Targeting Xanthine Oxidase by Natural Products as a Therapeutic Approach for Mental Disorders

Author(s): Miquel Martorell*, Xavier Lucas, Pedro Alarcón-Zapata, Xavier Capó, Maria Magdalena Quetglas-Llabrés, Silvia Tejada, Antoni Sureda

Journal Name: Current Pharmaceutical Design

Volume 27 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Abstract:

Mental disorders comprise diverse human pathologies, including depression, bipolar affective disorder, schizophrenia, and dementia that affect millions of people around the world. The causes of mental disorders are unclear, but growing evidence suggests that oxidative stress and the purine/adenosine system play a key role in their development and progression. Xanthine oxidase (XO) is a flavoprotein enzyme essential for the catalysis of the oxidative hydroxylation of purines -hypoxanthine and xanthine- to generate uric acid. As a consequence of the oxidative reaction of XO, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are produced and, further, contribute to the pathogenesis of mental disorders. Altered XO activity has been associated with free radical-mediated neurotoxicity inducing cell damage and inflammation. Diverse studies reported a direct association between an increased activity of XO and diverse mental diseases including depression or schizophrenia. Small-molecule inhibitors, such as the well-known allopurinol, and dietary flavonoids, can modulate the XO activity and subsequent ROS production. In the present work, we review the available literature on XO inhibition by small molecules and their potential therapeutic application in mental disorders. In addition, we discuss the chemistry and molecular mechanism of XO inhibitors, as well as the use of structure-based and computational methods to design specific inhibitors with the capability of modulating XO activity.

Keywords: Allopurinol, free radicals, xanthine oxidase, enzyme inhibition, natural products, inflammation.

[1]
WHO Mental disorders Available from: http://www.who.int/mediacentre/factsheets/fs396/en/2015
[2]
Werlen L, Gjukaj D, Mohler-Kuo M, Puhan MA. Interventions to improve children’s access to mental health care: a systematic review and meta-analysis. Epidemiol Psychiatr Sci 2019; 29e58
[http://dx.doi.org/10.1017/S2045796019000544] [PMID: 31619313]
[3]
Raggi A, Leonardi M. Burden of brain disorders in Europe in 2017 and comparison with other non-communicable disease groups. J Neurol Neurosurg Psychiatry 2020; 91(1): 104-5.
[http://dx.doi.org/10.1136/jnnp-2019-320466] [PMID: 31208991]
[4]
Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G. Antioxidants as antidepressants: fact or fiction? CNS Drugs 2012; 26(6): 477-90.
[http://dx.doi.org/10.2165/11633190-000000000-00000] [PMID: 22668245]
[5]
Trebatická J, Ďuračková Z. Psychiatric disorders and polyphenols: can they be helpful in therapy? Oxid Med Cell Longev 2015; 2015248529
[http://dx.doi.org/10.1155/2015/248529] [PMID: 26180581]
[6]
Polanczyk GV, Salum GA, Sugaya LS, Caye A, Rohde LA. Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J Child Psychol Psychiatry 2015; 56(3): 345-65.
[http://dx.doi.org/10.1111/jcpp.12381] [PMID: 25649325]
[7]
Ceylan M, Sener S, Bayraktar AC, Kavutcu M. Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(8): 1491-4.
[http://dx.doi.org/10.1016/j.pnpbp.2010.08.010] [PMID: 20732373]
[8]
Faraone SV, Asherson P, Banaschewski T, et al. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 2015; 1: 15020.
[http://dx.doi.org/10.1038/nrdp.2015.20] [PMID: 27189265]
[9]
Wykes T, Haro JM, Belli SR, et al. Mental health research priorities for Europe. Lancet Psychiatry 2015; 2(11): 1036-42.
[http://dx.doi.org/10.1016/S2215-0366(15)00332-6]
[10]
Mei C, Fitzsimons J, Allen N, et al. Global research priorities for youth mental health. Early Interv Psychiatry 2020; 14(1): 3-13.
[http://dx.doi.org/10.1111/eip.12878] [PMID: 31960595]
[11]
Gonçalves DA, Mari Jde J, Bower P, et al. Brazilian multicentre study of common mental disorders in primary care: rates and related social and demographic factors. Cad Saude Publica 2014; 30(3): 623-32.
[http://dx.doi.org/10.1590/0102-311X00158412] [PMID: 24714951]
[12]
Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic Basis of Mental Illness. Neuroscientist 2015; 22(5): 447-63.
[PMID: 26450593]
[13]
Mir J, Kastner S, Priebe S, Konrad N, Ströhle A, Mundt AP. Treating substance abuse is not enough: comorbidities in consecutively admitted female prisoners. Addict Behav 2015; 46: 25-30.
[http://dx.doi.org/10.1016/j.addbeh.2015.02.016] [PMID: 25770695]
[14]
Esechie A, Bhardwaj A, Masel T, Raji M. Neurocognitive sequela of burn injury in the elderly. J Clin Neurosci 2019; 59: 1-5.
[http://dx.doi.org/10.1016/j.jocn.2018.10.089] [PMID: 30401568]
[15]
Cunningham R, Sarfati D, Stanley J, Peterson D, Collings S. Cancer survival in the context of mental illness: a national cohort study. Gen Hosp Psychiatry 2015; 37(6): 501-6.
[http://dx.doi.org/10.1016/j.genhosppsych.2015.06.003] [PMID: 26160056]
[16]
Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 676-92.
[http://dx.doi.org/10.1016/j.pnpbp.2010.05.004] [PMID: 20471444]
[17]
Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 2009; 24(1): 27-53.
[http://dx.doi.org/10.1007/s11011-008-9118-1] [PMID: 19085093]
[18]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[19]
Chen Z, Zhong C. Oxidative stress in Alzheimer’s disease. Neurosci Bull 2014; 30(2): 271-81.
[http://dx.doi.org/10.1007/s12264-013-1423-y] [PMID: 24664866]
[20]
Chung HY, Baek BS, Song SH, et al. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha) 1997; 20(3): 127-40.
[http://dx.doi.org/10.1007/s11357-997-0012-2] [PMID: 23604305]
[21]
Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006; 58(1): 87-114.
[http://dx.doi.org/10.1124/pr.58.1.6] [PMID: 16507884]
[22]
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019; 24(8): 24.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[23]
Jana A, Pahan K. Oxidative stress kills human primary oligodendrocytes via neutral sphingomyelinase: implications for multiple sclerosis. J Neuroimmune Pharmacol 2007; 2(2): 184-93.
[http://dx.doi.org/10.1007/s11481-007-9066-2] [PMID: 18040843]
[24]
Michel TM, Nara K, Camara S, Koutsilieri E, Jecel JC, Riederer P. Activity of xanthine oxidase in different brain regions of patients with Alzheimer’s dementia: a post mortem study. World J Biol Psychiatry 2004; 5: 86.
