Emerging Multi-cancer Regulatory Role of ESRP1: Orchestration of Alternative Splicing to Control EMT

Author(s): Yellamandayya Vadlamudi, Debasish K. Dey, Sun C. Kang*

Journal Name: Current Cancer Drug Targets

Volume 20 , Issue 9 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

RNA binding proteins (RBPs) associate with nascent and mature RNAs to perform biological functions such as alternative splicing and RNA stability. Having unique RNA recognition binding motifs, RBPs form complexes with RNA in a sequence- and structure-based manner. Aberrant expressions of several RBPs have been identified in tumorigenesis and cancer progression. These uncontrolled RBPs affect several mechanisms, including cell proliferation, tumor growth, invasion, metastasis and chemoresistance. Epithelial splicing regulatory protein 1 (ESRP1) is a member of the hnRNP family of proteins that play a crucial role in regulating numerous cellular processes, including alternative splicing and translation of multiple genes during organogenesis. Abnormal expression of ESRP1 alters the cell morphology, and leads to cell proliferation and tumor growth during cancer progression. ESRP1 mediated alternative splicing of target genes, including CD44, FGFR, PTBP1, LYN, ENAH, SPAG1 and ZMYND8, results in cancer progression. In addition, ESRP1 also regulates circularization and biogenesis of circular RNAs such as circUHRF1, circNOL10 and circANKS1B, whose expressions have been identified as key factors in various cancers. This multi-functional protein is also involved in imposing stability of target mRNAs such as cyclin A2, and thereby cell cycle regulation. The scope of this review is to examine recent scientific data, outcomes of the up- and down-regulated proteins, and the role of ESRP1 in various cancers. We conclude by summarizing ESRP1 dysregulation and its consequences on target genes in various human cancers. Collectively, the consequences of ESRP1 mediated splicing in cancer cells suggest the role of ESRP1 in cell proliferation and chemoresistance via apoptosis and autophagy modulation, which could, therefore, be potential targets for cancer therapeutics.

Keywords: ESRP1, alternative splicing, EMT, cancer progression, chemoresistance, RNA binding proteins (RBPs).

[1]
Singh, B.; Eyras, E. The role of alternative splicing in cancer. Transcription, 2017, 8(2), 91-98.
[http://dx.doi.org/10.1080/21541264.2016.1268245] [PMID: 28005460]
[2]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses; Neoplasia: United States, 2017.
[3]
Ishii, H.; Saitoh, M.; Sakamoto, K.; Kondo, T.; Katoh, R.; Tanaka, S.; Motizuki, M.; Masuyama, K.; Miyazawa, K. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J. Biol. Chem., 2014, 289(40), 27386-27399.
[http://dx.doi.org/10.1074/jbc.M114.589432] [PMID: 25143390]
[4]
Shapiro, I.M.; Cheng, A.W.; Flytzanis, N.C.; Balsamo, M.; Condeelis, J.S.; Oktay, M.H.; Burge, C.B.; Gertler, F.B. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet., 2011, 7(8) e1002218
[http://dx.doi.org/10.1371/journal.pgen.1002218] [PMID: 21876675]
[5]
Yao, D.; Dai, C.; Peng, S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol. Cancer Res., 2011, 9(12), 1608-1620.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0568] [PMID: 21840933]
[6]
Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]]
[7]
Jolly, M.K.; Preca, B-T.; Tripathi, S.C.; Jia, D.; George, J.T.; Hanash, S.M.; Brabletz, T.; Stemmler, M.P.; Maurer, J.; Levine, H. Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer; APL Bioeng, 2018.
