Nanoparticles as Budding Trends in Colon Drug Delivery for the Management of Ulcerative Colitis

Author(s): Amandeep Singh*, Kirandeep Kaur, Uttam Kumar Mandal, Raj Kumar Narang

Journal Name: Current Nanomedicine
(Formerly Recent Patents on Nanomedicine)

Volume 10 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Inflammatory Bowel Disease (IBD) is a disorder of the gastrointestinal tract, which is characterized by Crohn’s disease and Ulcerative colitis. Ulcerative colitis (UC) is a chronic idiopathic relapsing colon disease distinguishes by the interference of epithelial wall and colonic site tenderness. For the treatment of ulcerative colitis, various side effects have been reported, due to the non-specific delivery of the targeted drug of the conventional system. This review will explain the reader about various considerations for the preparation of orally administered NPs drug delivery systems for the treatment of ulcerative colitis. Moreover, principles and novel strategies for colon targeting based on the physiology of colon so that the tract of gastro intestine can be used as the identification marker for a target site for drugs. Besides this, the role of phytomedicines in controlling and managing the ulcerative colitis has been discussed. Additionally, the major problem for the smart delivery of NPs in clinical applications with their difficulties in Intellectual Property Rights (IPR) was also discussed. Finally, this review provides various potential approaches to NPs for the treatment of UC.

Keywords: Colon targeted drug delivery, identification markers, nanoparticles, ulcerative colitis, Inflammatory Bowel Disease (IBD), Crohn’s disease.

[1]
Messaris E, Dassopoulos T. concepts in inflammatory bowel disease management inshackelford’s surgery of the alimentary. Tract 2019; 2: 1888-918.
[2]
Nidhi Rashid M, Kaur V, Hallan SS, Sharma S, Mishra N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm J 2016; 24(4): 458-72.
[http://dx.doi.org/10.1016/j.jsps.2014.10.001] [PMID: 27330377]
[3]
Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review. JAMA 2015; 313(9): 949-58.
[http://dx.doi.org/10.1001/jama.2015.0954] [PMID: 25734736]
[4]
Poggioli G, Salice M, Renzi N, Campieri M. History of ulcerative colitis, inulcerative colitis. Milano: Springer 2019; pp. 1-16.
[http://dx.doi.org/10.1007/978-88-470-3977-3]
[5]
Peterson TE, Siegel CA. Risks and side effects of medical therapy, ininflammatory bowel disease nursing manual. Cham: Springer 2019; pp. 125-32.
[http://dx.doi.org/10.1007/978-3-319-75022-4_15]
[6]
Barnes J. Biologic agents to control autoimmune inflammation, in translational inflammation. Academic Press 2019; pp. 177-91.
[7]
Örtqvist AK, Lundholm C, Halfvarson J, Ludvigsson JF, Almqvist C. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut 2019; 68(2): 218-25.
[http://dx.doi.org/10.1136/gutjnl-2017-314352] [PMID: 29321166]
[8]
Sharma S, Sinha VR. Current pharmaceutical strategies for efficient site specific delivery in inflamed distal intestinal mucosa. J Control Release 2018; 272: 97-106.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.003] [PMID: 29317245]
[9]
Kang JH, Hwang JY, Seo JW, Kim HS, Shin US. Small intestine- and colon-specific smart oral drug delivery system with controlled release characteristic. Mater Sci Eng C 2018; 91: 247-54.
[http://dx.doi.org/10.1016/j.msec.2018.05.052] [PMID: 30033252]
[10]
Dewan N, Ahmed AB, Dasgupta D. Review on colon targeted drug delivery for inflammatory bowel disease. J Pharm Innov 2018; 7(1): 98-103.
[http://dx.doi.org/10.13040/IJPSR.0975-8232]
[11]
Singh CK, Saxena S, Yadav M, Samson AL. A review on novel approaches for colon targeted drug delivery systems. Pharma Tutor 2018; pp. 11-22.
[12]
Litou C, Effinger A, Kostewicz ES, Box KJ, Fotaki N, Dressman JB. Effects of medicines used to treat gastrointestinal diseases on the pharmacokinetics of coadministered drugs: a PEARRL Review. J Pharm Pharmacol 2019; 71(4): 643-73.
[http://dx.doi.org/10.1111/jphp.12983 ] [PMID: 30062750]
[13]
Wilding I. Site-specific drug delivery in the gastrointestinal tract. Crit Rev Ther Drug Carrier Syst 2000; 17(6): 557-620.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v17.i6.10] [PMID: 11204736]
[14]
Davoudi Z, Peroutka-Bigus N, Bellaire B, et al. Intestinal organoids containing poly(lactic-co-glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. J Biomed Mater Res A 2018; 106(4): 876-86.
[http://dx.doi.org/10.1002/jbm.a.36305 ] [PMID: 29226615]
[15]
Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol 2014; 14(5): 329-42.
[http://dx.doi.org/10.1038/nri3661] [PMID: 24751956]
[16]
Zhang S, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 2017; 16: 82-96.
[http://dx.doi.org/10.1016/j.nantod.2017.08.006] [PMID: 31186671]
[17]
Azevedo C, Macedo MH, Sarmento B. Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov Today 2018; 23(5): 944-59.
[http://dx.doi.org/10.1016/j.drudis.2017.08.011] [PMID: 28919437]
[18]
Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater 2017; 16075.
[http://dx.doi.org/10.1038/natrevmats.2016.75]
[19]
Mittal R, Patel AP, Jhaveri VM, et al. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders, Expert Opin. Del.: Drug 2018; pp. 301-18.
