Artificial Neural Networks in Cardiovascular Diseases and its Potential for Clinical Application in Molecular Imaging

Author(s): Riccardo Laudicella*, Albert Comelli, Alessandro Stefano, Monika Szostek, Ludovica Crocè, Antonio Vento, Alessandro Spataro, Alessio Danilo Comis, Flavia La Torre, Michele Gaeta, Sergio Baldari, Pierpaolo Alongi

Journal Name: Current Radiopharmaceuticals

Volume 14 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

In medical imaging, Artificial Intelligence is described as the ability of a system to properly interpret and learn from external data, acquiring knowledge to achieve specific goals and tasks through flexible adaptation. The number of possible applications of Artificial Intelligence is also huge in clinical medicine and cardiovascular diseases. To describe for the first time in literature, the main results of articles about Artificial Intelligence potential for clinical applications in molecular imaging techniques, and to describe its advancements in cardiovascular diseases assessed with nuclear medicine imaging modalities. A comprehensive search strategy was used based on SCOPUS and PubMed databases. From all studies published in English, we selected the most relevant articles that evaluated the technological insights of AI in nuclear cardiology applications. Artificial Intelligence may improve patient care in many different fields, from the semi-automatization of the medical work, through the technical aspect of image preparation, interpretation, the calculation of additional factors based on data obtained during scanning, to the prognostic prediction and risk-- group selection. Myocardial implementation of Artificial Intelligence algorithms in nuclear cardiology can improve and facilitate the diagnostic and predictive process, and global patient care. Building large databases containing clinical and image data is a first but essential step to create and train automated diagnostic/prognostic models able to help the clinicians to make unbiased and faster decisions for precision healthcare.

Keywords: Artificial intelligence, machine-learning, deep Learning, radiomics, SPECT, PET, nuclear Cardiology.

