Biogenic Silver and Zero-Valent Iron Nanoparticles by Feijoa: Biosynthesis, Characterization, Cytotoxic, Antibacterial and Antioxidant Activities

Author(s): Zahra Hashemi, Mohammad Ali Ebrahimzadeh*, Pourya Biparva, Sobhan Mortazavi-Derazkola, Hamid Reza Goli, Fereshteh Sadeghian, Mostafa Kardan, Alireza Rafiei

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 14 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background and Purpose: Green nanotechnology is an interesting method for the synthesis of functional nanoparticles. Because of their wide application, they have set up great attention in recent years.

Objective: The present research examines the green synthesis of Ag and zero-valent iron nanoparticles (AgNPs, ZVINPs) by Feijoa sellowiana fruit extract. In this synthesis, no stabilizers or surfactants were applied.

Methods: Eco-friendly synthesis of Iron and biogenic synthesis of Ag nanoparticles were accomplished by controlling critical parameters such as concentration, incubation period and temperature. Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM), Energy-Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction analysis (XRD), Dynamic Light Scattering (DLS) and UV-Vis were applied to characterize NPs. The cytotoxicity of NPs was investigated in two cell lines, MCF-7 (breast cancer) and AGS (human gastric carcinoma). A high-performance liquid chromatography (HPLC) analysis was also performed for characterization of phenolic acids in the extract.

Results: Both NPs displayed powerful anticancer activities against two tumor cell lines with little effect on BEAS-2B normal cells. Synthesized AgNPs and ZVINPs inhibited the growth of all selected bacteria. Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumonia, Staphylococcus aureus, Enterococcus faecalis, Acinetobacter baumannii and Escherichia coli have been studied in two stages. We initially examined the ATCCs followed by clinical strain isolation. Based on the results from resistant strains, we showed that nanoparticles were superior to conventional antibiotics. DPPH (diphenyl-1-picrylhydrazyl) free radical scavenging assay and iron chelating activity were used for the determination of antioxidant properties. Results showed a high antioxidant activity of scavenging free radicals for ZVINPs and powerful iron-chelating activity for AgNPs. Based on the HPLC data, catechin was the major phenolic compound in the extract.

Conclusion: Our synthesized nanoparticles displayed potent cytotoxic, antibacterial and antioxidant activities.

Keywords: Ag nanoparticles, zero-valent iron nanoparticles, green synthesis, anticancer, antimicrobial, antioxidant.