[20]
Bak A, Ashford M, Brayden DJ. Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev 2018; 136-137: 2-27.
[http://dx.doi.org/10.1016/j.addr.2018.10.009] [PMID: 30359631]
[21]
Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol 2017; 2: 17004.
[http://dx.doi.org/10.1038/nmicrobiol.2017.4] [PMID: 28191884]
[22]
Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine 2014; 9: 2539-55.
[http://dx.doi.org/10.2147/IJN.S47129 ] [PMID: 24904213]
[23]
Patel MM. Micro/nano-particulate drug delivery systems: a boon for the treatment of inflammatory bowel disease. Editorial 2016; 771-5. . https:// doi/full/10. 1517/17425247.2016.1166203.
[24]
Pushpamalar J, Veeramachineni AK, Owh C, Loh XJ. Biodegradable polysaccharides for controlled drug delivery. ChemPlusChem 2016; 81: 504-14.
[25]
Sahoo SK, Misra R, Parveen S. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging, InNanomedicine in Cancer. Pan Stanford 2017; pp. 73-124.
[26]
Mittal R, Patel AP, Jhaveri VM, et al. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders. Expert Opin Drug Deliv 2018; 15: 301-18.
[27]
Zhang L, Sang Y, Feng J, Li Z, Zhao A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J Drug Target 2016; 24(7): 579-89.
[http://dx.doi.org/10.3109/1061186X.2015.1128941] [PMID: 26766303]
[28]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12: 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[29]
Rubinstein A. Nanoparticles in the Gastrointestinal Tract, In Handbook of Nanobiomedical Research: Fundamentals, Applications and Recent Developments. Appl Ther 2014; 2: 115-51.
[30]
Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 2014; 9: 223-43.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008]
[31]
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240: 504-26.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.016] [PMID: 27292178]
[32]
Dar MJ, Ali H, Khan A, Khan GM. Polymer-based drug delivery: the quest for local targeting of inflamed intestinal mucosa. J Drug Target 2017; 25(7): 582-96.
[http://dx.doi.org/10.1080/1061186X.2017.1298601] [PMID: 28277824]
[33]
Dhapte V, Pokharkar V. Nanosystems for drug delivery: Design, engineering, and applications. In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier 2019; pp. 321-45.
[34]
Diab R, Canilho N, Pavel IA, Haffner FB, Girardon M, Pasc A. Silica-based systems for oral delivery of drugs, macromolecules and cells. Adv Colloid Interface Sci 2017; 249: 346-62.
[http://dx.doi.org/10.1016/j.cis.2017.04.005] [PMID: 28473052]
[35]
Liu L, Yao W, Rao Y, Lu X, Gao J. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv 2017; 24(1): 569-81.
[http://dx.doi.org/10.1080/10717544.2017.1279238] [PMID: 28195032]
[36]
Zhao Z, Gao Y, Wu C, Hao Y, Zhao Y, Xu J. Development of novel core-shell dual-mesoporous silica nanoparticles for the production of high bioavailable controlled-release fenofibrate tablets. Drug Dev Ind Pharm 2016; 42(2): 199-208.
[http://dx.doi.org/10.3109/03639045.2015.1039018] [PMID: 26114553]
[37]
Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 2017; 159: 217-31.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[38]
Joshi G, Kumar A, Sawant K. Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur J Pharm Sci 2014; 18: 80-9.
[39]
Jana S, Sen K. Kumar, A Gandhi. Alginate based nanocarriers for drug delivery applications. Curr Pharm Des 2016; 22: 3399-410.
[40]
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9): 941-51.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[41]
Beloqui A, Coco R, Préat V. Targeting inflammatory bowel diseases by nanocarriers loaded with small and biopharmaceutical anti-inflammatory drugs. Curr Pharm Des 2016; 22(40): 6192-206.
[http://dx.doi.org/10.2174/1381612822666160211141813] [PMID: 26864312]
[42]
Mahajan N, Sakarkar D, Manmode A, Pathak V, Ingole R, Dewade D. Biodegradable nanoparticles for targeted delivery in treatment of ulcerative colitis.Adv Sci Lett. 2011; pp. 349-56.
[43]
Misra A, Shahiwala A. In-vitro and In-vivo tools in drug delivery research for optimum clinical outcomes. CRC Press 2018.
[44]
Zhang S, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 2017; 16: 82-96.https://doi.org/1;16:82-96
[45]
Bertoni S, Liu Z, Correia A, et al. ph and reactive oxygen species‐sequential responsive nano‐in‐micro composite for targeted therapy of inflammatory bowel disease. Adv Funct Mater 2018; 28: 1806175.
[http://dx.doi.org/10.1002/adfm.201806175]
[46]
Bansil R, Turner BS. The biology of mucus: Composition, synthesis and organization. Adv Drug Deliv Rev 2018; 124: 3-15.
[http://dx.doi.org/10.1016/j.addr.2017.09.023] [PMID: 28970050]
[47]
Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv 2015; 12(9): 1459-73.
[http://dx.doi.org/10.1517/17425247.2015.1018175] [PMID: 25813361]
[48]
Niebel W, Walkenbach K, Béduneau A, Pellequer Y, Lamprecht A. Nanoparticle-based clodronate delivery mitigates murine experimental colitis. J Control Release 2012; 160(3): 659-65.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.004] [PMID: 22445727]
[49]
Jubeh TT, Barenholz Y, Rubinstein A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharam Res 2004; 21: 447-53.