[http://dx.doi.org/10.1063/1.5024874]
[8]
Gökmen-Polar, Y.; Neelamraju, Y.; Goswami, C.P.; Gu, Y.; Gu, X.; Nallamothu, G.; Vieth, E.; Janga, S.C.; Ryan, M.; Badve, S.S. Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways. EMBO Rep., 2019, 20(2) e46078
[http://dx.doi.org/10.15252/embr.201846078] [PMID: 30665944]]
[9]
Liu, Y.; Lu, X.; Huang, L.; Wang, W.; Jiang, G.; Dean, K.C.; Clem, B.; Telang, S.; Jenson, A.B.; Cuatrecasas, M. Erratum: Different thresholds of ZEB1 are required for ras-mediated tumour initiation and metastasis. Nature communications, 5(1), 1-10.
[http://dx.doi.org/10.1038/Ncomms6660]
[10]
Meidhof, S.; Brabletz, S.; Lehmann, W.; Preca, B.T.; Mock, K.; Ruh, M.; Schüler, J.; Berthold, M.; Weber, A.; Burk, U.; Lübbert, M.; Puhr, M.; Culig, Z.; Wellner, U.; Keck, T.; Bronsert, P.; Küsters, S.; Hopt, U.T.; Stemmler, M.P.; Brabletz, T. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med., 2015, 7(6), 831-847.
[http://dx.doi.org/10.15252/emmm.201404396] [PMID: 25872941]
[11]
Xu, Y.; Gao, X.D.; Lee, J.H.; Huang, H.; Tan, H.; Ahn, J.; Reinke, L.M.; Peter, M.E.; Feng, Y.; Gius, D.; Siziopikou, K.P.; Peng, J.; Xiao, X.; Cheng, C. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing. Genes Dev., 2014, 28(11), 1191-1203.
[http://dx.doi.org/10.1101/gad.241968.114] [PMID: 24840202]
[12]
Harvey, S.E.; Xu, Y.; Lin, X.; Gao, X.D.; Qiu, Y.; Ahn, J.; Xiao, X.; Cheng, C. Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA, 2018, 24(10), 1326-1338.
[http://dx.doi.org/10.1261/rna.066712.118] [PMID: 30042172]
[13]
Zeng, K.; He, B.; Yang, B.B.; Xu, T.; Chen, X.; Xu, M.; Liu, X.; Sun, H.; Pan, Y.; Wang, S. The pro-metastasis effect of circANKS1B in breast cancer. Mol. Cancer, 2018, 17(1), 160.
[http://dx.doi.org/10.1186/s12943-018-0914-x] [PMID: 30454010]
[14]
Zhang, H.; Brown, R.L.; Wei, Y.; Zhao, P.; Liu, S.; Liu, X.; Deng, Y.; Hu, X.; Zhang, J.; Gao, X.D.; Kang, Y.; Mercurio, A.M.; Goel, H.L.; Cheng, C. CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev., 2019, 33(3-4), 166-179.
[http://dx.doi.org/10.1101/gad.319889.118] [PMID: 30692202]
[15]
Somarelli, J.A.; Shetler, S.; Jolly, M.K.; Wang, X.; Bartholf Dewitt, S.; Hish, A.J.; Gilja, S.; Eward, W.C.; Ware, K.E.; Levine, H.; Armstrong, A.J.; Garcia-Blanco, M.A. Mesenchymal-epithelial transition in sarcomas is controlled by the combinatorial expression of MicroRNA 200s and GRHL2. Mol. Cell. Biol., 2016, 36(19), 2503-2513.
[http://dx.doi.org/10.1128/MCB.00373-16] [PMID: 27402864]
[16]
Sundararajan, V.; Gengenbacher, N.; Stemmler, M.P.; Kleemann, J.A.; Brabletz, T.; Brabletz, S. The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5. Oncotarget, 2015, 6(29), 27083-27096.
[http://dx.doi.org/10.18632/oncotarget.4807] [PMID: 26334100]
[17]
Li, L.; Qi, L.; Qu, T.; Liu, C.; Cao, L.; Huang, Q.; Song, W.; Yang, L.; Qi, H.; Wang, Y.; Gao, B.; Guo, Y.; Sun, B.; Meng, B.; Zhang, B.; Cao, W. Epithelial splicing regulatory protein 1 inhibits the invasion and metastasis of lung adenocarcinoma. Am. J. Pathol., 2018, 188(8), 1882-1894.