[1]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[2]
Alavi, M.; Karimi, N. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2066-2081.
[PMID: 29233039]
[3]
Ebrahimzadeh, M.A.; Mortazavi-Derazkola, S.; Zazouli, M.A. Eco-friendly green synthesis and characterization of novel Fe3O4/SiO2/Cu2O–Ag nanocomposites using Crataegus pentagyna fruit extract for photocatalytic degradation of organic contaminants. J. Mater. Sci. Mater. Electron., 2019, 30(12), 10994-11004.
[4]
Manikandan, R.; Manikandan, B.; Raman, T.; Arunagirinathan, K.; Prabhu, N.M.; Jothi Basu, M.; Perumal, M.; Palanisamy, S.; Munusamy, A. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 120-129.
[http://dx.doi.org/10.1016/j.saa.2014.10.043] [PMID: 25481491]
[5]
Madkour, L.H. Biogenic-biosynthesis Metallic Nanoparticles (MNPs) for pharmacological, biomedical and environmental nanobiotechnological applications. Chron. Pharm. Sci., 2018, 2(1), 384-444.
[6]
Mita, H.; Islam, M.M.; Ansari, Z.; Ahammed, S.; Sen, K.; Islam, S.M. Biogenic nano-CuO-catalyzed facile C-N cross-coupling reactions: Scope and mechanism. ACS Sustain. Chem.& Eng., 2017, 5(1), 648-657.
[http://dx.doi.org/10.1021/acssuschemeng.6b02013]
[7]
Shahwan, T.; Sirriah, S.A.; Nairat, M.; Boyacı, E.; Eroğlu, A.E.; Scott, T.B.; Hallam, K.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J., 2011, 172(1), 258-266.
[http://dx.doi.org/10.1016/j.cej.2011.05.103]
[8]
Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ., 2014, 466-467, 210-213.
[http://dx.doi.org/10.1016/j.scitotenv.2013.07.022] [PMID: 23895784]
[9]
Machado, S.; Stawiński, W.; Slonina, P.; Pinto, A.R.; Grosso, J.P.; Nouws, H.P.; Albergaria, J.T.; Delerue-Matos, C. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci. Total Environ., 2013, 461-462, 323-329.
[http://dx.doi.org/10.1016/j.scitotenv.2013.05.016] [PMID: 23738986]
[10]
Dey, R.; Mukherjee, N.; Ahammed, S.; Ranu, B.C. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chem. Commun. (Camb.), 2012, 48(64), 7982-7984.
[http://dx.doi.org/10.1039/c2cc30999h] [PMID: 22531391]
[11]
Vuotto, M.L.; Basile, A.; Moscatiello, V.; De Sole, P.; Castaldo-Cobianchi, R.; Laghi, E.; Ielpo, M.T.L. Antimicrobial and antioxidant activities of Feijoa sellowiana fruit. Int. J. Antimicrob. Agents, 2000, 13(3), 197-201.
[http://dx.doi.org/10.1016/S0924-8579(99)00122-3] [PMID: 10724024]
[12]
Monforte, M.T.; Lanuzza, F.; Mondello, F.; Naccari, C.; Pergolizzi, S.; Galati, E.M. Phytochemical composition and gastroprotective effect of Feijoa sellowiana Berg fruits from Sicily. J. Coast. Life Med., 2014, 2(1), 14-21.
[13]
Mosbah, H.; Louati, H.; Boujbiha, M.A.; Chahdoura, H.; Snoussi, M.; Flamini, G.; Ascrizzi, R.; Bouslema, A.; Achour, L.; Selmi, B. Phytochemical characterization, antioxidant, antimicrobial and pharmacological activities of Feijoa sellowiana leaves growing in Tunisia. Ind. Crops Prod., 2018, 112, 521-531.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.051]
[14]
Weston, R.J. Bioactive products from fruit of the Feijoa (Feijoa sellowiana, Myrtaceae): A review. Food Chem., 2010, 121(4), 923-926.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.047]
[15]
Zhu, F. Chemical and biological properties of Feijoa (Acca sellowiana). Trends Food Sci. Technol., 2018, 81, 121-131.
[http://dx.doi.org/10.1016/j.tifs.2018.09.008]
[16]
Karami, M.; Karimian Nokabadi, F.; Ebrahimzadeh, M.A.; Naghshvar, F. Nephroprotective effects of Feijoa sellowiana leaves extract on renal injury induced by acute dose of ecstasy (MDMA) in mice. Iran. J. Basic Med. Sci., 2014, 17(1), 69-72.
[PMID: 24592310]
[17]
Ebrahimzadeh, M.A.; Hosseinimehr, S.; Hamidinia, A.; Jafari, M. Antioxidant and free radical scavenging activity of Feijoa sallowiana fruits peel and leaves. Pharmacologyonline, 2008, 1(1), 7-14.
[18]
Mahmoudi, M.; Ebrahimzadeh, M.A.; Abdi, M.; Arimi, Y.; Fathi, H. Antidepressant activities of Feijoa sellowiana fruit. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(13), 2510-2513.
[PMID: 26214790]
[19]
Ebrahimzadeh, M.A.; Enayatifard, R.; Khalili, M.; Ghaffarloo, M.; Saeedi, M.; Yazdani Charati, J. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran. J. Pharm. Res., 2014, 13(3), 1041-1047.
[PMID: 25276206]
[20]
Mousavi, M. Supercritical carbon dioxide extraction of bioactive compounds from Feijoa (Feijoa sellowiana) leaves. Nutr. Food Sci. Res., 2018, 5(3), 15-23.
[http://dx.doi.org/10.29252/nfsr.5.3.23]
[21]
