Identification of Potential Inhibitors for Targets Involved in Dengue Fever

Author(s): Anusuya Shanmugam, Chandrasekaran Ramakrishnan, Devadasan Velmurugan, M. Michael Gromiha*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 19 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Lethality due to dengue infection is a global threat. Nearly 400 million people are affected every year, which approximately costs 500 million dollars for surveillance and vector control itself. Many investigations on the structure-function relationship of proteins expressed by the dengue virus are being made for more than a decade and had come up with many reports on small molecule drug discovery. In this review, we present a detailed note on viral proteins and their functions as well as the inhibitors discovered/designed so far using experimental and computational methods. Further, the phytoconstituents from medicinal plants, specifically the extract of the papaya leaves, neem and bael, which combat dengue infection via dengue protease, helicase, methyl transferase and polymerase are summarized.

Keywords: Dengue virus, Structure-based drug design, Fragment-based drug designing, Pharmacophore, QSAR, Docking.

[1]
Ross, T.M. Dengue virus. Clin. Lab. Med., 2010, 30(1), 149-160.
[http://dx.doi.org/10.1016/j.cll.2009.10.007] [PMID: 20513545]
[2]
Istúriz, R.E.; Gubler, D.J.; Brea del Castillo, J. Dengue and dengue hemorrhagic fever in latin america and the caribbean. Infect. Dis. Clin. North Am., 2000, 14(1), 121-140.
[http://dx.doi.org/10.1016/S0891-5520(05)70221-X] [PMID: 10738676]
[3]
Halstead, S.B. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine, 2017, 35(47), 6355-6358.
[http://dx.doi.org/10.1016/j.vaccine.2017.09.089] [PMID: 29029938]
[4]
Rajapakse, S.; Rodrigo, C.; Rajapakse, A. Treatment of dengue fever. Infect. Drug Resist., 2012, 5, 103-112.
[http://dx.doi.org/10.2147/IDR.S22613] [PMID: 22870039]
[5]
Reginald, K.; Chan, Y.; Plebanski, M.; Poh, C.L. Development of peptide vaccines in dengue. Curr. Pharm. Des., 2018, 24(11), 1157-1173.
[http://dx.doi.org/10.2174/1381612823666170913163904] [PMID: 28914200]
[6]
Perera, R.; Kuhn, R.J. Structural proteomics of dengue virus. Curr. Opin. Microbiol., 2008, 11(4), 369-377.
[http://dx.doi.org/10.1016/j.mib.2008.06.004] [PMID: 18644250]
[7]
Colpitts, T.M.; Barthel, S.; Wang, P.; Fikrig, E. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLoS One, 2011, 6(9)e24365
[http://dx.doi.org/10.1371/journal.pone.0024365] [PMID: 21909430]
[8]
De La Guardia, C.; Lleonart, R. Progress in the identification of dengue virus entry/fusion inhibitors. BioMed Res. Int., 2014, 2014, 825039-825052.
[http://dx.doi.org/10.1155/2014/825039] [PMID: 25157370]
[9]
Natarajan, S. NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus. Genet. Mol. Biol., 2010, 33(2), 214-219.
[http://dx.doi.org/10.1590/S1415-47572010000200002] [PMID: 21637471]
[10]
Li, Y.; Li, Q.; Wong, Y.L.; Liew, L.S.; Kang, C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. Biochim. Biophys. Acta, 2015, 1848(10 Pt A), 2244-2252.
[http://dx.doi.org/10.1016/j.bbamem.2015.06.010] [PMID: 26072288]
[11]
Nemésio, H.; Palomares-Jerez, F.; Villalaín, J. NS4A and NS4B proteins from dengue virus: membranotropic regions. Biochim. Biophys. Acta, 2012, 1818(11), 2818-2830.
[http://dx.doi.org/10.1016/j.bbamem.2012.06.022] [PMID: 22772157]
[12]
El Sahili, A.; Lescar, J. Dengue virus non-structural protein 5. Viruses, 2017, 9(4)E91
[http://dx.doi.org/10.3390/v9040091] [PMID: 28441781]
[13]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des, 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[14]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: a review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[15]
Axenopoulos, A.; Daras, P.; Papadopoulos, G.E.; Houstis, E.N. SP-dock: protein-protein docking using shape and physicochemical complementarity. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2013, 10(1), 135-150.
[http://dx.doi.org/10.1109/TCBB.2012.149] [PMID: 23702550]
[16]
Steffen, A.; Kämper, A.; Lengauer, T. Flexible docking of ligands into synthetic receptors using a two-sided incremental construction algorithm. J. Chem. Inf. Model., 2006, 46(4), 1695-1703.
[http://dx.doi.org/10.1021/ci060072v] [PMID: 16859301]
[17]
Varguhese, J.F.; Li, Y. Molecular dynamics and docking studies on cardiac troponin C. J. Biomol. Struct. Dyn., 2011, 29(1), 123-135.
[http://dx.doi.org/10.1080/07391102.2011.10507378] [PMID: 21696229]
[18]
Wang, H.; Liu, H.; Cai, L.; Wang, C.; Lv, Q. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking. BMC Bioinformatics, 2017, 18(1), 327-348.
[http://dx.doi.org/10.1186/s12859-017-1733-6] [PMID: 28693470]
[19]
Guan, B.; Zhang, C.; Ning, J. Genetic algorithm with a crossover elitist preservation mechanism for protein-ligand docking. AMB Express, 2017, 7(1), 174-185.
[http://dx.doi.org/10.1186/s13568-017-0476-0] [PMID: 28905320]
[20]
Gioia, D.; Bertazzo, M.; Recanatini, M.; Masetti, M.; Cavalli, A. Dynamic docking: a paradigm shift in computational drug discovery. Molecules, 2017, 22(11)E2029
[http://dx.doi.org/10.3390/molecules22112029] [PMID: 29165360]
[21]
Huang, S.Y.; Grinter, S.Z.; Zou, X. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys. Chem. Chem. Phys., 2010, 12(40), 12899-12908.