[http://dx.doi.org/10.1016/j.ajpath.2018.04.012] [PMID: 29803834]
[18]
Lehmann, W.; Mossmann, D.; Kleemann, J.; Mock, K.; Meisinger, C.; Brummer, T.; Herr, R.; Brabletz, S.; Stemmler, M.P.; Brabletz, T. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun., 2016, 7, 10498.
[http://dx.doi.org/10.1038/ncomms10498] [PMID: 26876920]
[19]
Tornillo, G.; Knowlson, C.; Kendrick, H.; Cooke, J.; Mirza, H.; Aurrekoetxea-Rodríguez, I.; Vivanco, M.D.M.; Buckley, N.E.; Grigoriadis, A.; Smalley, M.J. Dual mechanisms of LYN kinase dysregulation drive aggressive behavior in breast cancer cells. Cell Rep., 2018, 25(13), 3674-3692.e10.
[http://dx.doi.org/10.1016/j.celrep.2018.11.103] [PMID: 30590041]
[20]
Tiong, K.H.; Mah, L.Y.; Leong, C.O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 2013, 18(12), 1447-1468.
[http://dx.doi.org/10.1007/s10495-013-0886-7] [PMID: 23900974]
[21]
Xu, X.; Yang, J.; Zhou, W.; Wang, L.; Lu, Q.; Wang, X.; Hang, D.; Liu, X. Genetic variations within alternative splicing associated genes are associated with breast cancer susceptibility in Chinese women. Gene, 2019, 706, 140-145.
[http://dx.doi.org/10.1016/j.gene.2019.05.022] [PMID: 31078657]
[22]
Shirakihara, T.; Horiguchi, K.; Miyazawa, K.; Ehata, S.; Shibata, T.; Morita, I.; Miyazono, K.; Saitoh, M. TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J., 2011, 30(4), 783-795.
[http://dx.doi.org/10.1038/emboj.2010.351] [PMID: 21224849]
[23]
Nan, A.; Chen, L.; Zhang, N.; Jia, Y.; Li, X.; Zhou, H.; Ling, Y.; Wang, Z.; Yang, C.; Liu, S. Circular RNA CircNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional Regulation of the humanin polypeptide family. Adv. Sci., 2019, 6(2) 1800654
[http://dx.doi.org/10.1002/advs.201800654] [PMID: 30693177]
[24]
Zhao, W.; Cui, Y.; Liu, L.; Qi, X.; Liu, J.; Ma, S.; Hu, X.; Zhang, Z.; Wang, Y.; Li, H. Splicing factor derived circular RNA CircUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differ., 2019.
[http://dx.doi.org/10.1038/s41418-019-0477-4] [PMID: 31570856]
[25]
Jeong, H.M.; Han, J.; Lee, S.H.; Park, H-J.; Lee, H.J.; Choi, J-S.; Lee, Y.M.; Choi, Y-L.; Shin, Y.K.; Kwon, M.J. ESRP1 Is Overexpressed in Ovarian Cancer and Promotes Switching from Mesenchymal to Epithelial Phenotype in Ovarian Cancer Cells. Oncogenesis, 2017.
[http://dx.doi.org/10.1038/oncsis.2017.87]
[26]
Pich, A.; Chiusa, L.; Navone, R. Prognostic relevance of cell proliferation in head and neck tumors. Ann. Oncol., 2004, 15(9), 1319-1329.
[http://dx.doi.org/10.1093/annonc/mdh299] [PMID: 15319236]
[27]
Ahmed, W.A.; Suzuki, K.; Imaeda, Y.; Horibe, Y. Ki-67, p53 and epidermal growth factor receptor expression in early glottic cancer involving the anterior commissure treated with radiotherapy. Auris Nasus Larynx, 2008, 35(2), 213-219.