[25]
Michel TM, Nara K, Camara S, Koutsilieri E, Thome J, Riederer P. Xanthine oxidase activity is decreased in distinct brain areas of patients with schizophrenic psychoses: a post mortem study. World J Biol Psychiatry 2004; 5: 11.
[26]
Herken H, Akyol O, Yilmaz HR, et al. Nitric oxide, adenosine deaminase, xanthine oxidase and superoxide dismutase in patients with panic disorder: alterations by antidepressant treatment. Hum Psychopharmacol 2006; 21(1): 53-9.
[http://dx.doi.org/10.1002/hup.742] [PMID: 16329160]
[27]
Ceylan MF, Sener S, Bayraktar AC, Kavutcu M. Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry Clin Neurosci 2012; 66(3): 220-6.
[http://dx.doi.org/10.1111/j.1440-1819.2012.02330.x] [PMID: 22443244]
[28]
Qi G, Mi Y, Yin F. Cellular Specificity and Inter-cellular Coordination in the Brain Bioenergetic System: Implications for Aging and Neurodegeneration. Front Physiol 2020; 10: 1531.
[http://dx.doi.org/10.3389/fphys.2019.01531] [PMID: 31969828]
[29]
Schoeman JC, Harms AC, van Weeghel M, Berger R, Vreeken RJ, Hankemeier T. Development and application of a UHPLC-MS/MS metabolomics based comprehensive systemic and tissue-specific screening method for inflammatory, oxidative and nitrosative stress. Anal Bioanal Chem 2018; 410(10): 2551-68.
[http://dx.doi.org/10.1007/s00216-018-0912-2] [PMID: 29497765]
[30]
Wigner P, Czarny P, Galecki P, Sliwinski T. Oxidative and nitrosative stress as well as the tryptophan catabolites pathway in depressive disorders. Psychiatr Danub 2017; 29(4): 394-400.
[http://dx.doi.org/10.24869/psyd.2017.394] [PMID: 29197195]
[31]
Maes M, Kubera M, Leunis J-C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol Lett 2008; 29(1): 117-24.
[PMID: 18283240]
[32]
Wigner P, Czarny P, Synowiec E, et al. Variation of genes involved in oxidative and nitrosative stresses in depression. Eur Psychiatry 2018; 48: 38-48.
[http://dx.doi.org/10.1016/j.eurpsy.2017.10.012] [PMID: 29331597]
[33]
Brunoni AR, Supasitthumrong T, Teixeira AL, et al. Differences in the immune-inflammatory profiles of unipolar and bipolar depression. J Affect Disord 2020; 262: 8-15.
[http://dx.doi.org/10.1016/j.jad.2019.10.037] [PMID: 31693974]
[34]
Haroon E, Welle JR, Woolwine BJ, et al. Associations among peripheral and central kynurenine pathway metabolites and inflammation in depression. Neuropsychopharmacology 2020; 45(6): 998-1007.
[http://dx.doi.org/10.1038/s41386-020-0607-1] [PMID: 31940661]
[35]
Kay J, Thadhani E, Samson L, Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst) 2019; 83102673
[http://dx.doi.org/10.1016/j.dnarep.2019.102673] [PMID: 31387777]
[36]
Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 2015; 5(2): 472-84.
[http://dx.doi.org/10.3390/biom5020472] [PMID: 25884116]
[37]
Schulz E, Wenzel P, Münzel T, Daiber A. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal 2014; 20(2): 308-24.
[http://dx.doi.org/10.1089/ars.2012.4609] [PMID: 22657349]
[38]
Sabán-Ruiz J, Alonso-Pacho A, Fabregate-Fuente M, de la Puerta González-Quevedo C. Xanthine oxidase inhibitor febuxostat as a novel agent postulated to act against vascular inflammation. Antiinflamm Antiallergy Agents Med Chem 2013; 12(1): 94-9.
[http://dx.doi.org/10.2174/1871523011312010011] [PMID: 23286293]
[39]
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52(5): 507-43.
[http://dx.doi.org/10.1080/10715762.2018.1457217] [PMID: 29589770]
[40]
Salehi B, Martorell M, Arbiser JL, et al. Antioxidants: Positive or Negative Actors? Biomolecules 2018; 8(4): 124.
[http://dx.doi.org/10.3390/biom8040124] [PMID: 30366441]
[41]
Filipović D, Todorović N, Bernardi RE, Gass P. Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms. Brain Struct Funct 2017; 222(1): 1-20.
[http://dx.doi.org/10.1007/s00429-016-1218-9] [PMID: 27033097]
[42]
Shibata N, Kobayashi M. The role for oxidative stress in neurodegenerative diseases. Brain Nerve 2008; 60(2): 157-70.
[PMID: 18306664]
[43]
Rahman T, Hosen I, Islam M, Shekhar H. Oxidative stress and humna health. Adv Biosci Biotechnol 2012; 3: 997-1019.
[http://dx.doi.org/10.4236/abb.2012.327123]
[44]
Spiers JG, Chen HC, Bourgognon JM, Steinert JR. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer’s disease. Free Radic Biol Med 2019; 134: 468-83.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.025] [PMID: 30716433]
[45]
Czarny P, Bialek K, Ziolkowska S, Strycharz J, Sliwinski T. DNA damage and repair in neuropsychiatric disorders. What do we know and what are the future perspectives? Mutagenesis 2019; 35(1): 79-106.
[http://dx.doi.org/10.1093/mutage/gez035] [PMID: 31676908]
[46]
Leffa DT, Bellaver B, de Oliveira C, et al. Increased oxidative parameters and decreased cytokine levels in an animal model of attention-deficit/hyperactivity disorder. Neurochem Res 2017; 42(11): 3084-92.
[http://dx.doi.org/10.1007/s11064-017-2341-6] [PMID: 28664398]
[47]
Leffa DT, Torres ILS, Rohde LA. A review on the role of inflammation in attention-deficit/hyperactivity disorder. Neuroimmunomodulation 2018; 25(5-6): 328-33.
[http://dx.doi.org/10.1159/000489635] [PMID: 29874674]
[48]
Joseph N, Zhang-James Y, Perl A, Faraone SV. Oxidative Stress and ADHD: A Meta-Analysis. J Atten Disord 2015; 19(11): 915-24.
[http://dx.doi.org/10.1177/1087054713510354] [PMID: 24232168]
[49]
Kim Y, Vadodaria KC, Lenkei Z, et al. Mitochondria, metabolism, and redox mechanisms in psychiatric disorders. Antioxid Redox Signal 2019; 31(4): 275-317.
[http://dx.doi.org/10.1089/ars.2018.7606] [PMID: 30585734]
[50]
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5: 116-32.
[http://dx.doi.org/10.1016/j.ibror.2018.11.004] [PMID: 30591953]
[51]
Yui K, Kawasaki Y, Yamada H, Ogawa S. Oxidative stress and nitric oxide in autism spectrum disorder and other neuropsychiatric disorders. CNS Neurol Disord Drug Targets 2016; 15(5): 587-96.