[http://dx.doi.org/10.1039/c0cp00151a] [PMID: 20730182]
[22]
Yin, S.; Biedermannova, L.; Vondrasek, J.; Dokholyan, N.V. MedusaScore: an accurate force field-based scoring function for virtual drug screening. J. Chem. Inf. Model., 2008, 48(8), 1656-1662.
[http://dx.doi.org/10.1021/ci8001167] [PMID: 18672869]
[23]
Guedes, I.A.; Pereira, F.S.S.; Dardenne, L.E. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front. Pharmacol., 2018, 9, 1089-1097.
[http://dx.doi.org/10.3389/fphar.2018.01089] [PMID: 30319422]
[24]
Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol., 2000, 295(2), 337-356.
[http://dx.doi.org/10.1006/jmbi.1999.3371] [PMID: 10623530]
[25]
Byrd, C.M.; Dai, D.; Grosenbach, D.W.; Berhanu, A.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Wineinger, K.A.; Page, J.M.; Harver, C.; Stavale, E.; Tyavanagimatt, S.; Stone, M.A.; Bartenschlager, R.; Scaturro, P.; Hruby, D.E.; Jordan, R. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother., 2013, 57(1), 15-25.
[http://dx.doi.org/10.1128/AAC.01429-12] [PMID: 23070172]
[26]
Scaturro, P.; Trist, I.M.; Paul, D.; Kumar, A.; Acosta, E.G.; Byrd, C.M.; Jordan, R.; Brancale, A.; Bartenschlager, R. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J. Virol., 2014, 88(19), 11540-11555.
[http://dx.doi.org/10.1128/JVI.01745-14] [PMID: 25056895]
[27]
Faustino, A.F.; Martins, I.C.; Carvalho, F.A.; Castanho, M.A.; Maurer-Stroh, S.; Santos, N.C. Understanding dengue virus capsid protein interaction with key biological targets. Sci. Rep., 2015, 5, 10592-10605.
[http://dx.doi.org/10.1038/srep10592] [PMID: 26161501]
[28]
Faustino, A.F.; Carvalho, F.A.; Martins, I.C.; Castanho, M.A.; Mohana-Borges, R.; Almeida, F.C.; Da Poian, A.T.; Santos, N.C. Dengue virus capsid protein interacts specifically with very low-density lipoproteins. Nanomedicine (Lond.), 2014, 10(1), 247-255.
[http://dx.doi.org/10.1016/j.nano.2013.06.004] [PMID: 23792329]
[29]
Alen, M.M.; Schols, D. Dengue virus entry as target for antiviral therapy. J. Trop. Med., 2012, 2012, 628475-628488.
[http://dx.doi.org/10.1155/2012/628475] [PMID: 22529868]
[30]
Alen, M.M.; De Burghgraeve, T.; Kaptein, S.J.; Balzarini, J.; Neyts, J.; Schols, D. Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells. PLoS One, 2011, 6(6)e21658
[http://dx.doi.org/10.1371/journal.pone.0021658] [PMID: 21738755]
[31]
Ichiyama, K.; Gopala Reddy, S.B.; Zhang, L.F.; Chin, W.X.; Muschin, T.; Heinig, L.; Suzuki, Y.; Nanjundappa, H.; Yoshinaka, Y.; Ryo, A.; Nomura, N.; Ooi, E.E.; Vasudevan, S.G.; Yoshida, T.; Yamamoto, N. Sulfated polysaccharide, curdlan sulfate, efficiently prevents entry/fusion and restricts antibody-dependent enhancement of dengue virus infection in vitro: a possible candidate for clinical application. PLoS Negl. Trop. Dis., 2013, 7(4)e2188
[http://dx.doi.org/10.1371/journal.pntd.0002188] [PMID: 23658845]
[32]
Hidari, K.I.; Abe, T.; Suzuki, T. Carbohydrate-related inhibitors of dengue virus entry. Viruses, 2013, 5(2), 605-618.
[http://dx.doi.org/10.3390/v5020605] [PMID: 23389466]
[33]
Kato, D.; Era, S.; Watanabe, I.; Arihara, M.; Sugiura, N.; Kimata, K.; Suzuki, Y.; Morita, K.; Hidari, K.I.; Suzuki, T. Antiviral activity of chondroitin sulphate E targeting dengue virus envelope protein. Antiviral Res., 2010, 88(2), 236-243.
[http://dx.doi.org/10.1016/j.antiviral.2010.09.002] [PMID: 20851716]
[34]
Talarico, L.B.; Pujol, C.A.; Zibetti, R.G.; Faría, P.C.; Noseda, M.D.; Duarte, M.E.; Damonte, E.B. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res., 2005, 66(2-3), 103-110.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.001] [PMID: 15911027]
[35]
Berteau, O.; Mulloy, B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology, 2003, 13(6), 29R-40R.
[http://dx.doi.org/10.1093/glycob/cwg058] [PMID: 12626402]
[36]
Voogd, T.E.; Vansterkenburg, E.L.; Wilting, J.; Janssen, L.H. Recent research on the biological activity of suramin. Pharmacol. Rev., 1993, 45(2), 177-203.
[PMID: 8396782]
[37]
Lee, E.; Pavy, M.; Young, N.; Freeman, C.; Lobigs, M. Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res., 2006, 69(1), 31-38.
[http://dx.doi.org/10.1016/j.antiviral.2005.08.006] [PMID: 16309754]
[38]
Aoki, C.; Hidari, K.I.; Itonori, S.; Yamada, A.; Takahashi, N.; Kasama, T.; Hasebe, F.; Islam, M.A.; Hatano, K.; Matsuoka, K.; Taki, T.; Guo, C.T.; Takahashi, T.; Sakano, Y.; Suzuki, T.; Miyamoto, D.; Sugita, M.; Terunuma, D.; Morita, K.; Suzuki, Y. Identification and characterization of carbohydrate molecules in mammalian cells recognized by dengue virus type 2. J. Biochem., 2006, 139(3), 607-614.