[http://dx.doi.org/10.1016/j.anl.2007.08.011] [PMID: 17996416]
[28]
Chen, Z.H.; Jing, Y.J.; Yu, J.B.; Jin, Z.S.; Li, Z.; He, T.T.; Su, X.Z. ESRP1 induces cervical cancer cell G1-phase arrest via regulating cyclin A2 mRNA Stability. Int. J. Mol. Sci., 2019, 20(15), 1-14.
[http://dx.doi.org/10.3390/ijms20153705] [PMID: 31362365]
[29]
Fagoonee, S.; Picco, G.; Orso, F.; Arrigoni, A.; Longo, D.L.; Forni, M.; Scarfò, I.; Cassenti, A.; Piva, R.; Cassoni, P.; Silengo, L.; Tolosano, E.; Aime, S.; Taverna, D.; Pandolfi, P.P.; Brancaccio, M.; Medico, E.; Altruda, F. The RNA-binding protein ESRP1 promotes human colorectal cancer progression. Oncotarget, 2017, 8(6), 10007-10024.
[http://dx.doi.org/10.18632/oncotarget.14318] [PMID: 28052020]
[30]
El-Athman, R.; Fuhr, L.; Relógio, A. a systems-level analysis reveals circadian regulation of splicing in colorectal cancer. EBioMedicine, 2018, 33, 68-81.
[http://dx.doi.org/10.1016/j.ebiom.2018.06.012] [PMID: 29936137]
[31]
Méreau, A.; Anquetil, V.; Lerivray, H.; Viet, J.; Schirmer, C.; Audic, Y.; Legagneux, V.; Hardy, S.; Paillard, L. A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis. Mol. Cell. Biol., 2015, 35(4), 758-768.
[http://dx.doi.org/10.1128/MCB.01040-14] [PMID: 25512611]
[32]
Yu, M.; Hong, W.; Ruan, S.; Guan, R.; Tu, L.; Huang, B.; Hou, B.; Jian, Z.; Ma, L.; Jin, H. Genome-wide profiling of prognostic alternative splicing pattern in pancreatic cancer. Front. Oncol., 2019, 9, 773.
[http://dx.doi.org/10.3389/fonc.2019.00773] [PMID: 31552163]
[33]
Zhou, Y.J.; Zhu, G.Q.; Zhang, Q.W.; Zheng, K.I.; Chen, J.N.; Zhang, X.T.; Wang, Q.W.; Li, X.B. Survival-associated alternative messenger RNA splicing signatures in pancreatic ductal adenocarcinoma: A study based on RNA-sequencing data. DNA Cell Biol., 2019, 38(11), 1207-1222.
[http://dx.doi.org/10.1089/dna.2019.4862] [PMID: 31483163]
[34]
Ueda, J.; Matsuda, Y.; Yamahatsu, K.; Uchida, E.; Naito, Z.; Korc, M.; Ishiwata, T. Epithelial splicing regulatory protein 1 is a favorable prognostic factor in pancreatic cancer that attenuates pancreatic metastases. Oncogene, 2014, 33(36), 4485-4495.