Khalili, M.; Ebrahimzadeh, M.A.; Kosaryan, M. In vivo iron-chelating activity and phenolic profiles of the angel’s wings mushroom, Pleurotus porrigens (Higher Basidiomycetes). Int. J. Med. Mushrooms, 2015, 17(9), 847-856.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i9.50] [PMID: 26756297]
[22]
Ebrahimzadeh, M.; Nabavi, S.; Nabavi, S.; Eslami, B.; Ehsanifar, S. Antioxidant activity of Hyoscyamus squarrosus fruits. Pharmacologyonline, 2009, 2, 644-650.
[23]
Krishna, I.M.; Reddy, G.B.; Veerabhadram, G.; Madhusudhan, A. Eco-friendly green synthesis of silver nanoparticles using Salmalia malabarica: Synthesis, characterization, antimicrobial, and catalytic activity studies. Appl. Nanosci., 2016, 6(5), 681-689.
[http://dx.doi.org/10.1007/s13204-015-0479-6]
[24]
Alfuraydi, A.A.; Devanesan, S.; Al-Ansari, M.; AlSalhi, M.S.; Ranjitsingh, A.J. Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancer and antimicrobial activities. J. Photochem. Photobiol. B, 2019, 192, 83-89.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.011] [PMID: 30710829]
[25]
Kajani, A.A.; Bordbar, A-K.; Esfahani, S.H.Z.; Khosropour, A.R.; Razmjou, A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv., 2014, 4(106), 61394-61403.
[http://dx.doi.org/10.1039/C4RA08758E]
[26]
Desalegn, B.; Megharaj, M.; Chen, Z.; Naidu, R. Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon, 2019, 5(5) e01750
[http://dx.doi.org/10.1016/j.heliyon.2019.e01750]] [PMID: 31193342]
[27]
Celiktas, O.Y.; Kocabas, E.H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem., 2007, 100(2), 553-555.
[http://dx.doi.org/10.1016/j.foodchem.2005.10.011]
[28]
Mirsalehian, A.; Jabal, A.F.; Mirafshar, S.; Bazarjani, F.; Gorjipour, A.; Goli, H. Determination of antimicrobial resistance patterns and extended spectrum β lactamases in clinical isolates of E. coli. Tehran Univ. Med. J., 2008, 66(6), 373-378.
[29]
Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.F.; Eslami, S. Antioxidant and free radical scavenging activities of culinary-medicinal mushrooms, golden chanterelle Cantharellus cibarius and Angel’s wings Pleurotus porrigens. Int. J. Med. Mushrooms, 2010, 12(3), 265-272.
[http://dx.doi.org/10.1615/IntJMedMushr.v12.i3.50]
[30]
Ebrahimzadeh, M.A.; Pourmorad, F.; Bekhradnia, A.R. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. Afr. J. Biotechnol., 2008, 7(18), 3188-3192.
[31]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[32]
Ebrahimzadeh, M.A.; Biparva, P.; Mohammadi, H.; Tavakoli, S.; Rafiei, A.; Kardan, M.; Badali, H.; Eslami, S. Highly concentrated multifunctional silver nanoparticle fabrication through green reduction of silver ions in terms of mechanics and therapeutic potentials. Anticancer. Agents Med. Chem., 2019, 19(17), 2140-2153.
[http://dx.doi.org/10.2174/1871520619666191021115609] [PMID: 31736448]
[33]
Dubey, M.; Bhadauria, S.; Kushwah, B. Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Dig. J. Nanomater. Biostruct., 2009, 4(3), 537-543.
[34]
Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem., 2013, 4(1), 29.
[http://dx.doi.org/10.1186/2228-5547-4-29]
[35]
Gomathi, M.; Rajkumar, P.; Prakasam, A.; Ravichandran, K. Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Efficient Technol., 2017, 3(3), 280-284.
[http://dx.doi.org/10.1016/j.reffit.2016.12.005]
[36]
Karthiga, P. Preparation of silver nanoparticles by Garcinia mangostana stem extract and investigation of the antimicrobial properties. Biotechnol. Res. Innovation, 2018, 2(1), 30-36.
[http://dx.doi.org/10.1016/j.biori.2017.11.001]
[37]
Ibrahim, H.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 2015, 8(3), 265-275.
[http://dx.doi.org/10.1016/j.jrras.2015.01.007]
[38]
Khalil, M.M.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem., 2014, 7(6), 1131-1139.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.007]
[39]
Pattanayak, M.; Nayak, P. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World J. Nano Sci. Technol., 2013.2(1), 06-09.
[40]
Devatha, C.; Thalla, A.K.; Katte, S.Y. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod., 2016, 139, 1425-1435.
[http://dx.doi.org/10.1016/j.jclepro.2016.09.019]
[41]
Daniel, S.K.; Vinothini, G.; Subramanian, N.; Nehru, K.; Sivakumar, M. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J. Nanopart. Res., 2013, 15(1), 1319.
[http://dx.doi.org/10.1007/s11051-012-1319-1]
[42]
Amarante, C.V.T.D.; Souza, A.G.D.; Benincá, T.D.T.; Steffens, C.A. Phenolic content and antioxidant activity of fruit of Brazilian genotypes of Feijoa. Agropecu. Bras., 2017, 52(12), 1223-1230.