[50]
Lloyd K, Papoutsopoulou S, Smith E, et al. Identification of a novel therapeutic agent for Inflammatory Bowel Disease guided by systems medicine. J Crohn’s Colitis 2018; 12: S092.
[http://dx.doi.org/10.1101/513838]
[51]
Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl 2008; 47(50): 9726-9.
[http://dx.doi.org/10.1002/anie.200803526 ] [PMID: 18979480]
[52]
Menzel C, Bernkop-Schnürch A. Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier. Adv Drug Deliv Rev 2018; 124: 164-74.
[http://dx.doi.org/10.1016/j.addr.2017.10.004] [PMID: 29079537]
[53]
Wilcox MD, Van Rooij LK, Chater PI, Pereira de Sousa I, Pearson JP. The effect of nanoparticle permeation on the bulk rheological properties of mucus from the small intestine. Eur J Pharm Biopharm 2015; 96: 484-7.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.029] [PMID: 25758122]
[54]
Shan W, Zhu X, Liu M, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 2015; 9(3): 2345-56.
[http://dx.doi.org/10.1021/acsnano.5b00028] [PMID: 25658958]
[55]
Pandala S, Bakshi V, Jadi RK. Formulation Development and In Vitro Characterization of Zolmitriptan Controlled Release Drug Delivery Systems. INNOSC Theranostics and Pharmacological Sciences 2019.
[56]
Sun S, Liang N, Yamamoto H, Kawashima Y, Cui F, Yan P. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin. Int J Nanomedicine 2015; 10: 3489-98.
[http://dx.doi.org/10.2147/IJN.S81715 ] [PMID: 25999713]
[57]
Makhlof A, Tozuka Y, Takeuchi H. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm 2009; 72(1): 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2008.12.013] [PMID: 19348015]
[58]
Akande J, Yeboah KG, Addo RT, Siddig A, Oettinger CW, D’Souza MJ. Targeted delivery of antigens to the gut-associated lymphoid tissues: 2. Ex vivo evaluation of lectin-labelled albumin microspheres for targeted delivery of antigens to the M-cells of the Peyer’s patches. J Microencapsul 2010; 27(4): 325-36.https://doi.org/3109/02652040903191834
[http://dx.doi.org/10.3109/02652040903191834] [PMID: 20055749]
[59]
Biswas S, Chattopadhyay M, Sen KK, Saha MK. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym 2015; 121: 403-10.
[60]
D’Souza B, Bhowmik T, Shashidharamurthy R, Oettinger C, Selvaraj P, D’Souza M. Oral microparticulate vaccine for melanoma using M-cell targeting. J Drug Target 2012; 20(2): 166-73.
[http://dx.doi.org/10.3109/1061186X.2011.622395] [PMID: 21981679]
[61]
Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech 2015; 16(4): 731-41.
[http://dx.doi.org/10.1208/s12249-015-0350-9] [PMID: 26070545]
[62]
Wolk O, Epstein S, Ioffe-Dahan V, Ben-Shabat S, Dahan A. New targeting strategies in drug therapy of inflammatory bowel disease: mechanistic approaches and opportunities. Expert Opin Drug Deliv 2013; 10(9): 1275-86.
[http://dx.doi.org/10.1517/17425247.2013.800480] [PMID: 23721560]
[63]
Chacko AM, Han J, Greineder CF, et al. Collaborative enhancement of endothelial targeting of nanocarriers by modulating platelet-endothelial cell adhesion molecule-1/CD31 epitope engagement. ACS Nano 2015; 9(7): 6785-93.
[http://dx.doi.org/10.1021/nn505672x ] [PMID: 26153796]
[64]
Xiao B, Laroui H, Ayyadurai S, et al. Mannosylated bioreducible nanoparticle-mediated macrophage specific TNF-α RNA interference for IBD therapy. Biomater 2013; 34: 7471-82.
[65]
Laroui H, Viennois E, Xiao B, et al. Fab’-bearing siRNA TNFα-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis. J Control Release 2014; 186: 41-53.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.046] [PMID: 24810114]
[66]
Si XY, Merlin D, Xiao B. Recent advances in orally administered cell-specific nanotherapeutics for inflammatory bowel disease. World J Gastroenterol 2016; 22(34): 7718-26.
[http://dx.doi.org/10.3748/wjg.v22.i34.7718] [PMID: 27678353]
[67]
Zhang J, Tang C, Yin C. Galactosylated trimethyl chitosan-cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomater 2013; pp. 3667-77.
[68]
Graney PL, Lurier EB, Spiller KL. Biomaterials and bioactive factor delivery systems for the control of macrophage activation in regenerative medicine. ACS Biomater Sci Eng 2017; 4: 1137-48.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00747]
[69]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[70]
Nair HA, Rajawat GS, Nagarsenker MS. Stimuli-responsive micelles: A nanoplatform for therapeutic and diagnostic applications, In drug targeting and stimuli sensitive drug delivery systems. William Andrew Publishing 2018; pp. 303-42.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00008-2]
[71]
Asakura H, Kitahora T. Antioxidants and polyphenols in inflammatory bowel disease: Ulcerative colitis and crohn disease, In polyphenols: Prevention and treatment of human disease. Academic Press 2018; pp. 279-92.
[72]
Huang Y, Chen Q, Ma P, et al. Facile fabrication of oxidation-responsive polymeric nanoparticles for effective anticancer drug delivery. Mol Pharm 2019; 16(1): 49-59.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00634] [PMID: 30485109]
[73]
Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Clin Gastroenterol Hepatol 2014; 12(10): 1605-10.