[http://dx.doi.org/10.1038/onc.2013.392] [PMID: 24077287]
[35]
Gerhauser, C.; Favero, F.; Risch, T.; Simon, R.; Feuerbach, L.; Assenov, Y.; Heckmann, D.; Sidiropoulos, N.; Waszak, S.M.; Hübschmann, D.; Urbanucci, A.; Girma, E.G.; Kuryshev, V.; Klimczak, L.J.; Saini, N.; Stütz, A.M.; Weichenhan, D.; Böttcher, L.M.; Toth, R.; Hendriksen, J.D.; Koop, C.; Lutsik, P.; Matzk, S.; Warnatz, H.J.; Amstislavskiy, V.; Feuerstein, C.; Raeder, B.; Bogatyrova, O.; Schmitz, E.M.; Hube-Magg, C.; Kluth, M.; Huland, H.; Graefen, M.; Lawerenz, C.; Henry, G.H.; Yamaguchi, T.N.; Malewska, A.; Meiners, J.; Schilling, D.; Reisinger, E.; Eils, R.; Schlesner, M.; Strand, D.W.; Bristow, R.G.; Boutros, P.C.; von Kalle, C.; Gordenin, D.; Sültmann, H.; Brors, B.; Sauter, G.; Plass, C.; Yaspo, M.L.; Korbel, J.O.; Schlomm, T.; Weischenfeldt, J. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell, 2018, 34(6), 996-1011.
[http://dx.doi.org/10.1016/j.ccell.2018.10.016] [PMID: 30537516]
[36]
Ambs, S.; Prueitt, R.L.; Yi, M.; Hudson, R.S.; Howe, T.M.; Petrocca, F.; Wallace, T.A.; Liu, C.G.; Volinia, S.; Calin, G.A.; Yfantis, H.G.; Stephens, R.M.; Croce, C.M. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res., 2008, 68(15), 6162-6170.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0144] [PMID: 18676839]
[37]
Werth, M.; Walentin, K.; Aue, A.; Schönheit, J.; Wuebken, A.; Pode-Shakked, N.; Vilianovitch, L.; Erdmann, B.; Dekel, B.; Bader, M.; Barasch, J.; Rosenbauer, F.; Luft, F.C.; Schmidt-Ott, K.M. The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development, 2010, 137(22), 3835-3845.
[http://dx.doi.org/10.1242/dev.055483] [PMID: 20978075]
[38]
Chung, V.Y.; Tan, T.Z.; Tan, M.; Wong, M.K.; Kuay, K.T.; Yang, Z.; Ye, J.; Muller, J.; Koh, C.M.; Guccione, E.; Thiery, J.P.; Huang, R.Y. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci. Rep., 2016, 6, 19943.
[http://dx.doi.org/10.1038/srep19943] [PMID: 26887977]
[39]
Arredouani, M.S.; Lu, B.; Bhasin, M.; Eljanne, M.; Yue, W.; Mosquera, J.M.; Bubley, G.J.; Li, V.; Rubin, M.A.; Libermann, T.A.; Sanda, M.G. Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin. Cancer Res., 2009, 15(18), 5794-5802.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0911] [PMID: 19737960]
[40]
Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.; Arora, A. Cancer genome atlas research network. the molecular taxonomy of primary prostate cancer. Cell, 2015, 163(4), 1011-1025.
[http://dx.doi.org/10.1016/j.cell.2015.10.025] [PMID: 26544944]
[41]
Fraser, M.; Sabelnykova, V.Y.; Yamaguchi, T.N.; Heisler, L.E.; Livingstone, J.; Huang, V.; Shiah, Y.J.; Yousif, F.; Lin, X.; Masella, A.P.; Fox, N.S.; Xie, M.; Prokopec, S.D.; Berlin, A.; Lalonde, E.; Ahmed, M.; Trudel, D.; Luo, X.; Beck, T.A.; Meng, A.; Zhang, J.; D’Costa, A.; Denroche, R.E.; Kong, H.; Espiritu, S.M.; Chua, M.L.; Wong, A.; Chong, T.; Sam, M.; Johns, J.; Timms, L.; Buchner, N.B.; Orain, M.; Picard, V.; Hovington, H.; Murison, A.; Kron, K.; Harding, N.J.; P’ng, C.; Houlahan, K.E.; Chu, K.C.; Lo, B.; Nguyen, F.; Li, C.H.; Sun, R.X.; de Borja, R.; Cooper, C.I.; Hopkins, J.F.; Govind, S.K.; Fung, C.; Waggott, D.; Green, J.; Haider, S.; Chan-Seng-Yue, M.A.; Jung, E.; Wang, Z.; Bergeron, A.; Dal Pra, A.; Lacombe, L.; Collins, C.C.; Sahinalp, C.; Lupien, M.; Fleshner, N.E.; He, H.H.; Fradet, Y.; Tetu, B.; van der Kwast, T.; McPherson, J.D.; Bristow, R.G.; Boutros, P.C. Genomic hallmarks of localized, non-indolent prostate cancer. Nature, 2017, 541(7637), 359-364.