[http://dx.doi.org/10.2174/1871527315666160413121751] [PMID: 27071787]
[52]
Selek S, Herken H, Bulut M, et al. Oxidative imbalance in obsessive compulsive disorder patients: a total evaluation of oxidant-antioxidant status. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(2): 487-91.
[http://dx.doi.org/10.1016/j.pnpbp.2007.10.002] [PMID: 18006203]
[53]
Yenkoyan K, Harutyunyan H, Harutyunyan A. A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radic Biol Med 2018; 123: 85-95.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.070] [PMID: 29782990]
[54]
Goshen I, Kreisel T, Ben-Menachem-Zidon O, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 2008; 13(7): 717-28.
[http://dx.doi.org/10.1038/sj.mp.4002055] [PMID: 17700577]
[55]
Campbell S, MacQueen G. An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 2006; 19(1): 25-33.
[http://dx.doi.org/10.1097/01.yco.0000194371.47685.f2] [PMID: 16612175]
[56]
Stockmeier CA, Mahajan GJ, Konick LC, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 2004; 56(9): 640-50.
[http://dx.doi.org/10.1016/j.biopsych.2004.08.022] [PMID: 15522247]
[57]
Duman RS. Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatry 2002; 17(Suppl. 3): 306-10.
[http://dx.doi.org/10.1016/S0924-9338(02)00654-5] [PMID: 15177086]
[58]
Upthegrove R, Khandaker GM. Cytokines, Oxidative stress and cellular markers of inflammation in schizophrenia. Curr Top Behav Neurosci 2020; 44: 49-66.
[http://dx.doi.org/10.1007/7854_2018_88] [PMID: 31115797]
[59]
Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 2002; 33(6): 774-97.
[http://dx.doi.org/10.1016/S0891-5849(02)00956-5] [PMID: 12208366]
[60]
Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep 2015; 67(4): 669-74.
[http://dx.doi.org/10.1016/j.pharep.2015.05.004] [PMID: 26321266]
[61]
Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine Oxidoreductase in drug metabolism: beyond a role as a detoxifying enzyme. Curr Med Chem 2016; 23(35): 4027-36.
[http://dx.doi.org/10.2174/0929867323666160725091915] [PMID: 27458036]
[62]
Lin S, Zhang G, Liao Y, Pan J, Gong D. Dietary flavonoids as xanthine oxidase inhibitors: structure-affinity and structure-activity relationships. J Agric Food Chem 2015; 63(35): 7784-94.
[http://dx.doi.org/10.1021/acs.jafc.5b03386] [PMID: 26285120]
[63]
Schuchardt M, Herrmann J, Tolle M, van der Giet M. Xanthine oxidase and its role as target in cardiovascular disease: Cardiovascular protection by enzyme inhibition? Curr Pharm Des 2017; 23(23): 3391-404.
[http://dx.doi.org/10.2174/1381612823666170417130115] [PMID: 28413972]
[64]
Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med 2008; 359(17): 1811-21.
[http://dx.doi.org/10.1056/NEJMra0800885] [PMID: 18946066]
[65]
Alderman M, Aiyer KJ. Uric acid: role in cardiovascular disease and effects of losartan. Curr Med Res Opin 2004; 20(3): 369-79.
[http://dx.doi.org/10.1185/030079904125002982] [PMID: 15025846]
[66]
Stein BW, Kirk ML. Electronic structure contributions to reactivity in xanthine oxidase family enzymes. J Biol Inorg Chem 2015; 20(2): 183-94.
[http://dx.doi.org/10.1007/s00775-014-1212-8] [PMID: 25425163]
[67]
Landmesser U, Spiekermann S, Dikalov S, et al. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 2002; 106(24): 3073-8.
[http://dx.doi.org/10.1161/01.CIR.0000041431.57222.AF] [PMID: 12473554]
[68]
Houston M, Estevez A, Chumley P, et al. Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J Biol Chem 1999; 274(8): 4985-94.
[http://dx.doi.org/10.1074/jbc.274.8.4985] [PMID: 9988743]
[69]
Granell S, Gironella M, Bulbena O, et al. Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis. Crit Care Med 2003; 31(2): 525-30.
[http://dx.doi.org/10.1097/01.CCM.0000049948.64660.06] [PMID: 12576961]
[70]
Parks DA, Williams TK, Beckman JS. Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am J Physiol 1988; 254(5 Pt 1): G768-74.
[PMID: 3163236]
[71]
Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation. Redox Biol 2013; 1: 353-8.
[http://dx.doi.org/10.1016/j.redox.2013.05.002] [PMID: 24024171]
[72]
Robert AM, Robert L. Xanthine oxido-reductase, free radicals and cardiovascular disease. A critical review. Pathol Oncol Res 2014; 20(1): 1-10.
[http://dx.doi.org/10.1007/s12253-013-9698-x] [PMID: 24127160]
[73]
Hille R, Massey V. Studies on the oxidative half-reaction of xanthine oxidase. J Biol Chem 1981; 256(17): 9090-5.
[PMID: 6894924]
[74]
George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 2009; 5(1): 265-72.
[http://dx.doi.org/10.2147/VHRM.S4265] [PMID: 19436671]
[75]
Maia LB, Moura JJ. Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20(2): 403-33.
[http://dx.doi.org/10.1007/s00775-014-1234-2] [PMID: 25589250]
[76]
Kelley EE, Khoo NKH, Hundley NJ, Malik UZ, Freeman BA, Tarpey MM. Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med 2010; 48(4): 493-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.012] [PMID: 19941951]
[77]
Aslan M, Freeman BA. Oxidant-mediated impairment of nitric oxide signaling in sickle cell disease--mechanisms and consequences. Cell Mol Biol 2004; 50(1): 95-105.
[PMID: 15040433]
[78]
Harrison R. Physiological roles of xanthine oxidoreductase. Drug Metab Rev 2004; 36(2): 363-75.
[http://dx.doi.org/10.1081/DMR-120037569] [PMID: 15237859]
[79]
Krenitsky TA, Spector T, Hall WW. Xanthine oxidase from human liver: purification and characterization. Arch Biochem Biophys 1986; 247(1): 108-19.
[http://dx.doi.org/10.1016/0003-9861(86)90539-4] [PMID: 3010873]
[80]
Feig DI, Kang DH, Nakagawa T, Mazzali M, Johnson RJ. Uric acid and hypertension. Curr Hypertens Rep 2006; 8(2): 111-5.
[http://dx.doi.org/10.1007/s11906-006-0005-z] [PMID: 16672142]
[81]
Chen C, Lü JM, Yao Q. Hyperuricemia-Related Diseases and Xanthine Oxidoreductase (XOR) inhibitors: An overview. Med Sci Monit 2016; 22: 2501-12.
[http://dx.doi.org/10.12659/MSM.899852] [PMID: 27423335]
[82]
Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int 2005; 67(5): 1739-42.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00273.x] [PMID: 15840020]
[83]
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic aspects. Biomolecules 2019; 9(8): 9.
