North- East India for anti-diabetic, anti-cancer and anti-tuberculosis and their docking studies. Curr. Top. Med. Chem., 2015, 15(1), 21-36.
[] [PMID: 25579573]
(a) Xing, Z.; Zhang, Y.; Zhang, X.; Yang, Y.; Ma, Y.; Pang, D. Fangchinoline induces G1 arrest in breast cancer cells through cell-cycle regulation. Phytother. Res., 2013, 27(12), 1790-1794.
[] [PMID: 23401195]
bSun, Y.F.; Wink, M. Tetrandrine and fangchinoline, bisbenzylisoquinoline alkaloids from Stephania tetrandra can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant human cancer cells. Phytomedicine, 2014, 21(8-9), 1110-1119.
Mohan, K.; Pakyntein, H.C.; Bhattacharjee, A.; Viswanathan, V.; Velmurugan, D. Discovery of novel-anti-cancer compound from the identified phytoconstituent of “Jabung” an herbal medicinal plant. RJBPCS, 2018, 4(6), 612-628.
Mohan, K.; Marthong, B.; Atanu, B.; Wadhwani, A.; Gayathri, D.; Velmurugan, D. Identification and in-silico analysis of anti-cancer compounds from herbal mix of North-East India. RJLBPS, 2018, 4(5), 485-497.
Mohan, K.; Rangasamy, K.; Viswanathan, V.; Velmurugan, D. Identification of potential anti-cancer leads from Sivakanthai-Sphaeranthus Amaranthoides- Using tandem mass and their in silica studies. RJBPCS, 2018, 4(6), 335-356.
Subasri, S.; Viswanathan, V.; Manish, K.; Velmurugan, D. Phytochemical analysis, molecular docking and molecular dynamics simulations of selected phytoconstituents from four herbs as anti-dotes for snake bites. Clin Proteom Bioinform, 2016, 1(3), 1-13.
Suhitha, S.; Mohan, K.; Rampriya, U.; Manohar, V.; Kesavan, M.; Rangasamy, K.S.; Velmurugan, D. Suhitha, S.; Mohan, K,; Rampriya, U.; Manohar, V.; Kesavan, M.; Rangasamy, KS.; Velmurugan, D.; In: Tandem mass spectrometry enables characterization of the major phytoconstituents of “Sivakaranthai”- Sphaeranthus Amaranthoides - An Indian rejuvenator herb. Proceedings of 62nd ASMS Conference on Mass Spectroscopy and Allied Subjects, June 15-19 , 2014. Baltimore, Maryland, USA - WP 328.
Gayatri, S.; Suresh, R.; Reddy, C.U.; Chitra, K. Isolation and characterization of chemopreventive agent from sphaeranthus amaranthoides. Burm. F. Phcog. Res., 2016, 8, 61-65.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [1761 - 1770]
Pages: 10
DOI: 10.2174/1568026620666200622150003
Price: $65

Article Metrics

PDF: 50