[74]
Xiao B, Merlin D. Nanotherapeutics for Inflammatory Bowel Disease, InNanomedicine for Inflammatory Diseases. CRC Press 2017; pp. 125-44.
[75]
Ma M, Chen H, Shi J. Construction of smart inorganic nanoparticle-based ultrasound contrast agents and their biomedical applications. Sci Bull (Beijing) 2015; 60: 1170-83.
[http://dx.doi.org/10.1007/S11434-015-0829-5]
[76]
Karimi M, Mirshekari H, Aliakbari M, Sahandi-Zangabad P, Hamblin MR. Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnol Rev 2016; 5: 195-207.
[http://dx.doi.org/10.1515/ntrev-2015-0057]
[77]
Gisbert-Garzarán M, Lozano D, Vallet-Regí M, Manzano M. Self-immolative polymers as novel pH-responsive gate keepers for drug delivery. RSC Advances 2016; 132-6.
[http://dx.doi.org/10.1039/C6RA26771H]
[78]
Colilla M, González B, Vallet-Regí M. Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomater Sci 2013; 1: 114-34.
[http://dx.doi.org/10.1039/C2BM00085G]
[79]
Ahmad H. Biocompatible SiO2 in the fabrication of stimuli-responsive hybrid composites and their application potential. J Chem 2015; 2015: 846328.
[http://dx.doi.org/10.1155/2015/846328]
[80]
Szekeres M, Nyergesné Illés E, Janko C, et al. Hemocompatibility and biomedical potential of poly (gallic acid) coated iron oxide nanoparticles for theranostic use. J Nanomed Nanotechnol 2015; 2: 252.
[81]
Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, et al. Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol Lett 2016; 38(2): 223-33.
[http://dx.doi.org/10.1007/s10529-015-1977-z] [PMID: 26472272]
[82]
Jo H, Ban C. Aptamer-nanoparticle complexes as powerful diagnostic and therapeutic tools. Exp Mol Med 2016; 48: e230.
[http://dx.doi.org/10.1038/emm.2016.44 ] [PMID: 27151454]
[83]
Zhu J, Wang G, Alves CS, et al. Multifunctional dendrimer-entrapped gold nanoparticles conjugated with Doxorubicin for pH-responsive drug delivery and targeted computed tomography imaging. Langmuir 2018; 34(41): 12428-35.
[http://dx.doi.org/10.1021/acs.langmuir.8b02901] [PMID: 30251859]
[84]
Li R, Xie Y. Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. J Control Release 2017; 251: 49-67.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.020] [PMID: 28232226]
[85]
Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 2015; 16(2): 023501.
[http://dx.doi.org/10.1088/1468-6996/16/2/023501] [PMID: 27877761]
[86]
Patsula V, Kosinová L, Lovrić M, et al. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron (III) glucuronate and application in magnetic resonance imaging. ACS Appl Mater Interfaces 2016; 8(11): 7238-47.
[http://dx.doi.org/10.1021/acsami.5b12720] [PMID: 26928653]
[87]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[88]
Debele TA, Mekuria SL, Tsai HC. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Mater Sci Eng C 2016; 68: 964-81.
[http://dx.doi.org/10.1016/j.msec.2016.05.121] [PMID: 27524098]
[89]
Lautenschläger C, Schmidt C, Lehr CM, Fischer D, Stallmach A. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur J Pharm Biopharm 2013; 85(3 Pt A): 578-86.
[http://dx.doi.org/10.1016/j.ejpb.2013.09.016] [PMID: 24084650]
[90]
Yoshitomi T, Nagasaki Y. Reactive oxygen species scavenging nanomedicines for the treatment of oxidative stress injuries. Adv Healthcare Mater 2014; 3: 1149-61.
[91]
Vong LB, Mo J, Abrahamsson B, Nagasaki Y. Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose-response efficacy. J Control Release 2015; 85: 19-25.
[92]
Vong LB, Tomita T, Yoshitomi T, Matsui H, Nagasaki Y. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterol 2012; 143: 1027-36.
[93]
Kumar D, Sharma M, Verma S, Saroha K. Natural polymers and herbal medicine based therapy for colonic diseases, Int. J Herb Med 2016; 4: 49-56.
[94]
Di Marzio L, Ventura CA, Cosco D, et al. Nanotherapeutics for anti-inflammatory delivery. J Drug Deliv Sci Technol 2016; 32: 174-91.
[http://dx.doi.org/10.1016/j.jddst.2015.10.011]
[95]
Hossen I, Hua W, Ting L, et al. Phytochemicals and inflammatory bowel disease: a review. Crit Rev Food Sci Nutr 2020; 60: 1321-45.
[http://dx.doi.org/10.1080/10408398.2019.1570913] [PMID: 30729797]
[96]
Sandhu A. Who invented nano? Nat Nanotechnol 2006; 1: 87.
[http://dx.doi.org/10.1038/nnano.2006.115]
[97]
Macha MA, Krishn SR, Jahan R, Banerjee K, Batra SK, Jain M. Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer. Cancer Treat Rev 2015; 41(3): 277-88.
[http://dx.doi.org/10.1016/j.ctrv.2015.01.001] [PMID: 25624117]
[98]
Alexander A. Ajazuddin, Patel RJ, Saraf S, Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 241: 110-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.017] [PMID: 27663228]
[99]
Ansari SH, Islam F, Sameem M. Influence of nanotechnology on herbal drugs: A Review. J Adv Pharm Technol Res 2012; 3(3): 142-6.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[100]
Deng Z, Rong Y, Teng Y, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther 2017; 25(7): 1641-54.