[http://dx.doi.org/10.3390/biom9080301] [PMID: 31349600]
[84]
Malik UZ, Hundley NJ, Romero G, et al. Febuxostat inhibition of endothelial-bound XO: implications for targeting vascular ROS production. Free Radic Biol Med 2011; 51(1): 179-84.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.004] [PMID: 21554948]
[85]
Guthikonda S, Sinkey C, Barenz T, Haynes WG. Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation 2003; 107(3): 416-21.
[http://dx.doi.org/10.1161/01.CIR.0000046448.26751.58] [PMID: 12551865]
[86]
Doehner W, Schoene N, Rauchhaus M, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation 2002; 105(22): 2619-24.
[http://dx.doi.org/10.1161/01.CIR.0000017502.58595.ED] [PMID: 12045167]
[87]
Michel TM, Camara S, Tatschner T, et al. Increased xanthine oxidase in the thalamus and putamen in depression. World J Biol Psychiatry 2010; 11(2 Pt 2): 314-20.
[http://dx.doi.org/10.3109/15622970802123695] [PMID: 20218795]
[88]
Michel TM, Sheldrick AJ, Camara S, Grünblatt E, Schneider F, Riederer P. Alteration of the pro-oxidant xanthine oxidase (XO) in the thalamus and occipital cortex of patients with schizophrenia. World J Biol Psychiatry 2011; 12(8): 588-97.
[http://dx.doi.org/10.3109/15622975.2010.526146] [PMID: 21073395]
[89]
Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 2002; 9(3): 161-75.
[http://dx.doi.org/10.1038/sj.mn.7800136] [PMID: 12080414]
[90]
Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res 2007; 38(2): 247-52.
[http://dx.doi.org/10.1016/j.arcmed.2006.10.005] [PMID: 17227736]
[91]
Tohid H, Faizan M, Faizan U. Alterations of the occipital lobe in schizophrenia. Neurosciences (Riyadh) 2015; 20(3): 213-24.
[http://dx.doi.org/10.17712/nsj.2015.3.20140757] [PMID: 26166588]
[92]
Weiser M, Gershon AA, Rubinstein K, et al. A randomized controlled trial of allopurinol vs. placebo added on to antipsychotics in patients with schizophrenia or schizoaffective disorder. Schizophr Res 2012; 138(1): 35-8.
[http://dx.doi.org/10.1016/j.schres.2012.02.014] [PMID: 22483162]
[93]
Michel TM, Gsell W, Geuder J, et al. Can enzyme kinetics of prooxidants teach us a lesson about the treatment of Alzheimer’s disease: a pilot post-mortem study. World J Biol Psychiatry 2010; 11(4): 677-81.
[http://dx.doi.org/10.3109/15622971003728014] [PMID: 20380619]
[94]
Ortiz R, Ulrich H, Zarate CA Jr, Machado-Vieira R. Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57: 117-31.
[http://dx.doi.org/10.1016/j.pnpbp.2014.10.016] [PMID: 25445063]
[95]
Labat-Robert J, Robert L. Longevity and aging. Role of free radicals and xanthine oxidase. A review. Pathol Biol (Paris) 2014; 62(2): 61-6.
[http://dx.doi.org/10.1016/j.patbio.2014.02.009] [PMID: 24650523]
[96]
Dawson J, Walters M. Uric acid and xanthine oxidase: future therapeutic targets in the prevention of cardiovascular disease? Br J Clin Pharmacol 2006; 62(6): 633-44.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02785.x] [PMID: 21894646]
[97]
Schmidt HM, Kelley EE, Straub AC. The impact of xanthine oxidase (XO) on hemolytic diseases. Redox Biol 2019; 21101072
[http://dx.doi.org/10.1016/j.redox.2018.101072] [PMID: 30580157]
[98]
Kushiyama A, Nakatsu Y, Matsunaga Y, et al. Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis. Mediators Inflamm 2016; 20168603164
[http://dx.doi.org/10.1155/2016/8603164] [PMID: 28070145]
[99]
Higgins P, Dawson J, Lees KR, McArthur K, Quinn TJ, Walters MR. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Ther 2012; 30(4): 217-26.
[http://dx.doi.org/10.1111/j.1755-5922.2011.00277.x] [PMID: 22099531]
[100]
Gielis JF, Beckers PAJ, Briedé JJ, Cos P, Van Schil PE. Oxidative and nitrosative stress during pulmonary ischemia-reperfusion injury: from the lab to the OR. Ann Transl Med 2017; 5(6): 131.
[http://dx.doi.org/10.21037/atm.2017.03.32] [PMID: 28462211]
[101]
Rees F, Hui M, Doherty M. Optimizing current treatment of gout. Nat Rev Rheumatol 2014; 10(5): 271-83.
[http://dx.doi.org/10.1038/nrrheum.2014.32] [PMID: 24614592]
[102]
Arellano F, Sacristán JA. Allopurinol hypersensitivity syndrome: a review. Ann Pharmacother 1993; 27(3): 337-43.
[http://dx.doi.org/10.1177/106002809302700317] [PMID: 8453174]
[103]
Broekman MM, Roelofs HM, Wong DR, et al. Allopurinol and 5-aminosalicylic acid influence thiopurine-induced hepatotoxicity in vitro. Cell Biol Toxicol 2015; 31(3): 161-71.
[http://dx.doi.org/10.1007/s10565-015-9301-1] [PMID: 25916701]
[104]
Edeas M. Anti-oxidants, controversies and perspectives: how can the failure of clinical studies using anti-oxidants be explained? J Soc Biol 2009; 203(3): 271-80.
[http://dx.doi.org/10.1051/jbio:2009031] [PMID: 19833072]
[105]
Hare JM, Mangal B, Brown J, et al. Investigators O-C. Impact of oxypurinol in patients with symptomatic heart failure. J Am Coll Cardiol 2008; 51: 2301-9.
[http://dx.doi.org/10.1016/j.jacc.2008.01.068] [PMID: 18549913]
[106]
Galbusera C, Orth P, Fedida D, Spector T. Superoxide radical production by allopurinol and xanthine oxidase. Biochem Pharmacol 2006; 71(12): 1747-52.
[http://dx.doi.org/10.1016/j.bcp.2006.02.008] [PMID: 16650385]
[107]
Cerqueira NM, Pakhira B, Sarkar S. Theoretical studies on mechanisms of some Mo enzymes. J Biol Inorg Chem 2015; 20(2): 323-35.
[http://dx.doi.org/10.1007/s00775-015-1237-7] [PMID: 25698503]
[108]
Massey V, Komai H, Palmer G, Elion GB. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem 1970; 245(11): 2837-44.
[PMID: 5467924]
[109]
Mercuro G, Vitale C, Cerquetani E, et al. Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol 2004; 94(7): 932-5.