[39]
Hidari, K.I.; Ikeda, K.; Watanabe, I.; Abe, T.; Sando, A.; Itoh, Y.; Tokiwa, H.; Morita, K.; Suzuki, T. 3-O-sulfated glucuronide derivative as a potential anti-dengue virus agent. Biochem. Biophys. Res. Commun., 2012, 424(3), 573-578.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.002] [PMID: 22776202]
[40]
Yang, J.M.; Chen, Y.F.; Tu, Y.Y.; Yen, K.R.; Yang, Y.L. Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors. PLoS One, 2007, 2(5)e428
[http://dx.doi.org/10.1371/journal.pone.0000428] [PMID: 17502914]
[41]
Wang, Q.Y.; Patel, S.J.; Vangrevelinghe, E.; Xu, H.Y.; Rao, R.; Jaber, D.; Schul, W.; Gu, F.; Heudi, O.; Ma, N.L.; Poh, M.K.; Phong, W.Y.; Keller, T.H.; Jacoby, E.; Vasudevan, S.G. A small-molecule dengue virus entry inhibitor. Antimicrob. Agents Chemother., 2009, 53(5), 1823-1831.
[http://dx.doi.org/10.1128/AAC.01148-08] [PMID: 19223625]
[42]
Poh, M.K.; Yip, A.; Zhang, S.; Priestle, J.P.; Ma, N.L.; Smit, J.M.; Wilschut, J.; Shi, P.Y.; Wenk, M.R.; Schul, W. A small molecule fusion inhibitor of dengue virus. Antiviral Res., 2009, 84(3), 260-266.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.011] [PMID: 19800368]
[43]
Kaptein, S.J.; De Burghgraeve, T.; Froeyen, M.; Pastorino, B.; Alen, M.M.; Mondotte, J.A.; Herdewijn, P.; Jacobs, M.; de Lamballerie, X.; Schols, D.; Gamarnik, A.V.; Sztaricskai, F.; Neyts, J. A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro. Antimicrob. Agents Chemother., 2010, 54(12), 5269-5280.
[http://dx.doi.org/10.1128/AAC.00686-10] [PMID: 20837762]
[44]
Ayala-Nuñez, N.V.; Jarupathirun, P.; Kaptein, S.J.; Neyts, J.; Smit, J.M. Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative. Antiviral Res., 2013, 100(1), 238-245.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.013] [PMID: 23994499]
[45]
Chew, M.F.; Poh, K.S.; Poh, C.L. Peptides as therapeutic agents for dengue virus. Int. J. Med. Sci., 2017, 14(13), 1342-1359.
[http://dx.doi.org/10.7150/ijms.21875] [PMID: 29200948]
[46]
Huang, Y.W.; Lee, C.T.; Wang, T.C.; Kao, Y.C.; Yang, C.H.; Lin, Y.M.; Huang, K.S. The development of peptide-based antimicrobial agents against dengue virus. Curr. Protein Pept. Sci., 2018, 19(10), 998-1010.
[http://dx.doi.org/10.2174/1389203719666180531122724] [PMID: 29852867]
[47]
Hrobowski, Y.M.; Garry, R.F.; Michael, S.F. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol. J., 2005, 2, 49.
[http://dx.doi.org/10.1186/1743-422X-2-49] [PMID: 15927084]
[48]
Bai, F.; Town, T.; Pradhan, D.; Cox, J. Ashish; Ledizet, M.; Anderson, J.F.; Flavell, R.A.; Krueger, J.K.; Koski, R.A.; Fikrig, E. Antiviral peptides targeting the west nile virus envelope protein. J. Virol., 2007, 81(4), 2047-2055.
[http://dx.doi.org/10.1128/JVI.01840-06] [PMID: 17151121]
[49]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog., 2010, 6(4)e1000851
[http://dx.doi.org/10.1371/journal.ppat.1000851] [PMID: 20386713]
[50]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of flavivirus entry derived from the E protein stem. J. Virol., 2010, 84(24), 12549-12554.
[http://dx.doi.org/10.1128/JVI.01440-10] [PMID: 20881042]
[51]
Costin, J.M.; Jenwitheesuk, E.; Lok, S.M.; Hunsperger, E.; Conrads, K.A.; Fontaine, K.A.; Rees, C.R.; Rossmann, M.G.; Isern, S.; Samudrala, R.; Michael, S.F. Structural optimization and de novo design of dengue virus entry inhibitory peptides. PLoS Negl. Trop. Dis., 2010, 4(6)e721
[http://dx.doi.org/10.1371/journal.pntd.0000721] [PMID: 20582308]
[52]
Alhoot, M.A.; Rathinam, A.K.; Wang, S.M.; Manikam, R.; Sekaran, S.D. Inhibition of dengue virus entry into target cells using synthetic antiviral peptides. Int. J. Med. Sci., 2013, 10(6), 719-729.
[http://dx.doi.org/10.7150/ijms.5037] [PMID: 23630436]
[53]
Panya, A.; Bangphoomi, K.; Choowongkomon, K.; Yenchitsomanus, P.T. Peptide inhibitors against dengue virus infection. Chem. Biol. Drug Des., 2014, 84(2), 148-157.
[http://dx.doi.org/10.1111/cbdd.12309] [PMID: 24612829]
[54]
Chew, M.F.; Tham, H.W.; Rajik, M.; Sharifah, S.H. Anti-dengue virus serotype 2 activity and mode of action of a novel peptide. J. Appl. Microbiol., 2015, 119(4), 1170-1180.
[http://dx.doi.org/10.1111/jam.12921] [PMID: 26248692]
[55]
Panya, A.; Sawasdee, N.; Junking, M.; Srisawat, C.; Choowongkomon, K.; Yenchitsomanus, P.T. A peptide inhibitor derived from the conserved ectodomain region of DENV membrane (M) protein with activity against dengue virus infection. Chem. Biol. Drug Des., 2015, 86(5), 1093-1104.