[http://dx.doi.org/10.1016/j.ymthe.2017.01.025] [PMID: 28274798]
[101]
Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther 2013; 21(7): 1345-57.
[http://dx.doi.org/10.1038/mt.2013.64 ] [PMID: 23752315]
[102]
Wang B, Zhuang X, Deng ZB, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther 2014; 22(3): 522-34.
[http://dx.doi.org/10.1038/mt.2013.190 ] [PMID: 23939022]
[103]
Ortega AM, Campos MR. Medicinal plants and their bioactive metabolites in cancer prevention and treatment bioactive compounds. Bioact Compd 2019; 85-109.
[104]
Markam R, Bajpai J, Bajpai AK. Synthesis of ginger derived nanocarriers (GDNC) and study of in vitro release of 5-amino salicylic acid (5-ASA) as an anti inflammatory drug. J Drug Deliv Sci Technol 2019; 50: 355-64.
[http://dx.doi.org/10.1016/j.jddst.2019.01.039]
[105]
Tresserra-Rimbau A, Lamuela-Raventos RM, Moreno JJ. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem Pharmacol 2018; 156: 186-95.
[http://dx.doi.org/10.1016/j.bcp.2018.07.050] [PMID: 30086286]
[106]
Saldanha E, Saxena A, Kaur K, et al. Polyphenols in the prevention of ulcerative colitis: A revisit dietary interventions in gastrointestinal diseases. Academic Press 2019; pp. 277-87.
[http://dx.doi.org/10.1016/B978-0-12-814468-8.00023-5]
[107]
Khan H, Sureda A, Belwal T, et al. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev 2019; 18(7): 647-57.
[http://dx.doi.org/10.1016/j.autrev.2019.05.001] [PMID: 31059841]
[108]
Rashid MI, Fareed MI, Rashid H, et al. Flavonoids and their biological secrets, In plant and human health. Cham: Springer 2019; pp. 579-605.
[109]
Jones AD III, Mi G, Webster TJ. A status report on FDA approval of medical devices containing nanostructured materials. Trends Biotechnol 2019; 37(2): 117-20.
[http://dx.doi.org/10.1016/j.tibtech.2018.06.003] [PMID: 30075863]
[110]
Raval N, Maheshwari R, Kalyane D, Youngren-Ortiz SR, Chougule MB, Tekade RK. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development basic fundamentals of drug delivery 2019; 369-400.
[111]
Halamoda-Kenzaoui B, Bremer-Hoffmann S. Main trends of immune effects triggered by nanomedicines in preclinical studies. Int J Nanomedicine 2018; 13: 5419-31.
[http://dx.doi.org/10.2147/IJN.S168808 ] [PMID: 30271138]
[112]
Roy AK, Jones AA III, Webster TJ. Translational medicine and biomaterials: Basics and relationship, Biomaterials in Translational Medicine. Academic Press 2019; pp. 1-22.
[http://dx.doi.org/10.1016/B978-0-12-813477-1.00001-3]
[113]
Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 2018; 9: 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[114]
Tyagi P, Santos J L. Macromolecule nanotherapeutics: Approaches and challenges Drug discov 2018; 1053-61.
[115]
Knox NC, Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiome as a target for IBD treatment: are we there yet? Curr Treat Options Gastroenterol 2019; 17(1): 115-26.
[http://dx.doi.org/10.1007/s11938-019-00221-w] [PMID: 30661163]
[116]
Johannssen T, Lepenies B. Glycan-based cell targeting to modulate immune responses. Trends Biotechnol 2017; 35(4): 334-46.
[http://dx.doi.org/10.1016/j.tibtech.2016.10.002] [PMID: 28277249]
[117]
Yadav KS, Mishra DK, Deshpande A, Pethe AM. Levels of drug targeting basic fundamentals of drug delivery. Academic Press 2019; pp. 269-305.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00007-8]
[118]
Singh A, Kaur K, Kaur V, et al. Importance of nanocarriers and probiotics in the treatment of ulcerative colitis journal of drug delivery and therapeutics 2019; (6-s): 216-8.
[http://dx.doi.org/10.22270/jddt.v9i6-s.3727]
[119]
Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life 2019; 12(2): 113-22.
[http://dx.doi.org/10.25122/jml-2018-0075] [PMID: 31406511]
[120]
Mooney SN, Patel P, Buga S. Bowel Management. Oxford Textbook of Palliative Nursing 2019; p. 186.
[121]
Barral M, Dohan A, Allez M, et al. Gastrointestinal cancers in inflammatory bowel disease: An update with emphasis on imaging findings. Crit Rev Oncol Hematol 2016; 97: 30-46.
[http://dx.doi.org/10.1016/j.critrevonc.2015.08.005] [PMID: 26315381]
[122]
Salice M, Rizzello F, Calabrese C, Calandrini L, Gionchetti P. A current overview of corticosteroid use in active ulcerative colitis. Expert Rev Gastroenterol Hepatol 2019; 13(6): 557-61.
[http://dx.doi.org/10.1080/17474124.2019.1604219] [PMID: 30947569]
[123]
Ye B, van Langenberg DR. Mesalazine preparations for the treatment of ulcerative colitis: Are all created equal? World J Gastrointest Pharmacol Ther 2015; 6(4): 137-44.
[http://dx.doi.org/10.4292/wjgpt.v6.i4.137 ] [PMID: 26558148]
[124]
Rizzello F, Mazza M, Salice M, et al. The safety of beclomethasone dipropionate in the treatment of ulcerative colitis. Expert Opin Drug Saf 2018; 17(9): 963-9.