[http://dx.doi.org/10.1016/j.amjcard.2004.06.032] [PMID: 15464681]
[110]
Farquharson CA, Butler R, Hill A, Belch JJF, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 2002; 106(2): 221-6.
[http://dx.doi.org/10.1161/01.CIR.0000022140.61460.1D] [PMID: 12105162]
[111]
Butler R, Morris AD, Belch JJF, Hill A, Struthers AD. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 2000; 35(3): 746-51.
[http://dx.doi.org/10.1161/01.HYP.35.3.746] [PMID: 10720589]
[112]
Buie LW, Oertel MD, Cala SO. Allopurinol as adjuvant therapy in poorly responsive or treatment refractory schizophrenia. Ann Pharmacother 2006; 40(12): 2200-4.
[http://dx.doi.org/10.1345/aph.1H222] [PMID: 17119103]
[113]
Boison D, Singer P, Shen HY, Feldon J, Yee BK. Adenosine hypothesis of schizophrenia--opportunities for pharmacotherapy. Neuropharmacology 2012; 62(3): 1527-43.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.048] [PMID: 21315743]
[114]
Lara DR, Cruz MR, Xavier F, Souza DO, Moriguchi EH. Allopurinol for the treatment of aggressive behaviour in patients with dementia. Int Clin Psychopharmacol 2003; 18(1): 53-5.
[PMID: 12490776]
[115]
Brunstein MG, Ghisolfi ES, Ramos FL, Lara DR. A clinical trial of adjuvant allopurinol therapy for moderately refractory schizophrenia. J Clin Psychiatry 2005; 66(2): 213-9.
[http://dx.doi.org/10.4088/JCP.v66n0209] [PMID: 15705007]
[116]
Akhondzadeh S, Safarcherati A, Amini H. Beneficial antipsychotic effects of allopurinol as add-on therapy for schizophrenia: a double blind, randomized and placebo controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29(2): 253-9.
[http://dx.doi.org/10.1016/j.pnpbp.2004.11.008] [PMID: 15694232]
[117]
Jahangard L, Soroush S, Haghighi M, et al. In a double-blind, randomized and placebo-controlled trial, adjuvant allopurinol improved symptoms of mania in in-patients suffering from bipolar disorder. Eur Neuropsychopharmacol 2014; 24(8): 1210-21.
[http://dx.doi.org/10.1016/j.euroneuro.2014.05.013] [PMID: 24953766]
[118]
Weiser M, Burshtein S, Gershon AA, et al. Allopurinol for mania: a randomized trial of allopurinol versus placebo as add-on treatment to mood stabilizers and/or antipsychotic agents in manic patients with bipolar disorder. Bipolar Disord 2014; 16(4): 441-7.
[http://dx.doi.org/10.1111/bdi.12202] [PMID: 24712840]
[119]
Fan A, Berg A, Bresee C, Glassman LH, Rapaport MH. Allopurinol augmentation in the outpatient treatment of bipolar mania: a pilot study. Bipolar Disord 2012; 14(2): 206-10.
[http://dx.doi.org/10.1111/j.1399-5618.2012.01001.x] [PMID: 22420596]
[120]
Chen AT, Malmstrom T, Nasrallah HA. Allopurinol augmentation in acute mania: A meta-analysis of placebo-controlled trials. J Affect Disord 2018; 226: 245-50.
[http://dx.doi.org/10.1016/j.jad.2017.09.034] [PMID: 29017068]
[121]
Bartoli F, Crocamo C, Clerici M, Carrà G. Allopurinol as add-on treatment for mania symptoms in bipolar disorder: systematic review and meta-analysis of randomised controlled trials. Br J Psychiatry 2017; 210(1): 10-5.
[http://dx.doi.org/10.1192/bjp.bp.115.180281] [PMID: 27856422]
[122]
Becker MA, Schumacher HR Jr, Wortmann RL, et al. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med 2005; 353(23): 2450-61.
[http://dx.doi.org/10.1056/NEJMoa050373] [PMID: 16339094]
[123]
Takano Y, Hase-Aoki K, Horiuchi H, et al. Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase. Life Sci 2005; 76(16): 1835-47.
[http://dx.doi.org/10.1016/j.lfs.2004.10.031] [PMID: 15698861]
[124]
Okamoto K, Eger BT, Nishino T, Kondo S, Pai EF, Nishino T. An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J Biol Chem 2003; 278(3): 1848-55.
[http://dx.doi.org/10.1074/jbc.M208307200] [PMID: 12421831]
[125]
George J, Struthers A. The role of urate and xanthine oxidase in vascular oxidative stress: future directions. Ther Clin Risk Manag 2009; 5: 799-803.
[http://dx.doi.org/10.2147/TCRM.S5701] [PMID: 19851527]
[126]
Puig JG, Martínez MA. Hyperuricemia, gout and the metabolic syndrome. Curr Opin Rheumatol 2008; 20(2): 187-91.
[http://dx.doi.org/10.1097/BOR.0b013e3282f4b1ed] [PMID: 18349749]
[127]
Shafik AN. Febuxostat improves the local and remote organ changes induced by intestinal ischemia/reperfusion in rats. Dig Dis Sci 2013; 58(3): 650-9.
[http://dx.doi.org/10.1007/s10620-012-2391-1] [PMID: 23010742]
[128]
Xu X, Zhao L, Hu X, et al. Delayed treatment effects of xanthine oxidase inhibition on systolic overload-induced left ventricular hypertrophy and dysfunction. Nucleosides Nucleotides Nucleic Acids 2010; 29(4-6): 306-13.
[http://dx.doi.org/10.1080/15257771003738683] [PMID: 20544512]
[129]
Tsuda H, Kawada N, Kaimori JY, et al. Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress. Biochem Biophys Res Commun 2012; 427(2): 266-72.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.032] [PMID: 22995295]
[130]
Omori H, Kawada N, Inoue K, et al. Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clin Exp Nephrol 2012; 16(4): 549-56.
[http://dx.doi.org/10.1007/s10157-012-0609-3] [PMID: 22350467]
[131]
Singh JA, Cleveland JD. Comparative effectiveness of allopurinol versus febuxostat for preventing incident dementia in older adults: a propensity-matched analysis. Arthritis Res Ther 2018; 20(1): 167.
[http://dx.doi.org/10.1186/s13075-018-1663-3] [PMID: 30075731]
[132]
Reyes AJ, Leary WP. The ALLHAT and the cardioprotection conferred by diuretics in hypertensive patients: a connection with uric acid? Cardiovasc Drugs Ther 2002; 16(6): 485-7.
[PMID: 12797357]
[133]
Psaty BM, Lumley T, Furberg CD, et al. Health outcomes associated with various antihypertensive therapies used as first-line agents: a network meta-analysis. JAMA 2003; 289(19): 2534-44.
[http://dx.doi.org/10.1001/jama.289.19.2534] [PMID: 12759325]
[134]
Reyes AJ. The increase in serum uric acid concentration caused by diuretics might be beneficial in heart failure. Eur J Heart Fail 2005; 7(4): 461-7.
