Anticancer Perspectives on the Fungal-Derived Polyphenolic Hispolon

Author(s): Muhammad T. Islam, Eunus S. Ali, Ishaq N. Khan, Subrata Shaw, Shaikh Jamal Uddin, Razina Rouf, Shrabanti Dev, Seyed S.S. Saravi, Niranjan Das, Swati Tripathi, Santosh U. Yele, Asish K. Das, Jamil A. Shilpi, Siddhartha K. Mishra, Mohammad S. Mubarak*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 14 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Cancer is a dreadful disease causing thousands of deaths per year worldwide, which requires precision diagnostics and therapy. Although the selection of therapeutic regimens depends on the cancer type, chemotherapy remains a sustainable treatment strategy despite some of its known side-effects. To date, a number of natural products and their derivatives or analogues have been investigated as potent anticancer drugs. These drug discoveries have aimed for targeted therapy and reduced side-effects, including natural therapeutic regimens.

Objective: This review introduces a prospective fungal-derived polyphenol, Hispolon (HIS), as an anticancer agent. Accordingly, this review focuses on exploring the anticancer effect of hispolon based on information extracted from databases such as PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar.

Methods: A literature search in PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar was accomplished, using the keyword ‘Hispolon’, pairing with ‘cancer’, ‘cytotoxicity’, ‘cell cycle arrest’, ‘apoptosis’, ‘metastasis’, ‘migration’, ‘invasion’, ‘proliferation’, ‘genotoxicity’, ‘mutagenicity’, ‘drug-resistant cancer’, ‘autophagy’, and ‘estrogen receptor.

Results: Database-dependent findings from reported research works suggest that HIS can exert anticancer effects by modulating multiple molecular and biochemical pathways, including cell cycle arrest, apoptosis, autophagy, inhibition of proliferation, metastasis, migration, and invasion. Moreover, HIS inhibits the estrogenic activity and exhibits chemoprevention prospects, possibly due to its protective effects such as anticancer and anti-inflammatory mechanisms. To date, a number of HIS derivatives and analogues have been introduced for their anticancer effects in numerous cancer cell lines.

Conclusion: Data obtained from this review suggest that hispolon and some of its derivatives can be promising anticancer agents, and may become plant-based cancer chemotherapeutic leads for the development of potent anticancer drugs, alone or in combination with other chemotherapeutic agents.

Keywords: Polyphenol, hispolon, cancer, drug-resistant cells, mechanism of action, chemotherapy.

[1]
Tiwari, A.K.; Sodani, K.; Dai, C.L.; Ashby, C.R., Jr; Chen, Z.S. Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr. Pharm. Biotechnol., 2011, 12(4), 570-594.
[http://dx.doi.org/10.2174/138920111795164048] [PMID: 21118094]
[2]
Newman, D.J.; Cragg, G.M. Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar. Drugs, 2014, 12(1), 255-278.
[http://dx.doi.org/10.3390/md12010255] [PMID: 24424355]
[3]
Usuwanthim, K.; Wisitpongpun, P.; Luetragoon, T. Molecular identification of phytochemical for anticancer treatment. Anticancer. Agents Med. Chem., 2020, 20(6), 651-666.
[http://dx.doi.org/10.2174/1871520620666200213110016] [PMID: 32053086]
[4]
Wu, Q.; Kang, Y.; Zhang, H.; Wang, H.; Liu, Y.; Wang, J. The anticancer effects of hispolon on lung cancer cells. Biochem. Biophys. Res. Commun., 2014, 453(3), 385-391.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.098] [PMID: 25268766]
[5]
Ali, N.A.; Lüdtke, J.; Pilgrim, H.; Lindequist, U. Inhibition of chemiluminescence response of human mononuclear cells and suppression of mitogen-induced proliferation of spleen lymphocytes of mice by hispolon and hispidin. Pharmazie, 1996, 51(9), 667-670.
[PMID: 8878257]
[6]
Ravindran, J.; Subbaraju, G.V.; Ramani, M.V.; Sung, B.; Aggarwal, B.B. Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem. Pharmacol., 2010, 79(11), 1658-1666.