[http://dx.doi.org/10.1590/s0100-204x2017001200011]
[43]
Eslami, S.; Ebrahimzadeh, M.A.; Biparva, P. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, A thalassemia model. RSC Advances, 2018, 8(46), 26144-26155.
[http://dx.doi.org/10.1039/C8RA04451A]
[44]
Oves, M.; Aslam, M.; Rauf, M.A.; Qayyum, S.; Qari, H.A.; Khan, M.S.; Alam, M.Z.; Tabrez, S.; Pugazhendhi, A.; Ismail, I.M.I. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater. Sci. Eng. C, 2018, 89, 429-443.
[http://dx.doi.org/10.1016/j.msec.2018.03.035] [PMID: 29752116]
[45]
Rolim, W.R.; Pelegrino, M.T.; de Araújo Lima, B.; Ferraz, L.S.; Costa, F.N.; Bernardes, J.S.; Rodigues, T.; Brocchi, M.; Seabra, A.B. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci., 2019, 463, 66-74.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.203]
[46]
Kumar, P.S.; Jeyalatha, M.V.; Malathi, J.; Ignacimuthu, S. Anticancer effects of one-pot synthesized biogenic gold nanoparticles (Mc-AuNps) against laryngeal carcinoma. Drug Deliv. Sci. Tec., 2018, 44, 118-128.
[http://dx.doi.org/10.1016/j.jddst.2017.12.008]
[47]
Bontempo, P.; Mita, L.; Miceli, M.; Doto, A.; Nebbioso, A.; De Bellis, F.; Conte, M.; Minichiello, A.; Manzo, F.; Carafa, V.; Basile, A.; Rigano, D.; Sorbo, S.; Castaldo Cobianchi, R.; Schiavone, E.M.; Ferrara, F.; De Simone, M.; Vietri, M.; Cioffi, M.; Sica, V.; Bresciani, F.; de Lera, A.R.; Altucci, L.; Molinari, A.M. Feijoa sellowiana derived natural Flavone exerts anti-cancer action displaying HDAC inhibitory activities. Int. J. Biochem. Cell Biol., 2007, 39(10), 1902-1914.
[http://dx.doi.org/10.1016/j.biocel.2007.05.010] [PMID: 17604209]
[48]
Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol., 2012, 112(5), 841-852.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05253.x] [PMID: 22324439]
[49]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831-1847.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[50]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[51]
Ankanna, S.; Prasad, T.N.V.K.V.; Elumalai, E.K.; Savithramma, N. Production of biogenic silver nanoparticles using Boswelliao valifoliolata stem bark. Dig. J. Nanomater. Biostruct., 2010, 5, 369-372.
[52]
Park, J.; Lim, D.H.; Lim, H.J.; Kwon, T.; Choi, J.S.; Jeong, S.; Choi, I.H.; Cheon, J. Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem. Commun. (Camb.), 2011, 47(15), 4382-4384.
[http://dx.doi.org/10.1039/c1cc10357a] [PMID: 21390403]
[53]
Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555.
[http://dx.doi.org/10.3389/fmicb.2018.01555] [PMID: 30061871]
[54]
Kim, K.J.; Sung, W.S.; Moon, S.K.; Choi, J.S.; Kim, J.G.; Lee, D.G. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 2008, 18(8), 1482-1484.
[PMID: 18756112]
[55]
Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S.A.A.; Harish, R. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater. Lett., 2016, 180, 264-267.
[http://dx.doi.org/10.1016/j.matlet.2016.05.172]
[56]
Seralathan, J.; Stevenson, P.; Subramaniam, S.; Raghavan, R.; Pemaiah, B.; Sivasubramanian, A.; Veerappan, A. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 118, 349-355.
[http://dx.doi.org/10.1016/j.saa.2013.08.114] [PMID: 24056313]
[57]
Mata, R.; Nakkala, J.R.; Sadras, S.R. Biogenic silver nanoparticles from Abutilon indicum: their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids Surf. B Biointerfaces, 2015, 128, 276-286.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.052] [PMID: 25701118]
[58]
Lateef, A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A.; Akinboro, A.; Oladipo, I.C.; Azeez, L.; Ajibade, S.E.; Ojo, S.A.; Gueguim-Kana, E.B. Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. J. Taibah. Univ. Sci., 2016, 10(4), 551-562.
[http://dx.doi.org/10.1016/j.jtusci.2015.10.010]
[59]
Baskaran, X.; Geo Vigila, A.V.; Parimelazhagan, T.; Muralidhara-Rao, D.; Zhang, S. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw. Int. J. Nanomedicine, 2016, 11, 5789-5806.
[http://dx.doi.org/10.2147/IJN.S108208] [PMID: 27895478]
[60]
Eslami, S.; Ebrahimzadeh, M.A.; Biparva, P.; Abedi Rad, M. Zero valent iron-based nanoparticles: Synthesis, characterization and their application in biology and medicine. J. Mazand. Univ. Med. Sci., 2016, 26(142), 285-310.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 14
Year: 2020
Page: [1673 - 1687]
Pages: 15
DOI: 10.2174/1871520620666200619165910
Price: $65

Article Metrics

PDF: 22
HTML: 2