[http://dx.doi.org/10.1111/cbdd.12576] [PMID: 25891143]
[56]
Nicholson, C.O.; Costin, J.M.; Rowe, D.K.; Lin, L.; Jenwitheesuk, E.; Samudrala, R.; Isern, S.; Michael, S.F. Viral entry inhibitors block dengue antibody-dependent enhancement in vitro. Antiviral Res., 2011, 89(1), 71-74.
[http://dx.doi.org/10.1016/j.antiviral.2010.11.008] [PMID: 21093488]
[57]
Lok, S.M.; Costin, J.M.; Hrobowski, Y.M.; Hoffmann, A.R.; Rowe, D.K.; Kukkaro, P.; Holdaway, H.; Chipman, P.; Fontaine, K.A.; Holbrook, M.R.; Garry, R.F.; Kostyuchenko, V.; Wimley, W.C.; Isern, S.; Rossmann, M.G.; Michael, S.F. Release of dengue virus genome induced by a peptide inhibitor. PLoS One, 2012, 7(11)e50995
[http://dx.doi.org/10.1371/journal.pone.0050995] [PMID: 23226444]
[58]
De Burghgraeve, T.; Kaptein, S.J.; Ayala-Nunez, N.V.; Mondotte, J.A.; Pastorino, B.; Printsevskaya, S.S.; de Lamballerie, X.; Jacobs, M.; Preobrazhenskaya, M.; Gamarnik, A.V.; Smit, J.M.; Neyts, J. An analogue of the antibiotic teicoplanin prevents flavivirus entry in vitro. PLoS One, 2012, 7(5)e37244
[http://dx.doi.org/10.1371/journal.pone.0037244] [PMID: 22624001]
[59]
Abdul Ahmad, S.A.; Palanisamy, U.D.; Tejo, B.A.; Chew, M.F.; Tham, H.W.; Syed Hassan, S. Geraniin extracted from the rind of Nephelium lappaceum binds to dengue virus type-2 envelope protein and inhibits early stage of virus replication. Virol. J., 2017, 14(1), 229-242.
[http://dx.doi.org/10.1186/s12985-017-0895-1] [PMID: 29162124]
[60]
Anwar, A.; Hosoya, T.; Leong, K.M.; Onogi, H.; Okuno, Y.; Hiramatsu, T.; Koyama, H.; Suzuki, M.; Hagiwara, M.; Garcia-Blanco, M.A. The kinase inhibitor SFV785 dislocates dengue virus envelope protein from the replication complex and blocks virus assembly. PLoS One, 2011, 6(8)e23246
[http://dx.doi.org/10.1371/journal.pone.0023246] [PMID: 21858043]
[61]
Schmidt, A.G.; Lee, K.; Yang, P.L.; Harrison, S.C. Small-molecule inhibitors of dengue-virus entry. PLoS Pathog., 2012, 8(4)e1002627
[http://dx.doi.org/10.1371/journal.ppat.1002627] [PMID: 22496653]
[62]
Chao, L.H.; Jang, J.; Johnson, A.; Nguyen, A.; Gray, N.S.; Yang, P.L.; Harrison, S.C. How small-molecule inhibitors of dengue-virus infection interfere with viral membrane fusion. eLife, 2018, 7e36461
[http://dx.doi.org/10.7554/eLife.36461] [PMID: 29999491]
[63]
Kampmann, T.; Yennamalli, R.; Campbell, P.; Stoermer, M.J.; Fairlie, D.P.; Kobe, B.; Young, P.R. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res., 2009, 84(3), 234-241.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.007] [PMID: 19781577]
[64]
Zhou, Z.; Khaliq, M.; Suk, J.E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775.
[http://dx.doi.org/10.1021/cb800176t] [PMID: 19053243]
[65]
Leal, E.S.; Aucar, M.G.; Gebhard, L.G.; Iglesias, N.G.; Pascual, M.J.; Casal, J.J.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. Discovery of novel dengue virus entry inhibitors via a structure-based approach. Bioorg. Med. Chem. Lett., 2017, 27(16), 3851-3855.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.049] [PMID: 28668194]
[66]
Aarthy, M.; Singh, S.K. Discovery of potent inhibitors for the inhibition of dengue envelope protein: an in silico approach. Curr. Top. Med. Chem., 2018, 18(18), 1585-1602.
[http://dx.doi.org/10.2174/1568026618666181025100736] [PMID: 30360716]
[67]
Byrd, C.M.; Grosenbach, D.W.; Berhanu, A.; Dai, D.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Yang, G.; Tyavanagimatt, S.; Harver, C.; Wineinger, K.A.; Page, J.; Stavale, E.; Stone, M.A.; Fuller, K.P.; Lovejoy, C.; Leeds, J.M.; Hruby, D.E.; Jordan, R. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase. Antimicrob. Agents Chemother., 2013, 57(4), 1902-1912.
[http://dx.doi.org/10.1128/AAC.02251-12] [PMID: 23403421]
[68]
Basavannacharya, C.; Vasudevan, S.G. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem. Biophys. Res. Commun., 2014, 453(3), 539-544.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.113] [PMID: 25281902]
[69]
Yin, Z.; Patel, S.J.; Wang, W.L.; Chan, W.L.; Rao, R. Yin, Z.; Patel, S.J.; Wang, W.L.; Chan, W.L.; Ranga Rao, K.R.; Wang, G.; Ngew, X.; Patel, V.; Beer, D.; Knox, J.E.; Ma, N.L.; Ehrhardt, C.; Lim, S.P.; Vasudevan, S.G.; Keller, T.H. Peptide inhibitors of dengue virus NS3 protease. Part 2: SAR study of tetrapeptide aldehyde inhibitors. Bioorg. Med. Chem. Lett., 2006, 2006, 16(1), 40-43.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.049] [PMID: 16246563]
[70]
Schüller, A.; Yin, Z.; Brian Chia, C.S.; Doan, D.N.; Kim, H.K.; Shang, L.; Loh, T.P.; Hill, J.; Vasudevan, S.G. Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease. Antiviral Res., 2011, 92(1), 96-101.