[http://dx.doi.org/10.1016/j.bcp.2010.01.033] [PMID: 20138025]
[7]
Huang, G.J.; Deng, J.S.; Chiu, C.S.; Liao, J.C.; Hsieh, W.T.; Sheu, M.J.; Wu, C.H. Hispolon protects against acute liver damage in the rat by inhibiting lipid peroxidation, proinflammatory cytokine, and oxidative stress and downregulating the expressions of iNOS, COX-2, and MMP-9. ‎. Evid. Based Complement. Alternat. Med., 2012, 2012 480714
[http://dx.doi.org/10.1155/2012/480714] [PMID: 22013489]
[8]
Yang, L.Y.; Shen, S.C.; Cheng, K.T.; Subbaraju, G.V.; Chien, C.C.; Chen, Y.C. Hispolon inhibition of inflammatory apoptosis through reduction of iNOS/NO production via HO-1 induction in macrophages. J. Ethnopharmacol., 2014, 156, 61-72.
[http://dx.doi.org/10.1016/j.jep.2014.07.054] [PMID: 25128739]
[9]
Hsin, M.C.; Hsieh, Y.H.; Wang, P.H.; Ko, J.L.; Hsin, I.L.; Yang, S.F. Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells. Cell Death Dis., 2017, 8(10) e3089
[http://dx.doi.org/10.1038/cddis.2017.459] [PMID: 28981104]
[10]
Lu, T.L.; Huang, G.J.; Lu, T.J.; Wu, J.B.; Wu, C.H.; Yang, T.C.; Iizuka, A.; Chen, Y.F. Hispolon from Phellinus linteus has antiproliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food Chem. Toxicol., 2009, 47(8), 2013-2021.
[http://dx.doi.org/10.1016/j.fct.2009.05.023] [PMID: 19477214]
[11]
Chen, W.; Zhao, Z.; Li, L.; Wu, B.; Chen, S.F.; Zhou, H.; Wang, Y.; Li, Y.Q. Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic. Biol. Med., 2008, 45(1), 60-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.013] [PMID: 18423410]
[12]
Ho, H.Y.; Ho, Y.C.; Hsieh, M.J.; Yang, S.F.; Chuang, C.Y.; Lin, C.W.; Hsin, C.H. Hispolon suppresses migration and invasion of human nasopharyngeal carcinoma cells by inhibiting the urokinase-plasminogen activator through modulation of the Akt signaling pathway. Environ. Toxicol., 2017, 32(2), 645-655.
[http://dx.doi.org/10.1002/tox.22266] [PMID: 27037602]
[13]
Balaji, N.V.; Ramani, M.V.; Viana, A.G.; Sanglard, L.P.; White, J.; Mulabagal, V.; Lee, C.; Gana, T.J.; Egiebor, N.O.; Subbaraju, G.V.; Tiwari, A.K. Design, synthesis and in vitro cell-based evaluation of the anti-cancer activities of hispolon analogs. Bioorg. Med. Chem., 2015, 23(9), 2148-2158.
[http://dx.doi.org/10.1016/j.bmc.2015.03.002] [PMID: 25842364]
[14]
Hsiao, P.C.; Hsieh, Y.H.; Chow, J.M.; Yang, S.F.; Hsiao, M.; Hua, K.T.; Lin, C.H.; Chen, H.Y.; Chien, M.H. Hispolon induces apoptosis through JNK1/2-mediated activation of a caspase-8, -9, and -3-dependent pathway in Acute Myeloid Leukemia (AML) cells and inhibits AML xenograft tumor growth in vivo. J. Agric. Food Chem., 2013, 61(42), 10063-10073.
[http://dx.doi.org/10.1021/jf402956m] [PMID: 24093560]
[15]
Zhao, Z.; Sun, Y.S.; Chen, W.; Lv, L.X.; Li, Y.Q. Hispolon inhibits breast cancer cell migration by reversal of epithelial-to-mesenchymal transition via suppressing the ROS/ERK/Slug/E-cadherin pathway. Oncol. Rep., 2016, 35(2), 896-904.
[http://dx.doi.org/10.3892/or.2015.4445] [PMID: 26718128]
[16]
Arcella, A.; Oliva, M.A.; Sanchez, M.; Staffieri, S.; Esposito, V.; Giangaspero, F.; Cantore, G. Effects of hispolon on glioblastoma cell growth. Environ. Toxicol., 2017, 32(9), 2113-2123.