[http://dx.doi.org/10.1038/nature20788] [PMID: 28068672]
[42]
Grasso, C.S.; Wu, Y.M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; Asangani, I.A.; Ateeq, B.; Chun, S.Y.; Siddiqui, J.; Sam, L.; Anstett, M.; Mehra, R.; Prensner, J.R.; Palanisamy, N.; Ryslik, G.A.; Vandin, F.; Raphael, B.J.; Kunju, L.P.; Rhodes, D.R.; Pienta, K.J.; Chinnaiyan, A.M.; Tomlins, S.A. The mutational landscape of lethal castration-resistant prostate cancer. Nature, 2012, 487(7406), 239-243.
[http://dx.doi.org/10.1038/nature11125] [PMID: 22722839]
[43]
Lapointe, J.; Li, C.; Higgins, J.P.; van de Rijn, M.; Bair, E.; Montgomery, K.; Ferrari, M.; Egevad, L.; Rayford, W.; Bergerheim, U.; Ekman, P.; DeMarzo, A.M.; Tibshirani, R.; Botstein, D.; Brown, P.O.; Brooks, J.D.; Pollack, J.R. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. USA, 2004, 101(3), 811-816.
[http://dx.doi.org/10.1073/pnas.0304146101] [PMID: 14711987]
[44]
Liu, P.; Ramachandran, S.; Ali Seyed, M.; Scharer, C.D.; Laycock, N.; Dalton, W.B.; Williams, H.; Karanam, S.; Datta, M.W.; Jaye, D.L.; Moreno, C.S. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res., 2006, 66(8), 4011-4019.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3055] [PMID: 16618720]
[45]
Luo, J.H.; Yu, Y.P.; Cieply, K.; Lin, F.; Deflavia, P.; Dhir, R.; Finkelstein, S.; Michalopoulos, G.; Becich, M. Gene expression analysis of prostate cancers. Mol. Carcinog., 2002, 33(1), 25-35.
[http://dx.doi.org/10.1002/mc.10018] [PMID: 11807955]
[46]
Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; Antipin, Y.; Mitsiades, N.; Landers, T.; Dolgalev, I.; Major, J.E.; Wilson, M.; Socci, N.D.; Lash, A.E.; Heguy, A.; Eastham, J.A.; Scher, H.I.; Reuter, V.E.; Scardino, P.T.; Sander, C.; Sawyers, C.L.; Gerald, W.L. Integrative genomic profiling of human prostate cancer. Cancer Cell, 2010, 18(1), 11-22.
[http://dx.doi.org/10.1016/j.ccr.2010.05.026] [PMID: 20579941]
[47]
Vanaja, D.K.; Cheville, J.C.; Iturria, S.J.; Young, C.Y.F. Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res., 2003, 63(14), 3877-3882.