[1]
Dey, D.; Slomka, P.J.; Leeson, P.; Comaniciu, D.; Shrestha, S.; Sengupta, P.P.; Marwick, T.H. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J. Am. Coll. Cardiol., 2019, 73(11), 1317-1335.
[http://dx.doi.org/10.1016/j.jacc.2018.12.054] [PMID: 30898208]
[2]
Betancur, J.; Hu, L-H.; Commandeur, F.; Sharir, T.; Einstein, A.J.; Fish, M.B.; Ruddy, T.D.; Kaufmann, P.A.; Sinusas, A.J.; Miller, E.J.; Bateman, T.M.; Dorbala, S.; Di Carli, M.; Germano, G.; Otaki, Y.; Liang, J.X.; Tamarappoo, B.K.; Dey, D.; Berman, D.S.; Slomka, P.J. Deep learning analysis of upright-supine high-efficiency spect myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J. Nucl. Med., 2019, 60(5), 664-670.
[http://dx.doi.org/10.2967/jnumed.118.213538] [PMID: 30262516]
[3]
Visvikis, D.; Cheze Le Rest, C.; Jaouen, V.; Hatt, M. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(13), 2630-2637.
[http://dx.doi.org/10.1007/s00259-019-04373-w] [PMID: 31280350]
[4]
Vernuccio, F.; Cannella, R.; Comelli, A.; Salvaggio, G.; Lagalla, R.; Midiri, M.; Radiomica, E. Radiomica e intelligenza artificiale: nuove frontiere in medicina. Recenti Prog. Med., 2020, 111(3), 130-135.
[PMID: 32157259]
[5]
Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: images are more than pictures, they are data. Radiology, 2016, 278(2), 563-577.
[http://dx.doi.org/10.1148/radiol.2015151169] [PMID: 26579733]
[6]
Cuocolo, R.; Cipullo, M.B.; Stanzione, A.; Ugga, L.; Romeo, V.; Radice, L.; Brunetti, A.; Imbriaco, M. Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp, 2019, 3(1), 35.
[http://dx.doi.org/10.1186/s41747-019-0109-2] [PMID: 31392526]
[7]
Comelli, A.; Bignardi, S.; Stefano, A.; Russo, G.; Sabini, M.G.; Ippolito, M.; Yezzi, A. Development of a new fully three-dimensional methodology for tumours delineation in functional images. Comput. Biol. Med., 2020, 120, 103701.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103701] [PMID: 32217282]
[8]
Comelli, A.; Stefano, A.; Russo, G.; Sabini, M.G.; Ippolito, M.; Bignardi, S.; Petrucci, G.; Yezzi, A. A smart and operator independent system to delineate tumours in positron emission tomography scans. Comput. Biol. Med., 2018, 102, 1-15.
[http://dx.doi.org/10.1016/j.compbiomed.2018.09.002] [PMID: 30219733]
[9]
Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res., 2018, 78(16), 4786-4789.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0125] [PMID: 29959149]
[10]
Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda-a software package for image texture analysis. Comput. Methods Programs Biomed., 2009, 94(1), 66-76.
[http://dx.doi.org/10.1016/j.cmpb.2008.08.005] [PMID: 18922598]
[11]
Fang, Y. H. D.; Lin, C. Y.; Shih, M. J.; Wang, H. M.; Ho, T. Y.; Liao, C. T.; Yen, T. C. Development and evaluation of an open-source software package “CGITA” for quantifying tumor heterogeneity with molecular images Biomed Res. Int., 2014, 2014, 248505.
[http://dx.doi.org/10.1155/2014/248505]
[12]
Stefano, A.; Comelli, A.; Bravata, V.; Barone, S.; Daskalovski, I.; Savoca, G.; Sabini, M.G.; Ipplito, M.; Russo, G. A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method. BMC Suppl., 2020, 21, 325.
[13]
Giambelluca, D.; Cannella, R.; Vernuccio, F.; Comelli, A.; Pavone, A.; Salvaggio, L.; Galia, M.; Midiri, M.; Lagalla, R.; Salvaggio, G. PI-RADS 3 lesions: role of prostate MRI texture analysis in the identification of prostate cancer. Curr. Probl. Diagn. Radiol., 2019, S0363-0188(19)30222-1.
[http://dx.doi.org/10.1067/j.cpradiol.2019.10.009] [PMID: 31761413]
[14]
Bratt, A.; Kim, J.; Pollie, M.; Beecy, A.N.; Tehrani, N.H.; Codella, N.; Perez-Johnston, R.; Palumbo, M.C.; Alakbarli, J.; Colizza, W.; Drexler, I.R.; Azevedo, C.F.; Kim, R.J.; Devereux, R.B.; Weinsaft, J.W. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J. Cardiovasc. Magn. Reson., 2019, 21(1), 1.
[http://dx.doi.org/10.1186/s12968-018-0509-0] [PMID: 30612574]
[15]
Litjens, G.; Ciompi, F.; Wolterink, J.M.; de Vos, B.D.; Leiner, T.; Teuwen, J.; Išgum, I. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc. Imaging, 2019, 12(8 Pt 1), 1549-1565.