[http://dx.doi.org/10.1002/tox.22419] [PMID: 28618133]
[17]
Huang, G.J.; Deng, J.S.; Huang, S.S.; Hu, M.L. Hispolon induces apoptosis and cell cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J. Agric. Food Chem., 2011, 59(13), 7104-7113.
[http://dx.doi.org/10.1021/jf201289e] [PMID: 21630638]
[18]
Chen, Y.C.; Chang, H.Y.; Deng, J.S.; Chen, J.J.; Huang, S.S.; Lin, I.H.; Kuo, W.L.; Chao, W.; Huang, G.J. Hispolon from Phellinus linteus induces G0/G1 cell cycle arrest and apoptosis in NB4 human leukaemia cells. Am. J. Chin. Med., 2013, 41(6), 1439-1457.
[http://dx.doi.org/10.1142/S0192415X13500961] [PMID: 24228611]
[19]
Hsieh, M.J.; Chien, S.Y.; Chou, Y.E.; Chen, C.J.; Chen, J.; Chen, M.K. Hispolon from Phellinus linteus possesses mediate caspases activation and induces human nasopharyngeal carcinomas cells apoptosis through ERK1/2, JNK1/2 and p38 MAPK pathway. Phytomedicine, 2014, 21(12), 1746-1752.
[http://dx.doi.org/10.1016/j.phymed.2014.07.013] [PMID: 25442286]
[20]
Gründemann, C.; Arnhold, M.; Meier, S.; Bäcker, C.; Garcia-Käufer, M.; Grunewald, F.; Steinborn, C.; Klemd, A.M.; Wille, R.; Huber, R.; Lindequist, U. Effects of Inonotus hispidus extracts and compounds on human immunocompetent cells. Planta Med., 2016, 82(15), 1359-1367.
[http://dx.doi.org/10.1055/s-0042-111693] [PMID: 27428885]
[21]
Jang, E.H.; Jang, S.Y.; Cho, I.H.; Hong, D.; Jung, B.; Park, M.J.; Kim, J.H. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha. Biochem. Biophys. Res. Commun., 2015, 463(4), 917-922.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.035] [PMID: 26056942]
[22]
Lu, T.L.; Huang, G.J.; Wang, H.J.; Chen, J.L.; Hsu, H.P.; Lu, T.J. Hispolon promotes MDM2 downregulation through chaperone-mediated autophagy. Biochem. Biophys. Res. Commun., 2010, 398(1), 26-31.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.004] [PMID: 20540933]
[23]
White, E. Autophagy and p53. Cold Spring Harb. Perspect. Med., 2016, 6(4) a026120
[http://dx.doi.org/10.1101/cshperspect.a026120] [PMID: 27037419]
[24]
Drosten, M.; Sum, E.Y.; Lechuga, C.G.; Simón-Carrasco, L.; Jacob, H.K.; García-Medina, R.; Huang, S.; Beijersbergen, R.L.; Bernards, R.; Barbacid, M. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proc. Natl. Acad. Sci. USA, 2014, 111(42), 15155-15160.
[http://dx.doi.org/10.1073/pnas.1417549111] [PMID: 25288756]
[25]
Kim, J.H.; Kim, Y.C.; Park, B. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors. Oncol. Rep., 2016, 35(2), 1020-1026.
[http://dx.doi.org/10.3892/or.2015.4440] [PMID: 26718925]
[26]
Wang, J.; Hu, F.; Luo, Y.; Luo, H.; Huang, N.; Cheng, F.; Deng, Z.; Deng, W.; Zou, K. Estrogenic and anti-estrogenic activities of hispolon from Phellinus lonicerinus (Bond.) Bond. et sing. Fitoterapia, 2014, 95, 93-101.
[http://dx.doi.org/10.1016/j.fitote.2014.03.007] [PMID: 24637110]
[27]
Chen, W.; He, F.Y.; Li, Y.Q. The apoptosis effect of hispolon from Phellinus linteus (Berkeley & Curtis) Teng on human epidermoid KB cells. J. Ethnopharmacol., 2006, 105(1-2), 280-285.