[http://dx.doi.org/10.1016/j.antiviral.2011.07.002] [PMID: 21763725]
[71]
Behnam, M.A.; Nitsche, C.; Vechi, S.M.; Klein, C.D. C-terminal residue optimization and fragment merging: discovery of a potent Peptide-hybrid inhibitor of dengue protease. ACS Med. Chem. Lett., 2014, 5(9), 1037-1042.
[http://dx.doi.org/10.1021/ml500245v] [PMID: 25221663]
[72]
Behnam, M.A.; Graf, D.; Bartenschlager, R.; Zlotos, D.P.; Klein, C.D. Discovery of nanomolar dengue and west nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J. Med. Chem., 2015, 58(23), 9354-9370.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01441] [PMID: 26562070]
[73]
Zhou, G.C.; Weng, Z.; Shao, X.; Liu, F.; Nie, X.; Liu, J.; Wang, D.; Wang, C.; Guo, K. Discovery and SAR studies of methionine-proline anilides as dengue virus NS2B-NS3 protease inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(24), 6549-6554.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.071] [PMID: 24268549]
[74]
Weigel, L.F.; Nitsche, C.; Graf, D.; Bartenschlager, R.; Klein, C.D. Phenylalanine and phenylglycine analogues as arginine mimetics in dengue protease inhibitors. J. Med. Chem., 2015, 58(19), 7719-7733.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00612] [PMID: 26367391]
[75]
Lin, K.H.; Ali, A.; Rusere, L.; Soumana, D.I.; Kurt Yilmaz, N.; Schiffer, C.A. Dengue virus ns2b/ns3 protease inhibitors exploiting the prime side. J. Virol., 2017, 91(10), e00045-e17.
[http://dx.doi.org/10.1128/JVI.00045-17] [PMID: 28298600]
[76]
Takagi, Y.; Matsui, K.; Nobori, H.; Maeda, H.; Sato, A.; Kurosu, T.; Orba, Y.; Sawa, H.; Hattori, K.; Higashino, K.; Numata, Y.; Yoshida, Y. Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg. Med. Chem. Lett., 2017, 27(15), 3586-3590.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.027] [PMID: 28539222]
[77]
Velmurugan, D.; Mythily, U.; Rao, K. Design and docking studies of peptide inhibitors as potential antiviral drugs for dengue virus ns2b/ns3 protease. Protein Pept. Lett., 2014, 21(8), 815-827.
[http://dx.doi.org/10.2174/09298665113209990062] [PMID: 23855663]
[78]
Xu, S.; Li, H.; Shao, X.; Fan, C.; Ericksen, B.; Liu, J.; Chi, C.; Wang, C. Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J. Med. Chem., 2012, 55(15), 6881-6887.
[http://dx.doi.org/10.1021/jm300655h] [PMID: 22780881]
[79]
Nitsche, C.; Steuer, C.; Klein, C.D. Arylcyanoacrylamides as inhibitors of the Dengue and West Nile virus proteases. Bioorg. Med. Chem., 2011, 19(24), 7318-7337.
[http://dx.doi.org/10.1016/j.bmc.2011.10.061] [PMID: 22094280]
[80]
Lai, H.; Dou, D.; Aravapalli, S.; Teramoto, T.; Lushington, G.H.; Mwania, T.M.; Alliston, K.R.; Eichhorn, D.M.; Padmanabhan, R.; Groutas, W.C. Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: potent inhibitors of Dengue and West Nile virus NS2B/NS3 proteases. Bioorg. Med. Chem., 2013, 21(1), 102-113.
[http://dx.doi.org/10.1016/j.bmc.2012.10.058] [PMID: 23211969]
[81]
Aravapalli, S.; Lai, H.; Teramoto, T.; Alliston, K.R.; Lushington, G.H.; Ferguson, E.L.; Padmanabhan, R.; Groutas, W.C. Inhibitors of Dengue virus and West Nile virus proteases based on the aminobenzamide scaffold. Bioorg. Med. Chem., 2012, 20(13), 4140-4148.
[http://dx.doi.org/10.1016/j.bmc.2012.04.055] [PMID: 22632792]
[82]
Tiew, K.C.; Dou, D.; Teramoto, T.; Lai, H.; Alliston, K.R.; Lushington, G.H.; Padmanabhan, R.; Groutas, W.C. Inhibition of Dengue virus and West Nile virus proteases by click chemistry-derived benz[d]isothiazol-3(2H)-one derivatives. Bioorg. Med. Chem., 2012, 20(3), 1213-1221.
[http://dx.doi.org/10.1016/j.bmc.2011.12.047] [PMID: 22249124]
[83]
Liu, H.; Wu, R.; Sun, Y.; Ye, Y.; Chen, J.; Luo, X.; Shen, X.; Liu, H. Identification of novel thiadiazoloacrylamide analogues as inhibitors of dengue-2 virus NS2B/NS3 protease. Bioorg. Med. Chem., 2014, 22(22), 6344-6352.
[http://dx.doi.org/10.1016/j.bmc.2014.09.057] [PMID: 25438757]
[84]
Weng, Z.; Shao, X.; Graf, D.; Wang, C.; Klein, C.D.; Wang, J.; Zhou, G.C. Identification of fused bicyclic derivatives of pyrrolidine and imidazolidinone as dengue virus-2 NS2B-NS3 protease inhibitors. Eur. J. Med. Chem., 2017, 125, 751-759.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.063] [PMID: 27721158]
[85]
Osman, H.; Idris, N.H.; Kamarulzaman, E.E.; Wahab, H.A.; Hassan, M.Z. 3,5-Bis(arylidene)-4-piperidones as potential dengue protease inhibitors. Acta Pharm. Sin. B, 2017, 7(4), 479-484.
[http://dx.doi.org/10.1016/j.apsb.2017.04.009] [PMID: 28752033]
[86]
Qamar, M.T.; Ashfaq, U.A.; Tusleem, K.; Mumtaz, A.; Tariq, Q.; Goheer, A.; Ahmed, B. In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach. Pak. J. Pharm. Sci., 2017, 30(6), 2119-2137.