[http://dx.doi.org/10.1080/14740338.2018.1510914] [PMID: 30101623]
[125]
Alam MR, Ming X, Dixit V, Fisher M, Chen X, Juliano RL. The biological effect of an antisense oligonucleotide depends on its route of endocytosis and trafficking. Oligonucleotides 2010; 20(2): 103-9.
[http://dx.doi.org/10.1089/oli.2009.0211 ] [PMID: 20038250]
[126]
Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv 2018; 25(1): 1694-705.
[http://dx.doi.org/10.1080/10717544.2018.1501119] [PMID: 30394120]
[127]
Harush-Frenkel O, Altschuler Y, Benita S. Nanoparticle-cell interactions: drug delivery implications. Crit Rev Ther Drug 2008; 25: 485-544.
[128]
Ran R, Liu Y, Gao H, et al. Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: a potential candidate for overcoming multi-drug resistance. Int J Pharm 2014; 477(1-2): 590-600.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.012] [PMID: 25448564]
[129]
Thurn KT, Brown E, Wu A, et al. Nanoparticles for applications in cellular imaging. Nanoscale Res Lett 2007; 2(9): 430-41.
[http://dx.doi.org/10.1007/s11671-007-9081-5] [PMID: 21794189]
[130]
Fazlollahi F, Angelow S, Yacobi NR, et al. Polystyrene nanoparticle trafficking across MDCK-II. Nanomedicine (Lond) 2011; 7(5): 588-94.
[http://dx.doi.org/10.1016/j.nano.2011.01.008] [PMID: 21310266]
[131]
Bannunah AM, Vllasaliu D, Lord J, Stolnik S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm 2014; 11(12): 4363-73.
[http://dx.doi.org/10.1021/mp500439c ] [PMID: 25327847]
[132]
Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 2008; 9(2): 435-43.
[http://dx.doi.org/10.1021/bm700535p ] [PMID: 18189360]
[133]
Wang JA, Meyer TF, Rudel T. Cytoskeleton and motor proteins are required for the transcytosis of Neisseria gonorrhoeae through polarized epithelial cells. Int J Med Microbiol 2008; 298(3-4): 209-21.
[http://dx.doi.org/10.1016/j.ijmm.2007.05.004] [PMID: 17683982]
[134]
Denf J, Yu D, Gao C. Biological identity of nanomaterials: opportunities and challenges. Sci China Chem 2013; 56: 1533-41.
[135]
Zhou H, Qian H. Preparation and characterization of pH-sensitive nanoparticles of budesonide for the treatment of ulcerative colitis. Drug Des Devel Ther 2018; 12: 2601-9.
[http://dx.doi.org/10.2147/DDDT.S170676 ] [PMID: 30174414]
[136]
Zhang M, Xu C, Liu D, Han MK, Wang L, Merlin D. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J Crohn’s Colitis 2018; 12(2): 217-29.
[http://dx.doi.org/10.1093/ecco-jcc/jjx115 ] [PMID: 28961808]
[137]
Nguyen CT, Webb RI, Lambert LK, et al. Bifunctional succinylated ε-polylysine-coated mesoporous silica nanoparticles for pH-responsive and intracellular drug delivery targeting the colon. ACS Appl Mater Interfaces 2017; 9(11): 9470-83.
[http://dx.doi.org/10.1021/acsami.7b00411 ] [PMID: 28252278]
[138]
Vong LB, Nagasaki Y. Development of Redox Nanomedicine for Gastrointestinal Complications via Oral Administration Route, In Advances in Bioinspired and Biomedical Materials (2017); 47-67. J Am Chem Soc
[http://dx.doi.org/10.1021/bk-2017-1253.ch002]
[139]
Laroui H, Geem D, Xiao B, et al. Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles. Mol Ther 2014; 22(1): 69-80.
[http://dx.doi.org/10.1038/mt.2013.214 ] [PMID: 24025751]
[140]
Xiao B, Laroui H, Ayyadurai S, et al. Mannosylated bioreducible nanoparticle-mediated macrophage specific TNF-α RNA interference for IBD therapy. Biomaterials 2013; 34(30): 7471-82.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.008] [PMID: 23820013]
[141]
Takedatsu H, Mitsuyama K, Torimura T. Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease. World J Gastroenterol 2015; 21(40): 11343-52.
[http://dx.doi.org/10.3748/wjg.v21.i40.11343] [PMID: 26525603]
[142]
Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 2010; 9(11): 923-8.
[http://dx.doi.org/10.1038/nmat2859] [PMID: 20935658]
[143]
Zhang J, Tang C, Yin C. Galactosylated trimethyl chitosan-cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomaterials 2013; 34(14): 3667-77.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.079] [PMID: 23419643]
[144]
Laroui H, Dalmasso G, Nguyen HT, Yan Y, Sitaraman SV, Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model 2010.
[145]
Chen Q, Xiao B, Merlin D. Low-frequency ultrasound may improve drug penetration in colonic mucosa. Transl Cancer Res 2017; 6(Suppl. 2): S276-9.
[http://dx.doi.org/10.21037/tcr.2017.03.62 ] [PMID: 30581770]
[146]
Zhang M, Merlin D. Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis. Inflamm Bowel Dis 2018; 24(7): 1401-15.