[http://dx.doi.org/10.1016/j.jep.2006.01.026] [PMID: 16563677]
[28]
Chen, Y.S.; Lee, S.M.; Lin, C.C.; Liu, C.Y. Hispolon decreases melanin production and induces apoptosis in melanoma cells through the downregulation of tyrosinase and microphthalmia-associated Transcription Factor (MITF) expressions and the activation of caspase-3, -8 and -9. Int. J. Mol. Sci., 2014, 15(1), 1201-1215.
[http://dx.doi.org/10.3390/ijms15011201] [PMID: 24445257]
[29]
Wu, M.S.; Chien, C.C.; Cheng, K.T.; Subbaraju, G.V.; Chen, Y.C. Hispolon suppresses LPS- or LTA-induced iNOS/NO production and apoptosis in BV-2 microglial cells. Am. J. Chin. Med., 2017, 45(8), 1649-1666.
[http://dx.doi.org/10.1142/S0192415X17500896] [PMID: 29121802]
[30]
Klaunig, J.E.; Kamendulis, L.M.; Hocevar, B.A. Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol., 2010, 38(1), 96-109.
[http://dx.doi.org/10.1177/0192623309356453] [PMID: 20019356]
[31]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[32]
Huang, G.J.; Yang, C.M.; Chang, Y.S.; Amagaya, S.; Wang, H.C.; Hou, W.C.; Huang, S.S.; Hu, M.L. Hispolon suppresses SK-Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways. J. Agric. Food Chem., 2010, 58(17), 9468-9475.
[http://dx.doi.org/10.1021/jf101508r] [PMID: 20698552]
[33]
Sun, Y.S.; Zhao, Z.; Zhu, H.P. Hispolon inhibits TPA-induced invasion by reducing MMP-9 expression through the NF-κB signaling pathway in MDA-MB-231 human breast cancer cells. Oncol. Lett., 2015, 10(1), 536-542.
[http://dx.doi.org/10.3892/ol.2015.3220] [PMID: 26171065]
[34]
Chien, Y.C.; Huang, G.J.; Cheng, H.C.; Wu, C.H.; Sheu, M.J. Hispolon attenuates balloon-injured neointimal formation and modulates vascular smooth muscle cell migration via AKT and ERK phosphorylation. J. Nat. Prod., 2012, 75(9), 1524-1533.
[http://dx.doi.org/10.1021/np3002145] [PMID: 22967007]
[35]
Hong, D.; Park, M.J.; Jang, E.H.; Jung, B.; Kim, N.J.; Kim, J.H. Hispolon as an inhibitor of TGF-β-induced epithelial-mesenchymal transition in human epithelial cancer cells by co-regulation of TGF-β-Snail/Twist axis. Oncol. Lett., 2017, 14(4), 4866-4872.
[http://dx.doi.org/10.3892/ol.2017.6789] [PMID: 29085494]
[36]
Shaikh, S.A.; Barik, A.; Singh, B.G.; Modukuri, R.V.; Balaji, N.V.; Subbaraju, G.V.; Naik, D.B.; Priyadarsini, K.I. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: Kinetics correlated with molecular descriptors. Free Radic. Res., 2016, 50(12), 1361-1373.
[http://dx.doi.org/10.1080/10715762.2016.1247955] [PMID: 27733076]
[37]
Chethna, P.; Iyer, S.S.; Gandhi, V.V.; Kunwar, A.; Singh, B.G.; Barik, A.; Balaji, N.V.; Ramani, M.V.; Subbaraju, G.V.; Priyadarsini, K.I. Toxicity and antigenotoxic effect of hispolon derivatives: Role of structure in modulating cellular redox state and thioredoxin reductase. ACS Omega, 2018, 3(6), 5958-5970.
[http://dx.doi.org/10.1021/acsomega.8b00415] [PMID: 30023935]
[38]
Rossi, M.; Caruso, F.; Costanzini, I.; Kloer, C.; Sulovari, A.; Monti, E.; Gariboldi, M.; Marras, E.; Balaji, N.V.; Ramani, M.V.; Subbaraju, G.V. X-ray crystal structures, density functional theory and docking on deacetylase enzyme for antiproliferative activity of hispolon derivatives on HCT116 colon cancer. Bioorg. Med. Chem., 2019, 27(17), 3805-3812.