[PMID: 29175781]
[87]
Sarwar, M.W.; Riaz, A.; Dilshad, S.M.R.; Al-Qahtani, A.; Nawaz-Ul-Rehman, M.S.; Mubin, M. Structure activity relationship (SAR) and quantitative structure activity relationship (QSAR) studies showed plant flavonoids as potential inhibitors of dengue NS2B-NS3 protease. BMC Struct. Biol., 2018, 18(1), 6-16.
[http://dx.doi.org/10.1186/s12900-018-0084-5] [PMID: 29673347]
[88]
de Sousa, L.R.; Wu, H.; Nebo, L.; Fernandes, J.B.; da Silva, M.F.; Kiefer, W.; Kanitz, M.; Bodem, J.; Diederich, W.E.; Schirmeister, T.; Vieira, P.C. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies. Bioorg. Med. Chem., 2015, 23(3), 466-470.
[http://dx.doi.org/10.1016/j.bmc.2014.12.015] [PMID: 25564380]
[89]
Dwivedi, V.D.; Tripathi, I.P.; Mishra, S.K. In silico evaluation of inhibitory potential of triterpenoids from Azadirachta indica against therapeutic target of dengue virus, NS2B-NS3 protease. J. Vector Borne Dis., 2016, 53(2), 156-161.
[PMID: 27353586]
[90]
Dwivedi, V.D.; Tripathi, I.P.; Bharadwaj, S.; Kaushik, A.C.; Mishra, S.K. Identification of new potent inhibitors of dengue virus NS3 protease from traditional Chinese medicine database. Virusdisease, 2016, 27(3), 220-225.
[http://dx.doi.org/10.1007/s13337-016-0328-6] [PMID: 28466032]
[91]
Tomlinson, S.M.; Malmstrom, R.D.; Russo, A.; Mueller, N.; Pang, Y.P.; Watowich, S.J. Structure-based discovery of dengue virus protease inhibitors. Antiviral Res., 2009, 82(3), 110-114.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.190] [PMID: 19428601]
[92]
Tomlinson, S.M.; Watowich, S.J. Anthracene-based inhibitors of dengue virus NS2B-NS3 protease. Antiviral Res., 2011, 89(2), 127-135.
[http://dx.doi.org/10.1016/j.antiviral.2010.12.006] [PMID: 21185332]
[93]
Tomlinson, S.M.; Watowich, S.J. Use of parallel validation high-throughput screens to reduce false positives and identify novel dengue NS2B-NS3 protease inhibitors. Antiviral Res., 2012, 93(2), 245-252.
[http://dx.doi.org/10.1016/j.antiviral.2011.12.003] [PMID: 22193283]
[94]
Viswanathan, U.; Tomlinson, S.M.; Fonner, J.M.; Mock, S.A.; Watowich, S.J. Identification of a novel inhibitor of dengue virus protease through use of a virtual screening drug discovery Web portal. J. Chem. Inf. Model., 2014, 54(10), 2816-2825.
[http://dx.doi.org/10.1021/ci500531r] [PMID: 25263519]
[95]
Hariono, M.; Choi, S.B.; Roslim, R.F.; Nawi, M.S.; Tan, M.L.; Kamarulzaman, E.E.; Mohamed, N.; Yusof, R.; Othman, S.; Abd Rahman, N.; Othman, R.; Wahab, H.A. Thioguanine-based DENV-2 NS2B/NS3 protease inhibitors: Virtual screening, synthesis, biological evaluation and molecular modelling. PLoS One, 2019, 14(1)e0210869
[http://dx.doi.org/10.1371/journal.pone.0210869] [PMID: 30677071]
[96]
Brecher, M.; Li, Z.; Liu, B.; Zhang, J.; Koetzner, C.A.; Alifarag, A.; Jones, S.A.; Lin, Q.; Kramer, L.D.; Li, H. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog., 2017, 13(5)e1006411
[http://dx.doi.org/10.1371/journal.ppat.1006411] [PMID: 28542603]
[97]
Cabarcas-Montalvo, M.; Maldonado-Rojas, W.; Montes-Grajales, D.; Bertel-Sevilla, A.; Wagner-Döbler, I.; Sztajer, H.; Reck, M.; Flechas-Alarcon, M.; Ocazionez, R.; Olivero-Verbel, J. Discovery of antiviral molecules for dengue: In silico search and biological evaluation. Eur. J. Med. Chem., 2016, 110, 87-97.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.030] [PMID: 26807547]
[98]
Deng, J.; Li, N.; Liu, H.; Zuo, Z.; Liew, O.W.; Xu, W.; Chen, G.; Tong, X.; Tang, W.; Zhu, J.; Zuo, J.; Jiang, H.; Yang, C.G.; Li, J.; Zhu, W. Discovery of novel small molecule inhibitors of dengue viral NS2B-NS3 protease using virtual screening and scaffold hopping. J. Med. Chem., 2012, 55(14), 6278-6293.
[http://dx.doi.org/10.1021/jm300146f] [PMID: 22742496]
[99]
Pambudi, S.; Kawashita, N.; Phanthanawiboon, S.; Omokoko, M.D.; Masrinoul, P.; Yamashita, A.; Limkittikul, K.; Yasunaga, T.; Takagi, T.; Ikuta, K.; Kurosu, T. A small compound targeting the interaction between nonstructural proteins 2B and 3 inhibits dengue virus replication. Biochem. Biophys. Res. Commun., 2013, 440(3), 393-398.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.078] [PMID: 24070610]
[100]
Wu, D.W.; Mao, F.; Ye, Y.; Li, J.; Xu, C.L.; Luo, X.M.; Chen, J.; Shen, X. Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells. Acta Pharmacol. Sin., 2015, 36(9), 1126-1136.
[http://dx.doi.org/10.1038/aps.2015.56] [PMID: 26279156]
[101]
Raut, R.; Beesetti, H.; Tyagi, P.; Khanna, I.; Jain, S.K.; Jeankumar, V.U.; Yogeeswari, P.; Sriram, D.; Swaminathan, S. A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture. Virol. J., 2015, 12, 16-23.