[http://dx.doi.org/10.1016/j.ejheart.2004.03.020] [PMID: 15921780]
[135]
Grabowski B, Khosravan R, Wu JT, Vernillet L, Lademacher C. Effect of hydrochlorothiazide on the pharmacokinetics and pharmacodynamics of febuxostat, a non-purine selective inhibitor of xanthine oxidase. Br J Clin Pharmacol 2010; 70(1): 57-64.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03667.x] [PMID: 20642548]
[136]
Nagao A, Seki M, Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem 1999; 63(10): 1787-90.
[http://dx.doi.org/10.1271/bbb.63.1787] [PMID: 10671036]
[137]
Pauff JM, Hille R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J Nat Prod 2009; 72(4): 725-31.
[http://dx.doi.org/10.1021/np8007123] [PMID: 19388706]
[138]
Wang Y, Zhang G, Pan J, Gong D. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. J Agric Food Chem 2015; 63(2): 526-34.
[http://dx.doi.org/10.1021/jf505584m] [PMID: 25539132]
[139]
Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 2001; 49(6): 2774-9.
[http://dx.doi.org/10.1021/jf001413m] [PMID: 11409965]
[140]
Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Med Res Rev 2003; 23(4): 519-34.
[http://dx.doi.org/10.1002/med.10033] [PMID: 12710022]
[141]
Kawai M, Hirano T, Higa S, et al. Flavonoids and related compounds as anti-allergic substances. Allergol Int 2007; 56(2): 113-23.
[http://dx.doi.org/10.2332/allergolint.R-06-135] [PMID: 17384531]
[142]
Xie Y, Chen X. Structures required of polyphenols for inhibiting advanced glycation end products formation. Curr Drug Metab 2013; 14(4): 414-31.
[http://dx.doi.org/10.2174/1389200211314040005] [PMID: 23330933]
[143]
Bastianetto S, Quirion R. Natural extracts as possible protective agents of brain aging. Neurobiol Aging 2002; 23(5): 891-7.
[http://dx.doi.org/10.1016/S0197-4580(02)00024-6] [PMID: 12392793]
[144]
Magrone T, Magrone M, Russo MA, Jirillo E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: in vitro and in vivo studies. Antioxidants (Basel) 2019; 9.
[145]
Meda NT, Lamien-Meda A, Kiendrebeogo M, et al. In vitro antioxidant, xanthine oxidase and acetylcholinesterase inhibitory activities of Balanites aegyptiaca (L.) Del. (Balanitaceae). Pak J Biol Sci 2010; 13(8): 362-8.
[http://dx.doi.org/10.3923/pjbs.2010.362.368] [PMID: 20836295]
[146]
Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets 2009; 8(3): 229-35.
[http://dx.doi.org/10.2174/187152809788681029] [PMID: 19601883]
[147]
Lin CM, Chen CS, Chen CT, Liang YC, Lin JK. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem Biophys Res Commun 2002; 294(1): 167-72.
[http://dx.doi.org/10.1016/S0006-291X(02)00442-4] [PMID: 12054758]
[148]
Huang J, Wang S, Zhu M, Chen J, Zhu X. Effects of genistein, apigenin, quercetin, rutin and astilbin on serum uric acid levels and xanthine oxidase activities in normal and hyperuricemic mice. Food Chem Toxicol 2011; 49(9): 1943-7.
[http://dx.doi.org/10.1016/j.fct.2011.04.029] [PMID: 21600261]
[149]
Hayashi T, Sawa K, Kawasaki M, Arisawa M, Shimizu M, Morita N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J Nat Prod 1988; 51(2): 345-8.
[http://dx.doi.org/10.1021/np50056a030] [PMID: 3379415]
[150]
Van Hoorn DEC, Nijveldt RJ, Van Leeuwen PAM, et al. Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur J Pharmacol 2002; 451(2): 111-8.
[http://dx.doi.org/10.1016/S0014-2999(02)02192-1] [PMID: 12231379]
[151]
Nile SH, Park SW. Antioxidant, α-glucosidase and xanthine oxidase inhibitory activity of bioactive compounds from maize (Zea mays L.). Chem Biol Drug Des 2014; 83(1): 119-25.
[http://dx.doi.org/10.1111/cbdd.12205] [PMID: 23957301]
[152]
Zerargui F, Boumerfeg S, Charef N, et al. Antioxidant potentials and xanthine oxidase inhibitory effect of two furanocoumarins isolated from Tamus communis L. Med Chem 2015; 11(5): 506-13.
[http://dx.doi.org/10.2174/1573406411666150130145246] [PMID: 25633370]
[153]
Boumerfeg S, Baghiani A, Messaoudi D, Khennouf S, Arrar L. Antioxidant properties and xanthine oxidase inhibitory effects of Tamus communis L. root extracts. Phytother Res 2009; 23(2): 283-8.
[http://dx.doi.org/10.1002/ptr.2621] [PMID: 18844260]
[154]
Bernardo J, Ferreres F, Gil-Izquierdo Á, et al. In vitro multimodal-effect of Trichilia catigua A. Juss. (Meliaceae) bark aqueous extract in CNS targets. J Ethnopharmacol 2018; 211: 247-55.
[http://dx.doi.org/10.1016/j.jep.2017.09.039] [PMID: 28970152]
[155]
Chen Z, Tao H, Liao L, Zhang Z, Wang Z. Quick identification of xanthine oxidase inhibitor and antioxidant from Erycibe obtusifolia by a drug discovery platform composed of multiple mass spectrometric platforms and thin-layer chromatography bioautography. J Sep Sci 2014; 37(16): 2253-9.
[http://dx.doi.org/10.1002/jssc.201400342] [PMID: 24895238]
[156]
Fu Y, Mo HY, Gao W, et al. Affinity selection-based two-dimensional chromatography coupled with high-performance liquid chromatography-mass spectrometry for discovering xanthine oxidase inhibitors from Radix Salviae Miltiorrhizae. Anal Bioanal Chem 2014; 406(20): 4987-95.
[http://dx.doi.org/10.1007/s00216-014-7902-9] [PMID: 24866714]
[157]
Gawlik-Dziki U, Dziki D, Świeca M, Nowak R. Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids. Food Chem 2017; 225: 138-45.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.016] [PMID: 28193407]
[158]
Masuoka N, Kubo I. Characterization of the xanthine oxidase inhibitory activity of alk(en)yl phenols and related compounds. Phytochemistry 2018; 155: 100-6.
[http://dx.doi.org/10.1016/j.phytochem.2018.07.006] [PMID: 30096514]
[159]
Santi MD, Paulino Zunini M, Vera B, et al. Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies. Eur J Med Chem 2018; 143: 577-82.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.071] [PMID: 29207340]
[160]
Baldissera MD, Souza CF, Descovi SN, Petrolli TG, da Silva AS, Baldisserotto B. A caffeine-supplemented diet modulates oxidative stress markers and prevents oxidative damage in the livers of Nile tilapia (Oreochromis niloticus) exposed to hypoxia. Fish Physiol Biochem 2019; 45(3): 1041-9.