[http://dx.doi.org/10.1016/j.bmc.2019.07.008] [PMID: 31326241]
[39]
Gaman, A.M.; Uzoni, A.; Popa-Wagner, A.; Andrei, A.; Petcu, E.B. The Role of oxidative stress in etiopathogenesis of Chemotherapy Induced Cognitive Impairment (CICI)-“Chemobrain. Aging Dis., 2016, 7(3), 307-317.
[http://dx.doi.org/10.14336/AD.2015.1022] [PMID: 27330845]
[40]
Ponnusamy, L.; Mahalingaiah, P.K.; Singh, K.P. Chronic oxidative stress increases resistance to doxorubicin-induced cytotoxicity in renal carcinoma cells potentially through epigenetic mechanism. Mol. Pharmacol., 2016, 89(1), 27-41.
[http://dx.doi.org/10.1124/mol.115.100206] [PMID: 26519223]
[41]
Eren-Guzelgun, B.; Ince, E.; Gurer-Orhan, H. In vitro antioxidant/prooxidant effects of combined use of flavonoids. Nat. Prod. Res., 2017, 3, 1-5.
[PMID: 28669231]
[42]
Roldán-Peña, J.M.; Alejandre-Ramos, D.; López, Ó.; Maya, I.; Lagunes, I.; Padrón, J.M.; Peña-Altamira, L.E.; Bartolini, M.; Monti, B.; Bolognesi, M.L.; Fernández-Bolaños, J.G. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and antiproliferative agents. Eur. J. Med. Chem., 2017, 138, 761-773.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.048] [PMID: 28728108]
[43]
Giustina, A.D.; Bonfante, S.; Zarbato, G.F.; Danielski, L.G.; Mathias, K.; de Oliveira, A.N., Jr; Garbossa, L.; Cardoso, T.; Fileti, M.E.; De Carli, R.J.; Goldim, M.P.; Barichello, T.; Petronilho, F.K.; de Oliveira, A.N., Jr; Garbossa, L.; Cardoso, T.; Fileti, M.E.; De Carli, R.J.; Goldim, M.P.; Barichello, T.; Petronilho, F. Dimethyl fumarate modulates oxidative stress and inflammation in organs after sepsis in rats. Inflammation, 2018, 41(1), 315-327.
[http://dx.doi.org/10.1007/s10753-017-0689-z] [PMID: 29124567]
[44]
Rani, V.J.; Aminedi, R.; Polireddy, K.; Jagadeeswarareddy, K. Synthesis and spectral characterization of new bis(2-(pyrimidin-2-yl)ethoxy)alkanes and their pharmacological activity. Arch. Pharm. (Weinheim), 2012, 345(8), 663-669.
[http://dx.doi.org/10.1002/ardp.201200021] [PMID: 22592977]
[45]
Islam, M.T. Andrographolide, an up-coming multi-edged plant-derived sword in cancers! Asian J. Ethnopharmacol. Med. Foods,, 2016.02, 01-03..
[46]
Islam, M.T.; Ali, E.S.; Uddin, S.J.; Islam, M.A.; Shaw, S.; Khan, I.N.; Saravi, S.S.S.; Ahmad, S.; Rehman, S.; Gupta, V.K.; Găman, M.A.; Găman, A.M.; Yele, S.; Das, A.K.; de Castro, E. Sousa, J.M.; de Moura Dantas, S.M.M.; Rolim, H.M.L.; de Carvalho Melo-Cavalcante, A.A.; Mubarak, M.S.; Yarla, N.S.; Shilpi, J.A.; Mishra, S.K.; Atanasov, A.G.; Kamal, M.A. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett., 2018, 420, 129-145.
[http://dx.doi.org/10.1016/j.canlet.2018.01.074] [PMID: 29408515]
[47]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35(Suppl.), S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]
[48]
Ali, E.S.; Sharker, S.M.; Islam, M.T.; Khan, I.N.; Shaw, S.; Rahman, M.A.; Uddin, S.J.; Shill, M.C.; Rehman, S.; Das, N.; Ahmad, S.; Shilpi, J.A.; Tripathi, S.; Mishra, S.K.; Mubarak, M.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin. Cancer Biol., 2020. In Press
[http://dx.doi.org/10.1016/j.semcancer.2020.01.011] [PMID: 32014609]
[49]
Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in pood: Cancer prevention and apoptosis induction. Curr. Med. Chem., 2018, 25(36), 4740-4757.