[PMID: 12873976]
[48]
Wallace, T.A.; Prueitt, R.L.; Yi, M.; Howe, T.M.; Gillespie, J.W.; Yfantis, H.G.; Stephens, R.M.; Caporaso, N.E.; Loffredo, C.A.; Ambs, S. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res., 2008, 68(3), 927-936.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2608] [PMID: 18245496]
[49]
Munkley, J.; Li, L.; Krishnan, S.R.G.; Hysenaj, G.; Scott, E.; Dalgliesh, C.; Oo, H.Z.; Maia, T.M.; Cheung, K.; Ehrmann, I.; Livermore, K.E.; Zielinska, H.; Thompson, O.; Knight, B.; McCullagh, P.; McGrath, J.; Crundwell, M.; Harries, L.W.; Daugaard, M.; Cockell, S.; Barbosa-Morais, N.L.; Oltean, S.; Elliott, D.J. Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer eLife, 2019. 8e47678
[http://dx.doi.org/10.7554/eLife.47678] [PMID: 31478829]
[50]
Sivasubramaniyan, K.; Harichandan, A.; Schilbach, K.; Mack, A.F.; Bedke, J.; Stenzl, A.; Kanz, L.; Niederfellner, G.; Bühring, H.J. Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology, 2015, 25(8), 902-917.
[http://dx.doi.org/10.1093/glycob/cwv032] [PMID: 25978997]
[51]
Mizutani, A.; Koinuma, D.; Seimiya, H.; Miyazono, K. The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma. Oncogene, 2016, 35(27), 3514-3523.
[http://dx.doi.org/10.1038/onc.2015.412] [PMID: 26522722]
[52]
Zhao, Q.; Caballero, O.L.; Davis, I.D.; Jonasch, E.; Tamboli, P.; Yung, W.K.A.; Weinstein, J.N.; Strausberg, R.L.; Yao, J.; Yao, J. Kenna Shaw for TCGA research network. Tumor-specific isoform switch of the fibroblast growth factor receptor 2 underlies the mesenchymal and malignant phenotypes of clear cell renal cell carcinomas. Clin. Cancer Res., 2013, 19(9), 2460-2472.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3708] [PMID: 23444225]
[53]
Minuesa, G.; Albanese, S.K.; Xie, W.; Kazansky, Y.; Worroll, D.; Chow, A.; Schurer, A.; Park, S.M.; Rotsides, C.Z.; Taggart, J.; Rizzi, A.; Naden, L.N.; Chou, T.; Gourkanti, S.; Cappel, D.; Passarelli, M.C.; Fairchild, L.; Adura, C.; Glickman, J.F.; Schulman, J.; Famulare, C.; Patel, M.; Eibl, J.K.; Ross, G.M.; Bhattacharya, S.; Tan, D.S.; Leslie, C.S.; Beuming, T.; Patel, D.J.; Goldgur, Y.; Chodera, J.D.; Kharas, M.G. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat. Commun., 2019, 10(1), 2691.
[http://dx.doi.org/10.1038/s41467-019-10523-3] [PMID: 31217428]
[54]
Graff, J.R.; Konicek, B.W.; Vincent, T.M.; Lynch, R.L.; Monteith, D.; Weir, S.N.; Schwier, P.; Capen, A.; Goode, R.L.; Dowless, M.S.; Chen, Y.; Zhang, H.; Sissons, S.; Cox, K.; McNulty, A.M.; Parsons, S.H.; Wang, T.; Sams, L.; Geeganage, S.; Douglass, L.E.; Neubauer, B.L.; Dean, N.M.; Blanchard, K.; Shou, J.; Stancato, L.F.; Carter, J.H.; Marcusson, E.G. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J. Clin. Invest., 2007, 117(9), 2638-2648.
[http://dx.doi.org/10.1172/JCI32044] [PMID: 17786246]
[55]
Muralidharan, R.; Mehta, M.; Ahmed, R.; Roy, S.; Xu, L.; Aubé, J.; Chen, A.; Zhao, Y.D.; Herman, T.; Ramesh, R.; Munshi, A. HuR-targeted small molecule inhibitor exhibits cytotoxicity towards human lung cancer cells. Sci. Rep., 2017, 7(1), 9694.
[http://dx.doi.org/10.1038/s41598-017-07787-4] [PMID: 28855578]
[56]
Senbanjo, L.T.; Chellaiah, M.A. CD44: A Multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol., 2017, 5, 18.