[http://dx.doi.org/10.1016/j.jcmg.2019.06.009] [PMID: 31395244]
[16]
Berman, D.S.; Kang, X.; Gransar, H.; Gerlach, J.; Friedman, J.D.; Hayes, S.W.; Thomson, L.E.J.; Hachamovitch, R.; Shaw, L.J.; Slomka, P.J.; Yang, L.D.; Germano, G. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J. Nucl. Cardiol., 2009, 16(1), 45-53.
[http://dx.doi.org/10.1007/s12350-008-9018-0] [PMID: 19152128]
[17]
Slomka, P.J.; Dey, D.; Sitek, A.; Motwani, M.; Berman, D.S.; Germano, G. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev. Med. Devices, 2017, 14(3), 197-212.
[http://dx.doi.org/10.1080/17434440.2017.1300057] [PMID: 28277804]
[18]
Seetharam, K.; Shresthra, S.; Mills, J.D.; Sengupta, P.P. Artificial intelligence in nuclear cardiology: adding value to prognostication. Curr. Cardiovasc. Imaging Rep., 2019.
[http://dx.doi.org/10.1007/s12410-019-9490-8]
[19]
Betancur, J.; Commandeur, F.; Motlagh, M.; Sharir, T.; Einstein, A.J.; Bokhari, S.; Fish, M.B.; Ruddy, T.D.; Kaufmann, P.; Sinusas, A.J.; Miller, E.J.; Bateman, T.M.; Dorbala, S.; Di Carli, M.; Germano, G.; Otaki, Y.; Tamarappoo, B.K.; Dey, D.; Berman, D.S.; Slomka, P.J. Deep learning for prediction of obstructive disease from fast myocardial perfusion spect: a multicenter study. JACC Cardiovasc. Imaging, 2018, 11(11), 1654-1663.
[http://dx.doi.org/10.1016/j.jcmg.2018.01.020] [PMID: 29550305]
[20]
Arsanjani, R.; Xu, Y.; Dey, D.; Fish, M.; Dorbala, S.; Hayes, S.; Berman, D.; Germano, G.; Slomka, P. Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. J. Nucl. Med., 2013, 54(4), 549-555.
[http://dx.doi.org/10.2967/jnumed.112.111542] [PMID: 23482666]
[21]
Arsanjani, R.; Xu, Y.; Dey, D.; Vahistha, V.; Shalev, A.; Nakanishi, R.; Hayes, S.; Fish, M.; Berman, D.; Germano, G.; Slomka, P.J. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J. Nucl. Cardiol., 2013, 20(4), 553-562.
[http://dx.doi.org/10.1007/s12350-013-9706-2] [PMID: 23703378]
[22]
Kalayeh, M.M.; Marin, T.; Brankov, J.G. Generalization evaluation of machine learning numerical observers for image quality assessment. IEEE Trans. Nucl. Sci., 2013, 60(3), 1609-1618.
[http://dx.doi.org/10.1109/TNS.2013.2257183] [PMID: 25346545]
[23]
Kurgan, L.A.; Cios, K.J.; Tadeusiewicz, R.; Ogiela, M.; Goodenday, L.S. Knowledge discovery approach to automated cardiac SPECT diagnosis. Artif. Intell. Med., 2001, 23(2), 149-169.
[http://dx.doi.org/10.1016/S0933-3657(01)00082-3] [PMID: 11583923]
[24]
Shimizu, M.; Iiya, M.; Fujii, H.; Kimura, S.; Suzuki, M.; Nishizaki, M. Left ventricular end-systolic contractile entropy can predict cardiac prognosis in patients with complete left bundle branch block. J. Nucl. Cardiol., 2021, 28(1), 162-171.
[http://dx.doi.org/10.1007/s12350-019-01739-3] [PMID: 31087265]
[25]
Haro Alonso, D.; Wernick, M.N.; Yang, Y.; Germano, G.; Berman, D.S.; Slomka, P. Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning. J. Nucl. Cardiol., 2019, 26(5), 1746-1754.
[http://dx.doi.org/10.1007/s12350-018-1250-7] [PMID: 29542015]
[26]
Arsanjani, R.; Dey, D.; Khachatryan, T.; Shalev, A.; Hayes, S.W.; Fish, M.; Nakanishi, R.; Germano, G.; Berman, D.S.; Slomka, P. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J. Nucl. Cardiol., 2015, 22(5), 877-884.
[http://dx.doi.org/10.1007/s12350-014-0027-x] [PMID: 25480110]
[27]
Hu, L-H.; Betancur, J.; Sharir, T.; Einstein, A.J.; Bokhari, S.; Fish, M.B.; Ruddy, T.D.; Kaufmann, P.A.; Sinusas, A.J.; Miller, E.J. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. Eur. Heart J. Cardiovasc. Imaging, 2020, 21(5), 549-559.
[http://dx.doi.org/10.1093/ehjci/jez177] [PMID: 31317178]
[28]
Betancur, J.; Otaki, Y.; Motwani, M.; Fish, M.B.; Lemley, M.; Dey, D.; Gransar, H.; Tamarappoo, B.; Germano, G.; Sharir, T.; Berman, D.S.; Slomka, P.J. Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning. JACC Cardiovasc. Imaging, 2018, 11(7), 1000-1009.
[http://dx.doi.org/10.1016/j.jcmg.2017.07.024] [PMID: 29055639]
[29]
Currie, G.; Iqbal, B.; Kiat, H. Intelligent imaging: radiomics and artificial neural networks in heart failure. J. Med. Imaging Radiat. Sci., 2019, 50(4), 571-574.
[http://dx.doi.org/10.1016/j.jmir.2019.08.006] [PMID: 31588038]