[http://dx.doi.org/10.1093/ibd/izy123 ] [PMID: 29788186]
[147]
Moulari B, Béduneau A, Pellequer Y, Lamprecht A. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J Control Release 2014; 188: 9-17.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.046] [PMID: 24910194]
[148]
Zhang Q, Tao H, Lin Y, et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials 2016; 105: 206-21.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.010] [PMID: 27525680]
[149]
Nunes R, Neves JD, Sarmento B. Nanoparticles for the regulation of intestinal inflammation: opportunities and challenges. Nanomedicine (Lond) 2019; 14(19): 2631-44.
[http://dx.doi.org/10.2217/nnm-2019-0191 ] [PMID: 31612773]
[150]
Park J, Mattessich T, Jay SM, Agawu A, Saltzman WM, Fahmy TM. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. J Control Release 2011; 156(1): 109-15.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.025] [PMID: 21723893]
[151]
Cai Z, Zhang W, Yang F, et al. Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res 2012; 22(3): 607-10.
[http://dx.doi.org/10.1038/cr.2011.196 ] [PMID: 22157651]
[152]
Gou M, Dai M, Li X, et al. Preparation of mannan modified anionic PCL-PEG-PCL nanoparticles at one-step for bFGF antigen delivery to improve humoral immunity. Colloids Surf B Biointerfaces 2008; 64(1): 135-9.
[http://dx.doi.org/10.1016/j.colsurfb.2007.12.014] [PMID: 18249528]
[153]
Giron F, Pastó A, Tasciotti E, Abraham BP. Abraham, nanotechnology in the treatment of inflammatory bowel disease. Inflamm Bowel Dis 2019; 25: 1871-80.
[154]
Durán‐Lobato M, Niu Z, Alonso MJ. Oral delivery of biologics for precision medicine. Adv Mater 2020; 32: 1901935.
[http://dx.doi.org/10.1002/adma.201901935] [PMID: 31222910]
[155]
Xiao B, Viennois E, Denning TL, Merlin D. 4 co-delivery of TNF-α SIRNA and IL-22 via a nanoparticle-in-hydrogel system exerts synergistic therapeutic effects against ulcerative colitis. Gastroenterology 2018; 154: 11-2.
[http://dx.doi.org/10.1053/j.gastro.2017.11.054]
[156]
Ali H, Weigmann B, Collnot EM, Khan SA, Windbergs M, Lehr CM. Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa—pharmaceutical characterization and fluorescence imaging. Pharm Res 2016; 33(5): 1085-92.
[http://dx.doi.org/10.1007/s11095-015-1852-6] [PMID: 26718953]
[157]
Prosperi D, Colombo M, Zanoni I, Granucci F. Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Semin Immunol 2017; 34: 61-7.
[158]
da Silva Peralta F, Pallos D, Silva Queiroz C, Ricardo LH. Previous exposure to Cyclosporine A and periodontal breakdown in rats. Arch Oral Biol 2015; 60(4): 566-73.
[http://dx.doi.org/10.1016/j.archoralbio.2015.01.004] [PMID: 25613758]
[159]
Senthilnathan B, Masilamani K, Vijayalakshmi A, et al. Formulation and evaluation of budenoside loaded PLGA Nanoparticles. Drug Invent Today 2018; 10(3): 310-4.
[160]
Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer 2019; 18(1): 94.
[http://dx.doi.org/10.1186/s12943-019-1022-2] [PMID: 31088471]
[161]
Xiao B, Xu Z, Viennois E, et al. Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol Ther 2017; 25(7): 1628-40.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.020] [PMID: 28143741]
[162]
Chande N, Wang Y, McDonald JM, MacDonald JK. Unfractionated or low‐molecular weight heparin for induction of remission in ulcerative colitis. Cochrane Database Syst Rev 2015.
[http://dx.doi.org/10.1002/14651858.CD006774.pub4]
[163]
Huanbutta K, Sangnim T, Limmatvapirat S, Nunthanid J, Sriamornsak P. Design and characterization of prednisolone-loaded nanoparticles fabricated by electrohydrodynamic atomization technique. Chem Eng Res Des 2016; 109: 816-23.
[http://dx.doi.org/10.1016/j.cherd.2016.03.004]
[164]
Abdel-Wahhab MA, El-Nekeety AA, Salman AS, Abdel-Aziem SH, Mehaya FM, Hassan NS. Protective capabilities of silymarin and inulin nanoparticles against hepatic oxidative stress, genotoxicity and cytotoxicity of Deoxynivalenol in rats. Toxicon 2018; 142: 1-13.
[http://dx.doi.org/10.1016/j.toxicon.2017.12.045] [PMID: 29248467]
[165]
Vafaei SY, Esmaeili M, Amini M, Atyabi F, Ostad SN, Dinarvand R. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr Polym 2016; 144: 371-81.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.026] [PMID: 27083829]
[166]
Khodayar B, Farzaei MH, Abdolghaffari AH, et al. The protective effect of the gallic acid against TNBS-induced ulcerative colitis in rats: Role of Inflammatory Parameters. JIMC 2018; 1: 34-42.
[167]
Barahona MJ, Baratta V, Ollodart J, Mulligan D, Geibel JP. Design and implementation of novel nutraceuticals and derivatives for treating intestinal disorders. Future Med Chem 2019; 11(8): 847-55.
[http://dx.doi.org/10.4155/fmc-2018-0313 ] [PMID: 30994367]
[168]
Neish AS, Champion JA. Champion, inventors; Emory University, Georgia Tech Research Corp, assignee. Protein particles comprising disulfide crosslinkers and uses related thereto United States patent US 10, 206, 976, 2019.