[http://dx.doi.org/10.1186/s12985-015-0248-x] [PMID: 25886260]
[102]
Beesetti, H.; Tyagi, P.; Medapi, B.; Krishna, V.S.; Sriram, D.; Khanna, N.; Swaminathan, S. A quinoline compound inhibits the replication of dengue virus serotypes 1-4 in Vero cells. Antivir. Ther. (Lond.), 2018, 23(5), 385-394.
[http://dx.doi.org/10.3851/IMP3231] [PMID: 29583121]
[103]
Wu, H.; Bock, S.; Snitko, M.; Berger, T.; Weidner, T.; Holloway, S.; Kanitz, M.; Diederich, W.E.; Steuber, H.; Walter, C.; Hofmann, D.; Weißbrich, B.; Spannaus, R.; Acosta, E.G.; Bartenschlager, R.; Engels, B.; Schirmeister, T.; Bodem, J. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob. Agents Chemother., 2015, 59(2), 1100-1109.
[http://dx.doi.org/10.1128/AAC.03543-14] [PMID: 25487800]
[104]
Yang, C.C.; Hsieh, Y.C.; Lee, S.J.; Wu, S.H.; Liao, C.L.; Tsao, C.H.; Chao, Y.S.; Chern, J.H.; Wu, C.P.; Yueh, A. Novel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a high-throughput screening assay. Antimicrob. Agents Chemother., 2011, 55(1), 229-238.
[http://dx.doi.org/10.1128/AAC.00855-10] [PMID: 20937790]
[105]
Yang, C.C.; Hu, H.S.; Wu, R.H.; Wu, S.H.; Lee, S.J.; Jiaang, W.T.; Chern, J.H.; Huang, Z.S.; Wu, H.N.; Chang, C.M.; Yueh, A. A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob. Agents Chemother., 2014, 58(1), 110-119.
[http://dx.doi.org/10.1128/AAC.01281-13] [PMID: 24145533]
[106]
Luo, P.H.; Zhang, X.R.; Huang, L.; Yuan, L.; Zhou, X.Z.; Gao, X.; Li, L.S. 3D-QSAR pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation toward identifying lead compounds for NS2B-NS3 protease inhibitors. J. Recept. Signal Transduct. Res., 2017, 37(5), 481-492.
[http://dx.doi.org/10.1080/10799893.2017.1358283] [PMID: 28758854]
[107]
Li, L.; Basavannacharya, C.; Chan, K.W.; Shang, L.; Vasudevan, S.G.; Yin, Z. Structure-guided discovery of a novel non-peptide inhibitor of dengue virus NS2B-NS3 protease. Chem. Biol. Drug Des., 2015, 86(3), 255-264.
[http://dx.doi.org/10.1111/cbdd.12500] [PMID: 25533891]
[108]
Rothan, H.A.; Buckle, M.J.; Ammar, Y.A.; Mohammadjavad, P.; Shatrah, O.; Noorsaadah, A.R.; Rohana, Y. Study the antiviral activity of some derivatives of tetracycline and non-steroid anti inflammatory drugs towards dengue virus. Trop. Biomed., 2013, 30(4), 681-690.
[PMID: 24522138]
[109]
Timiri, A.K.; Selvarasu, S.; Kesherwani, M.; Vijayan, V.; Sinha, B.N.; Devadasan, V.; Jayaprakash, V. Synthesis and molecular modelling studies of novel sulphonamide derivatives as dengue virus 2 protease inhibitors. Bioorg. Chem., 2015, 62, 74-82.
[http://dx.doi.org/10.1016/j.bioorg.2015.07.005] [PMID: 26247308]
[110]
Chu, J.J.; Lee, R.C.; Ang, M.J.; Wang, W.L.; Lim, H.A.; Wee, J.L.; Joy, J.; Hill, J.; Brian Chia, C.S. Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay. Antiviral Res., 2015, 118, 68-74.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.010] [PMID: 25823617]
[111]
Wang, Q.Y.; Dong, H.; Zou, B.; Karuna, R.; Wan, K.F.; Zou, J.; Susila, A.; Yip, A.; Shan, C.; Yeo, K.L.; Xu, H.; Ding, M.; Chan, W.L.; Gu, F.; Seah, P.G.; Liu, W.; Lakshminarayana, S.B.; Kang, C.; Lescar, J.; Blasco, F.; Smith, P.W.; Shi, P.Y. Discovery of dengue virus NS4B inhibitors. J. Virol., 2015, 89(16), 8233-8244.
[http://dx.doi.org/10.1128/JVI.00855-15] [PMID: 26018165]
[112]
Xie, X.; Wang, Q.Y.; Xu, H.Y.; Qing, M.; Kramer, L.; Yuan, Z.; Shi, P.Y. Inhibition of dengue virus by targeting viral NS4B protein. J. Virol., 2011, 85(21), 11183-11195.
[http://dx.doi.org/10.1128/JVI.05468-11] [PMID: 21865382]
[113]
Lim, S.P.; Noble, C.G.; Seh, C.C.; Soh, T.S.; El Sahili, A.; Chan, G.K.; Lescar, J.; Arora, R.; Benson, T.; Nilar, S.; Manjunatha, U.; Wan, K.F.; Dong, H.; Xie, X.; Shi, P.Y.; Yokokawa, F. Potent allosteric dengue virus NS5 polymerase inhibitors: mechanism of action and resistance profiling. PLoS Pathog., 2016, 12(8)e1005737
[http://dx.doi.org/10.1371/journal.ppat.1005737] [PMID: 27500641]
[114]
Lim, S.P.; Noble, C.G.; Nilar, S.; Shi, P.Y.; Yokokawa, F. Discovery of potent non-nucleoside inhibitors of dengue viral RNA-dependent RNA polymerase from fragment screening and structure-guided design. Adv. Exp. Med. Biol., 2018, 1062, 187-198.