[http://dx.doi.org/10.3389/fcell.2017.00018] [PMID: 28326306]
[57]
Grishin, A.V.; Azhipa, O.; Semenov, I.; Corey, S.J. Interaction between growth arrest-DNA damage protein 34 and Src kinase Lyn negatively regulates genotoxic apoptosis. Proc. Natl. Acad. Sci. USA, 2001, 98(18), 10172-10177.
[http://dx.doi.org/10.1073/pnas.191130798] [PMID: 11517336]
[58]
Bates, R.C.; Edwards, N.S.; Burns, G.F.; Fisher, D.E.A.A. CD44 survival pathway triggers chemoresistance via lyn kinase and phosphoinositide 3-kinase/Akt in colon carcinoma cells. Cancer Res., 2001, 61(13), 5275-5283.
[PMID: 11431370]
[59]
Zhang, Q.; Meng, X.; Qin, G.; Xue, X.; Dang, N. Lyn kinase promotes the proliferation of malignant melanoma cells through inhibition of apoptosis and autophagy via the PI3K/Akt signaling pathway. J. Cancer, 2019, 10(5), 1197-1208.
[http://dx.doi.org/10.7150/jca.28908] [PMID: 30854129]
[60]
Ren, B.; Wei, X.; Zou, G.; He, J.; Xu, G.; Xu, F.; Huang, Y.; Zhu, H.; Li, Y.; Ma, G.; Yu, P. Cancer testis antigen SPAG9 is a promising marker for the diagnosis and treatment of lung cancer. Oncol. Rep., 2016, 35(5), 2599-2605.
[http://dx.doi.org/10.3892/or.2016.4645] [PMID: 26934841]
[61]
Jagadish, N.; Fatima, R.; Sharma, A.; Devi, S.; Suri, V.; Kumar, V.; Suri, A. Sperm associated antigen 9 (SPAG9) a promising therapeutic target of ovarian carcinoma. Tumour Biol., 2018, 40(5) 1010428318773652
[http://dx.doi.org/10.1177/1010428318773652] [PMID: 29745297]
[62]
Chen, Y.; Wang, Y.; Luo, W. ZMYND8 is a primary HIF coactivator that mediates breast cancer progression. Mol. Cell. Oncol., 2018, 5(4) e1479619
[http://dx.doi.org/10.1080/23723556.2018.1479619] [PMID: 30250924]
[63]
Chen, Y.; Zhang, B.; Bao, L.; Jin, L.; Yang, M.; Peng, Y.; Kumar, A.; Wang, J.E.; Wang, C.; Zou, X.; Xing, C.; Wang, Y.; Luo, W. ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J. Clin. Invest., 2018, 128(5), 1937-1955.
[http://dx.doi.org/10.1172/JCI95089] [PMID: 29629903]
[64]
Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129.
[http://dx.doi.org/10.1038/nrc2780] [PMID: 20094046]
[65]
Touat, M.; Ileana, E.; Postel-Vinay, S.; André, F.; Soria, J.C. Targeting FGFR signaling in cancer. Clin. Cancer Res., 2015, 21(12), 2684-2694.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2329] [PMID: 26078430]
[66]
Chen, D.; Xu, L.; Li, X.; Chu, Y.; Jiang, M.; Xu, B.; Zhao, M.; Wang, W.; Wang, H.; Kang, H.; Wang, K.; Wu, K.; Liang, J.; Ren, G. Enah overexpression is correlated with poor survival and aggressive phenotype in gastric cancer. Cell Death Dis., 2018, 9(10), 998.
[http://dx.doi.org/10.1038/s41419-018-1031-x] [PMID: 30250066]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2020
Published on: 27 September, 2020
Page: [654 - 665]
Pages: 12
DOI: 10.2174/1568009620666200621153831
Price: $65

Article Metrics

PDF: 33
HTML: 3