[169]
Gao J, Hsu E, Cheung A. Dually derivatized chitosan nanoparticles and methods of making and using the same for gene transfer In Vivo. United States patent application US 15/489,199, 2018.
[170]
Freund B, Heeren J, Nielsen P, et al. inventors; Topas Therapeutics GmbH, assignee. Nanoparticle compositions for generation of regulatory T cells and treatment of autoimmune diseases and other chronic inflammatory conditions United States patent US 10,004,689, 2018.
[171]
Date AA, Halpert G, Babu T, et al. Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials 2018; 185: 97-105.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.005] [PMID: 30236840]
[172]
Khan OF, Chahal JS, Anderson DG, Ploegh H, Langer RS. Whitehead institute for biomedical research, massachusetts institute of technology, assignee. Compositions and methods for modified dendrimer nanoparticle delivery United States patent application US 15/274,954 2017.
[173]
Brand W. Nanosuspension containing particles and extract of natural materials United States patent US 10,406,104, 2019.
[174]
Getts D. inventor; COUR PHARMACEUTICALS DEVELOPMENT Co, assignee. Immune-modifying nanoparticles for the treatment of inflammatory diseases United States patent US 9,913,883, 2018.
[175]
Jon SY, Lee YH. inventors; Korea Advanced Institute of Science, Technology (KAIST), assignee. Bilirubin nanoparticle, use thereof, and preparation method therefor United States patent application US 15/ 104,040, 2017.
[176]
Roudsari NM, Lashgari NA, Momtaz S, Farzaei MH, Marques AM, Abdolghaffari AH. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review. Daru 2019; 27(2): 755-80.
[http://dx.doi.org/10.1007/s40199-019-00284-1] [PMID: 31273572]
[177]
Alrafas HR, Busbee PB, Nagarkatti M, Nagarkatti PS. Resveratrol modulates the gut microbiota to prevent murine colitis development through induction of Tregs and suppression of Th17 cells. J Leukoc Biol 2019; 106(2): 467-80.
[http://dx.doi.org/10.1002/JLB.3A1218-476RR] [PMID: 30897248]
[178]
Galleggiante V, De Santis S, Liso M, et al. Quercetin-Induced miR-369-3p Suppresses Chronic Inflammatory Response Targeting C/EBP-β. Mol Nutr Food Res 2019; 63(19): e1801390.
[http://dx.doi.org/10.1002/mnfr.201801390 ] [PMID: 31338984]
[179]
Zhou G, Chen L, Sun Q, Mo QG, Sun WC, Wang YW. Maqui berry exhibited therapeutic effects against DSS-induced ulcerative colitis in C57BL/6 mice. Food Funct 2019; 10(10): 6655-65.
[http://dx.doi.org/10.1039/C9FO00663J ] [PMID: 31556890]
[180]
Bian Y, Liu P, Zhong J, et al. Kaempferol inhibits multiple pathways involved in the secretion of inflammatory mediators from LPS-induced rat intestinal microvascular endothelial cells. Mol Med Rep 2019; 19(3): 1958-64.
[http://dx.doi.org/10.3892/mmr.2018.9777 ] [PMID: 30569099]
[181]
Castejón ML, Rosillo MA, Villegas I, et al. Quercus ilex extract ameliorates acute TNBS-Induced colitis in rats. Planta Med 2019; 85(8): 670-7.
[http://dx.doi.org/10.1055/a-0889-6132 ] [PMID: 31018218]
[182]
Akshaya K, Chitra V. A Review on Pathological State and Herbal Remedies on Ulcerative Colitis. RJPT 2019; pp. 1409-17.
[183]
Barbalho SM, Bosso H, Salzedas-Pescinini LM, de Alvares Goulart R. Green tea: A possibility in the therapeutic approach of inflammatory bowel diseases?: Green tea and inflammatory bowel diseases. Complement Ther Med 2019; 43: 148-53.
[http://dx.doi.org/10.1016/j.ctim.2019.01.015] [PMID: 30935522]
[184]
Soleimani V, Delghandi PS, Moallem SA, Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother Res 2019; 33(6): 1627-38.
[http://dx.doi.org/10.1002/ptr.6361] [PMID: 31069872]
[185]
Zhu L, Gu P, Shen H. Gallic acid improved inflammation via NF-κB pathway in TNBS-induced ulcerative colitis. Int Immunopharmacol 2019; 67: 129-37.
[http://dx.doi.org/10.1016/j.intimp.2018.11.049] [PMID: 30544066]
[186]
Lu Y, Du Y, Qin X, et al. Comprehensive evaluation of effective polyphenols in apple leaves and their combinatory antioxidant and neuroprotective activities. Ind.: Crop. Prod 2019; 129: 242-52.
[187]
Zielinska D, Laparra-Llopis JM, Zielinski H, Szawara-Nowak D, Giménez-Bastida JA. Role of apple phytochemicals, phloretin and phloridzin, in modulating processes related to intestinal inflammation. Nutrients 2019; 11(5): E1173.
[http://dx.doi.org/10.3390/nu11051173 ] [PMID: 31130634]
[188]
Camps-Bossacoma M, Massot-Cladera M, Pérez-Cano FJ, Castell M. Influence of a cocoa-enriched diet on the intestinal immune system and microbiota, indietary interventions in gastrointestinal diseases. Academic Press 2019; pp. 213-25.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 3
Year: 2020
Published on: 05 November, 2020
Page: [225 - 247]
Pages: 23
DOI: 10.2174/2468187310999200621200615
Price: $65

Article Metrics

PDF: 12
HTML: 1