[http://dx.doi.org/10.1007/978-981-10-8727-1_14] [PMID: 29845534]
[115]
Yokokawa, F.; Nilar, S.; Noble, C.G.; Lim, S.P.; Rao, R.; Tania, S.; Wang, G.; Lee, G.; Hunziker, J.; Karuna, R.; Manjunatha, U.; Shi, P.Y.; Smith, P.W. Discovery of potent non-nucleoside inhibitors of dengue viral rna-dependent rna polymerase from a fragment hit using structure-based drug design. J. Med. Chem., 2016, 59(8), 3935-3952.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00143] [PMID: 26984786]
[116]
Anusuya, S.; Velmurugan, D.; Gromiha, M.M. Identification of dengue viral RNA-dependent RNA polymerase inhibitor using computational fragment-based approaches and molecular dynamics study. J. Biomol. Struct. Dyn., 2016, 34(7), 1512-1532.
[http://dx.doi.org/10.1080/07391102.2015.1081620] [PMID: 26262439]
[117]
Anusuya, S.; Gromiha, M.M. Quercetin derivatives as non-nucleoside inhibitors for dengue polymerase: molecular docking, molecular dynamics simulation, and binding free energy calculation. J. Biomol. Struct. Dyn., 2017, 35(13), 2895-2909.
[http://dx.doi.org/10.1080/07391102.2016.1234416] [PMID: 27608509]
[118]
Anusuya, S.; Gromiha, M.M. Structural basis of flavonoids as dengue polymerase inhibitors: insights from QSAR and docking studies. J. Biomol. Struct. Dyn., 2019, 37(1), 104-115.
[http://dx.doi.org/10.1080/07391102.2017.1419146] [PMID: 29254451]
[119]
Xu, H.T.; Colby-Germinario, S.P.; Hassounah, S.; Quashie, P.K.; Han, Y.; Oliveira, M.; Stranix, B.R.; Wainberg, M.A. Identification of a pyridoxine-derived small-molecule inhibitor targeting dengue virus rna-dependent rna polymerase. Antimicrob. Agents Chemother., 2015, 60(1), 600-608.
[http://dx.doi.org/10.1128/AAC.02203-15] [PMID: 26574011]
[120]
Pelliccia, S.; Wu, Y.H.; Coluccia, A.; La Regina, G.; Tseng, C.K.; Famiglini, V.; Masci, D.; Hiscott, J.; Lee, J.C.; Silvestri, R. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1091-1101.
[http://dx.doi.org/10.1080/14756366.2017.1355791] [PMID: 28776445]
[121]
Zandi, K.; Bassit, L.; Amblard, F.; Cox, B.D.; Hassandarvish, P.; Moghaddam, E.; Yueh, A.; Libanio Rodrigues, G.O.; Passos, I.; Costa, V.V.; AbuBakar, S.; Zhou, L.; Kohler, J.; Teixeira, M.M.; Schinazi, R.F. Nucleoside analogs with selective antiviral activity against dengue fever and japanese encephalitis viruses. Antimicrob. Agents Chemother., 2019, 63(7), e00397-e19.
[http://dx.doi.org/10.1128/AAC.00397-19] [PMID: 31061163]
[122]
Cannalire, R.; Tarantino, D.; Astolfi, A.; Barreca, M.L.; Sabatini, S.; Massari, S.; Tabarrini, O.; Milani, M.; Querat, G.; Mastrangelo, E.; Manfroni, G.; Cecchetti, V. Cannalire, R.; Tarantino, D.; Astolfi, A.; Barreca, M.L.; Sabatini, S.; Massari, S.; Tabarrini, O.; Milani, M.; Querat, G.; Mastrangelo, E.; Manfroni, G.; Cecchetti, V. Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2018, 2018, 143, 1667-1676.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.064] [PMID: 29137867]
[123]
Galiano, V.; Garcia-Valtanen, P.; Micol, V.; Encinar, J.A. Looking for inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking approach. Drug Des. Devel. Ther., 2016, 10, 3163-3181.
[http://dx.doi.org/10.2147/DDDT.S117369] [PMID: 27784988]
[124]
Nncube, N.B.; Ramharack, P.; Soliman, M.E.S. Using bioinformatics tools for the discovery of Dengue RNA-dependent RNA polymerase inhibitors. PeerJ, 2018, 6e5068
[http://dx.doi.org/10.7717/peerj.5068] [PMID: 30280009]
[125]
Wang, G.; Lim, S.P.; Chen, Y.L.; Hunziker, J.; Rao, R.; Gu, F.; Seh, C.C.; Ghafar, N.A.; Xu, H.; Chan, K.; Lin, X.; Saunders, O.L.; Fenaux, M.; Zhong, W.; Shi, P.Y.; Yokokawa, F. Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase. Bioorg. Med. Chem. Lett., 2018, 28(13), 2324-2327.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.069] [PMID: 29801997]
[126]
Sze, A.; Olagnier, D.; Hadj, S.B.; Han, X.; Tian, X.H.; Xu, H.T.; Yang, L.; Shi, Q.; Wang, P.; Wainberg, M.A.; Wu, J.H.; Lin, R.; Sophoraflavenone, G. Sophoraflavenone G restricts dengue and zika virus infection via RNA polymerase interference. Viruses, 2017, 9(10)E287
[http://dx.doi.org/10.3390/v9100287] [PMID: 28972551]
[127]
Yao, X.; Ling, Y.; Guo, S.; He, S.; Wang, J.; Zhang, Q.; Wu, W.; Zou, M.; Zhang, T.; Nandakumar, K.S.; Chen, X.; Liu, S. Inhibition of dengue viral infection by diasarone-I is associated with 2'O methyltransferase of NS5. Eur. J. Pharmacol., 2018, 821, 11-20.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.029] [PMID: 29246851]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 19
Year: 2020
Page: [1742 - 1760]
Pages: 19
DOI: 10.2174/1568026620666200618123026
Price: $65

Article Metrics

PDF: 24
HTML: 2