[http://dx.doi.org/10.2174/0929867324666171006144208] [PMID: 28990504]
[50]
Sharma, P.; Montes de Oca, M.K.; Alkeswani, A.R.; McClees, S.F.; Das, T.; Elmets, C.A.; Afaq, F. Tea polyphenols for the prevention of UVB-induced skin cancer. Photodermatol. Photoimmunol. Photomed., 2018, 34(1), 50-59.
[http://dx.doi.org/10.1111/phpp.12356] [PMID: 29044724]
[51]
Losada-Echeberría, M.; Herranz-López, M.; Micol, V.; Barrajón-Catalán, E. Polyphenols as promising drugs against main breast cancer signatures. Antioxidants, 2017, 6(4) E88
[http://dx.doi.org/10.3390/antiox6040088] [PMID: 29112149]
[52]
Liang, J.; Shang, Y. Estrogen and cancer. Annu. Rev. Physiol., 2013, 75, 225-240.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183708] [PMID: 23043248]
[53]
Wang, J.; Chen, B.; Hu, F.; Zou, X.; Yu, H.; Wang, J.; Zhang, H.; He, H.; Huang, W. Effect of hispolon from Phellinus lonicerinus (agaricomycetes) on estrogen receptors, aromatase, and cyclooxygenase II in MCF-7 breast cancer cells. Int. J. Med. Mushrooms, 2017, 19(3), 233-242.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v19.i3.50] [PMID: 28605338]
[54]
Guo, Q.; Cao, H.; Qi, X.; Li, H.; Ye, P.; Wang, Z.; Wang, D.; Sun, M. Research progress in reversal of tumor multi-drug resistance via natural products. Anticancer. Agents Med. Chem., 2017, 17(11), 1466-1476.
[http://dx.doi.org/10.2174/1871520617666171016105704] [PMID: 29034843]
[55]
Aravindan, S.; Ramraj, S.K.; Somasundaram, S.T.; Aravindan, N. Novel adjuvants from seaweed impede autophagy signaling in therapy-resistant residual pancreatic cancer. J. Biomed. Sci., 2015, 22, 28.
[http://dx.doi.org/10.1186/s12929-015-0132-4] [PMID: 25898131]
[56]
Kim, E.H.; Jang, H.; Roh, J.L. A novel polyphenol conjugate sensitizes cisplatin-resistant head and neck cancer cells to cisplatin via Nrf2 inhibition. Mol. Cancer Ther., 2016, 15(11), 2620-2629.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0332] [PMID: 27550943]
[57]
Nowakowska, A.; Tarasiuk, J. Comparative effects of selected plant polyphenols, gallic acid and epigallocatechin gallate, on matrix metalloproteinases activity in multidrug resistant MCF7/DOX breast cancer cells. Acta Biochim. Pol., 2016, 63(3), 571-575.
[http://dx.doi.org/10.18388/abp.2016_1256] [PMID: 27231728]
[58]
Carini, F.; Tomasello, G.; Jurjus, A.; Geagea, A.; Al Kattar, S.; Damiani, P.; Sinagra, E.; Rappa, F.; David, S.; Cappello, F.; Mazzola, M.; Leone, A. Colorectal cancer and inflammatory bowel diseases: effects of diet and antioxidants. J. Biol. Regul. Homeost. Agents, 2017, 31(3), 791-795.
[PMID: 28726358]
[59]
Gaman, A.M.; Buga, A.M.; Gaman, M.A.; Popa-Wagner, A. The role of oxidative stress and the effects of antioxidants on the incidence of infectious complications of chronic lymphocytic leukemia. Oxid. Med. Cell. Longev., 2014, 2014 158135
[http://dx.doi.org/10.1155/2014/158135] [PMID: 25383139]
[60]
Brisdelli, F.; D’Andrea, G.; Bozzi, A. Resveratrol: A natural polyphenol with multiple chemopreventive properties. Curr. Drug Metab., 2009, 10(6), 530-546.
[http://dx.doi.org/10.2174/138920009789375423] [PMID: 19702538]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 14
Year: 2020
Published on: 13 October, 2020
Page: [1636 - 1647]
Pages: 12
DOI: 10.2174/1871520620666200619164947
Price: $65

Article Metrics

PDF: 25
HTML: 1