[30]
Slomka, P.J.; Betancur, J.; Liang, J.X.; Otaki, Y.; Hu, L-H.; Sharir, T.; Dorbala, S.; Di Carli, M.; Fish, M.B.; Ruddy, T.D.; Bateman, T.M.; Einstein, A.J.; Kaufmann, P.A.; Miller, E.J.; Sinusas, A.J.; Azadani, P.N.; Gransar, H.; Tamarappoo, B.K.; Dey, D.; Berman, D.S.; Germano, G. Rationale and design of the registry of fast myocardial perfusion imaging with next generation SPECT (REFINE SPECT). J. Nucl. Cardiol., 2020, 27(3), 1010-1021.
[http://dx.doi.org/10.1007/s12350-018-1326-4] [PMID: 29923104]
[31]
Betancur, J.; Rubeaux, M.; Fuchs, T.A.; Otaki, Y.; Arnson, Y.; Slipczuk, L.; Benz, D.C.; Germano, G.; Dey, D.; Lin, C-J.; Berman, D.S.; Kaufmann, P.A.; Slomka, P.J. Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation. J. Nucl. Med., 2017, 58(6), 961-967.
[http://dx.doi.org/10.2967/jnumed.116.179911] [PMID: 27811121]
[32]
Wang, T.; Lei, Y.; Tang, H.; He, Z.; Castillo, R.; Wang, C.; Li, D.; Higgins, K.; Liu, T.; Curran, W.J.; Zhou, W.; Yang, X. A learning-based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: A feasibility study. J. Nucl. Cardiol., 2020, 27(3), 976-987.
[http://dx.doi.org/10.1007/s12350-019-01594-2] [PMID: 30693428]
[33]
Juarez-Orozco, L.E.; Knol, R.J.J.; Sanchez-Catasus, C.A.; Martinez-Manzanera, O.; van der Zant, F.M.; Knuuti, J. Machine learning in the integration of simple variables for identifying patients with myocardial ischemia. J. Nucl. Cardiol., 2020, 27(1), 147-155.
[PMID: 29790017]
[34]
Dey, D.; Diaz Zamudio, M.; Schuhbaeck, A.; Juarez Orozco, L.E.; Otaki, Y.; Gransar, H.; Li, D.; Germano, G.; Achenbach, S.; Berman, D.S.; Meave, A.; Alexanderson, E.; Slomka, P.J. Relationship between quantitative adverse plaque features from coronary computed tomography angiography and downstream impaired myocardial flow reserve by 13N-ammonia positron emission tomography: A pilot study. Circ Cardiovasc Imaging, 2015, 8(10), e003255.
[http://dx.doi.org/10.1161/CIRCIMAGING.115.003255] [PMID: 26467104]
[35]
Išgum, I.; de Vos, B.D.; Wolterink, J.M.; Dey, D.; Berman, D.S.; Rubeaux, M.; Leiner, T.; Slomka, P.J. Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT. J. Nucl. Cardiol., 2018, 25(6), 2133-2142.
[http://dx.doi.org/10.1007/s12350-017-0866-3] [PMID: 28378112]
[36]
Dekker, M.; Waissi, F.; Bank, I.E.M.; Lessmann, N.; Išgum, I.; Velthuis, B.K.; Scholtens, A.M.; Leenders, G.E.; Pasterkamp, G.; de Kleijn, D.P.V.; Timmers, L.; Mosterd, A. Automated calcium scores collected during myocardial perfusion imaging improve identification of obstructive coronary artery disease. Int. J. Cardiol. Heart Vasc., 2019, 26100434.
[http://dx.doi.org/10.1016/j.ijcha.2019.100434] [PMID: 31768415]
[37]
Togo, R.; Hirata, K.; Manabe, O.; Ohira, H.; Tsujino, I.; Magota, K.; Ogawa, T.; Haseyama, M.; Shiga, T. Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps. Comput. Biol. Med., 2019, 104, 81-86.
[http://dx.doi.org/10.1016/j.compbiomed.2018.11.008] [PMID: 30447397]
[38]
Laudicella, R.; Baratto, L.; Minutoli, F.; Baldari, S.; Iagaru, A. Malignant cutaneous melanoma: Updates in PET imaging. Curr. Radiopharm., 2020, 13(1), 14-23.
[PMID: 31749439]
[39]
Cui, J.; Liu, X.; Wang, Y.; Liu, H. Deep reconstruction model for dynamic PET images. PLoS One, 2017, 12(9), e0184667.
[http://dx.doi.org/10.1371/journal.pone.0184667] [PMID: 28934254]
[40]
Kolossváry, M.; Park, J.; Bang, J-I.; Zhang, J.; Lee, J.M.; Paeng, J.C.; Merkely, B.; Narula, J.; Kubo, T.; Akasaka, T.; Koo, B.K.; Maurovich-Horvat, P. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Eur. Heart J. Cardiovasc. Imaging, 2019, 20(11), 1250-1258.
[http://dx.doi.org/10.1093/ehjci/jez033] [PMID: 30838375]
[41]
Petersen, S.E.; Abdulkareem, M.; Leiner, T. Artificial intelligence will transform cardiac imaging-opportunities and challenges. Front. Cardiovasc. Med., 2019, 6, 133.
[http://dx.doi.org/10.3389/fcvm.2019.00133] [PMID: 31552275]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 3
Year: 2021
Published on: 21 June, 2020
Page: [209 - 219]
Pages: 11
DOI: 10.2174/1874471013666200621191259
Price: $65

Article Metrics

PDF: 146
HTML: 2