[http://dx.doi.org/10.1007/s10695-019-00616-7] [PMID: 30747312]
[161]
Haidari F, Rashidi MR, Keshavarz SA, Mahboob SA, Eshraghian MR, Shahi MM. Effects of onion on serum uric acid levels and hepatic xanthine dehydrogenase/xanthine oxidase activities in hyperuricemic rats. Pak J Biol Sci 2008; 11(14): 1779-84.
[http://dx.doi.org/10.3923/pjbs.2008.1779.1784] [PMID: 18817216]
[162]
Haidari F, Ali Keshavarz S, Reza Rashidi M, Mohammad Shahi M. Orange juice and hesperetin supplementation to hyperuricemic rats alter oxidative stress markers and xanthine oxidoreductase activity. J Clin Biochem Nutr 2009; 45(3): 285-91.
[http://dx.doi.org/10.3164/jcbn.09-15] [PMID: 19902018]
[163]
Mohos V, Pánovics A, Fliszár-Nyúl E, et al. Inhibitory effects of quercetin and its human and microbial metabolites on xanthine oxidase enzyme. Int J Mol Sci 2019; 20(11): 20.
[http://dx.doi.org/10.3390/ijms20112681] [PMID: 31159151]
[164]
Gaballah HH, Zakaria SS, Elbatsh MM, Tahoon NM. Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson’s disease. Chem Biol Interact 2016; 251: 10-6.
[http://dx.doi.org/10.1016/j.cbi.2016.03.023] [PMID: 27016191]
[165]
Li H, Yan Z, Zhu J, Yang J, He J. Neuroprotective effects of resveratrol on ischemic injury mediated by improving brain energy metabolism and alleviating oxidative stress in rats. Neuropharmacology 2011; 60(2-3): 252-8.
[http://dx.doi.org/10.1016/j.neuropharm.2010.09.005] [PMID: 20868700]
[166]
Aydın B. Effects of argan oil on the mitochondrial function, antioxidant system and the activity of NADPH- generating enzymes in acrylamide treated rat brain. Biomed Pharmacother 2017; 87: 476-81.
[http://dx.doi.org/10.1016/j.biopha.2016.12.124] [PMID: 28068639]
[167]
Zhao X, Zhu JX, Mo SF, Pan Y, Kong LD. Effects of cassia oil on serum and hepatic uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J Ethnopharmacol 2006; 103(3): 357-65.
[http://dx.doi.org/10.1016/j.jep.2005.08.040] [PMID: 16182482]
[168]
Wang Y, Zhu JX, Kong LD, Yang C, Cheng CHK, Zhang X. Administration of procyanidins from grape seeds reduces serum uric acid levels and decreases hepatic xanthine dehydrogenase/oxidase activities in oxonate-treated mice. Basic Clin Pharmacol Toxicol 2004; 94(5): 232-7.
[http://dx.doi.org/10.1111/j.1742-7843.2004.pto940506.x] [PMID: 15125693]
[169]
Liu X, Chen R, Shang Y, Jiao B, Huang C. Lithospermic acid as a novel xanthine oxidase inhibitor has anti-inflammatory and hypouricemic effects in rats. Chem Biol Interact 2008; 176(2-3): 137-42.
[http://dx.doi.org/10.1016/j.cbi.2008.07.003] [PMID: 18694741]
[170]
Ahmad I, Ijaz F, Fatima I, et al. Xanthine oxidase/tyrosinase inhibiting, antioxidant, and antifungal oxindole alkaloids from Isatis costata. Pharm Biol 2010; 48(6): 716-21.
[http://dx.doi.org/10.3109/13880200903271298] [PMID: 20645747]
[171]
Shahwar D, Ahmad N, Yasmeen A, Khan MA, Ullah S, Rahman AU. Bioactive constituents from Croton sparsiflorus Morong. Nat Prod Res 2015; 29(3): 274-6.
[http://dx.doi.org/10.1080/14786419.2014.947484] [PMID: 25115768]
[172]
Shi BB, Chen J, Bao MF, Zeng Y, Cai XH. Alkaloids isolated from Tabernaemontana bufalina display xanthine oxidase inhibitory activity. Phytochemistry 2019; 166112060
[http://dx.doi.org/10.1016/j.phytochem.2019.112060] [PMID: 31302343]
[173]
Zhou CX, Tanaka J, Cheng CH, Higa T, Tan RX. Steroidal Alkaloids and Stilbenoids from Veratrum taliense. Planta Med 1999; 65(5): 480-2.
[http://dx.doi.org/10.1055/s-2006-960821] [PMID: 17260275]
[174]
Li WX, Li YF, Zhai YJ, Chen WM, Kurihara H, He RR. Theacrine, a purine alkaloid obtained from Camellia assamica var. kucha, attenuates restraint stress-provoked liver damage in mice. J Agric Food Chem 2013; 61(26): 6328-35.
[http://dx.doi.org/10.1021/jf400982c] [PMID: 23678853]
[175]
Qiao H, Ye X, Bai X, et al. Theacrine: A purine alkaloid from Camellia assamica var. kucha with a hypnotic property via the adenosine system. Neurosci Lett 2017; 659: 48-53.
[http://dx.doi.org/10.1016/j.neulet.2017.08.063] [PMID: 28864241]
[176]
Wang J, Shi D, Zheng M, et al. Screening, separation, and evaluation of xanthine oxidase inhibitors from Paeonia lactiflora using chromatography combined with a multi-mode microplate reader. J Sep Sci 2017; 40(21): 4160-7.
[http://dx.doi.org/10.1002/jssc.201700690] [PMID: 28857450]
[177]
Priyatno LHA, Sukandar EY, Ibrahim S, Adnyana IK. Xanthine oxidase inhibitor activity of terpenoid and pyrrole compounds isolated from snake fruit (Salacca edulis Reinw.) cv. Bongkok. J Appl Sci (Faisalabad) 2007; 7: 3127-30.
[http://dx.doi.org/10.3923/jas.2007.3127.3130]
[178]
Lin CN, Huang AM, Lin KW, et al. Xanthine oxidase inhibitory terpenoids of Amentotaxus formosana protect cisplatin-induced cell death by reducing reactive oxygen species (ROS) in normal human urothelial and bladder cancer cells. Phytochemistry 2010; 71(17-18): 2140-6.
[http://dx.doi.org/10.1016/j.phytochem.2010.08.012] [PMID: 20822784]
[179]
Xu F, Zhao X, Yang L, Wang X, Zhao J. A new cycloartane-type triterpenoid saponin xanthine oxidase inhibitor from Homonoia riparia Lour. Molecules 2014; 19(9): 13422-31.
[http://dx.doi.org/10.3390/molecules190913422] [PMID: 25178063]
[180]
Martins de Sá Müller C, Coelho GB, Carolina de Paula Michel Araújo M, Saúde-Guimarães DA. Lychnophora pinaster ethanolic extract and its chemical constituents ameliorate hyperuricemia and related inflammation. J Ethnopharmacol 2019; 242112040
[http://dx.doi.org/10.1016/j.jep.2019.112040] [PMID: 31252094]
[181]
Luna G, Dolzhenko AV, Mancera RL. Inhibitors of xanthine oxidase: scaffold diversity and structure-based drug design. ChemMedChem 2019; 14(7): 714-43.
[http://dx.doi.org/10.1002/cmdc.201900034] [PMID: 30740924]
[182]
Kumar R, Joshi G, Kler H, Kalra S. Toward an understanding of structural insights of xanthine and aldehyde oxidases: an overview of their inhibitors and role in various diseases. Med Res Rev 2018; 38: 1073-125.
[183]
Nepali K, Singh G, Turan A, et al. A rational approach for the design and synthesis of 1-acetyl-3,5-diaryl-4,5-dihydro(1H) pyrazoles as a new class of potential non-purine xanthine oxidase inhibitors. Bioorg Med Chem 2011; 19(6): 1950-8.
[http://dx.doi.org/10.1016/j.bmc.2011.01.058] [PMID: 21353569]
[184]
Nile SH, Kumar B, Park SW. In vitro evaluation of selected benzimidazole derivatives as an antioxidant and xanthine oxidase inhibitors. Chem Biol Drug Des 2013; 82(3): 290-5.
[http://dx.doi.org/10.1111/cbdd.12141] [PMID: 23581708]
[185]
Li S-Y, Zhang T-J, Wu Q-X, Olounfeh KM, Zhang Y, Meng F-H. Synthesis and Biological Evaluation of 5-benzyl-3-pyridyl-1H- 1,2,4-triazole derivatives as xanthine oxidase inhibitors medicinal chemistry (Shariqah (United Arab Emirates)) 2020; 16: 119-27.
[186]
Xu X, Deng L, Nie L, et al. Discovery of 2-phenylthiazole-4-carboxylic acid, a novel and potent scaffold as xanthine oxidase inhibitors. Bioorg Med Chem Lett 2019; 29(4): 525-8.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.005] [PMID: 30630716]
[187]
Malik N, Dhiman P, Khatkar A. In silico design and synthesis of targeted curcumin derivatives as xanthine oxidase inhibitors. Curr Drug Targets 2019; 20(5): 593-603.
[http://dx.doi.org/10.2174/1389450120666181122100511] [PMID: 30465499]
[188]
Tomovic K, Ilic BS, Smelcerovic Z, et al. Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors. Chem Biol Interact 2020; 315: 108873-3.
[http://dx.doi.org/10.1016/j.cbi.2019.108873] [PMID: 31669219]
[189]
Sathisha KR, Khanum SA, Chandra JN, et al. Synthesis and xanthine oxidase inhibitory activity of 7-methyl-2-(phenoxymethyl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one derivatives. Bioorg Med Chem 2011; 19(1): 211-20.
[http://dx.doi.org/10.1016/j.bmc.2010.11.034] [PMID: 21163661]
[190]
Shi DH, Huang W, Li C, Liu YW, Wang SF. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors. Eur J Med Chem 2014; 75: 289-96.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.058] [PMID: 24556143]
[191]
Chen S, Zhang T, Wang J, et al. Synthesis and evaluation of 1-hydroxy/methoxy-4-methyl-2-phenyl-1H-imidazole-5-carboxylic acid derivatives as non-purine xanthine oxidase inhibitors. Eur J Med Chem 2015; 103: 343-53.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.056] [PMID: 26363870]
[192]
Virdi HS, Sharma S, Mehndiratta S, Bedi PM, Nepali K. Design, synthesis and evaluation of 2,4-diarylpyrano[3,2-c]chromen-5(4H)-one as a new class of non-purine xanthine oxidase inhibitors. J Enzyme Inhib Med Chem 2014; 1-7.
[PMID: 25268805]
[193]
Singh H, Sharma S, Ojha R, Gupta MK, Nepali K, Bedi PM. Synthesis and evaluation of naphthoflavones as a new class of non purine xanthine oxidase inhibitors. Bioorg Med Chem Lett 2014; 24(17): 4192-7.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.041] [PMID: 25106887]
[194]
Kuwabara Y, Nishino T, Okamoto K, et al. Unique amino acids cluster for switching from the dehydrogenase to oxidase form of xanthine oxidoreductase. Proc Natl Acad Sci USA 2003; 100(14): 8170-5.
[http://dx.doi.org/10.1073/pnas.1431485100] [PMID: 12817083]
[195]
Guan Q, Cheng Z, Ma X, et al. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors. Eur J Med Chem 2014; 85: 508-16.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.014] [PMID: 25113879]
[196]
Smelcerovic A, Rangelov M, Smelcerovic Z, et al. Two 6-(propan-2-yl)-4-methyl-morpholine-2,5-diones as new non-purine xanthine oxidase inhibitors and anti-inflammatory agents. Food Chem Toxicol 2013; 55: 493-7.
[http://dx.doi.org/10.1016/j.fct.2013.01.052] [PMID: 23410588]
[197]
Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 2012; 52(7): 1757-68.
[http://dx.doi.org/10.1021/ci3001277] [PMID: 22587354]
[198]
Lucas X, Grüning BA, Bleher S, Günther S. The purchasable chemical space: a detailed picture. J Chem Inf Model 2015; 55(5): 915-24.
[http://dx.doi.org/10.1021/acs.jcim.5b00116] [PMID: 25894297]
[199]
Sterling T, Irwin JJ. ZINC 15--Ligand discovery for everyone. J Chem Inf Model 2015; 55(11): 2324-37.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[200]
Li Y, Frenz CM, Li Z, et al. Virtual and in vitro bioassay screening of phytochemical inhibitors from flavonoids and isoflavones against xanthine oxidase and cyclooxygenase-2 for gout treatment. Chem Biol Drug Des 2013; 81(4): 537-44.
[http://dx.doi.org/10.1111/cbdd.1248] [PMID: 23534413]
[201]
B-Rao C. Kulkarni-Almeida A, Katkar KV, et al. Identification of novel isocytosine derivatives as xanthine oxidase inhibitors from a set of virtual screening hits. Bioorg Med Chem 2012; 20: 2930-9.
[202]
Makhouri FR, Ghasemi JB. In silico studies in drug research against neurodegenerative diseases. Curr Neuropharmacol 2018; 16(6): 664-725.
[http://dx.doi.org/10.2174/1570159X15666170823095628] [PMID: 28831921]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 3
Year: 2021
Published on: 21 June, 2020
Page: [367 - 382]
Pages: 16
DOI: 10.2174/1381612826666200621165839
Price: $65

Article Metrics

PDF: 81
HTML: 1