Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors

Author(s): Vinay Kumar, Priyanka De, Probir Kumar Ojha, Achintya Saha and Kunal Roy*

Volume 20, Issue 18, 2020

Page: [1601 - 1627] Pages: 27

DOI: 10.2174/1568026620666200616142753

Price: $65

Abstract

Background: Alzheimer’s disease (AD), a neurological disorder, is the most common cause of senile dementia. Butyrylcholinesterase (BuChE) enzyme plays a vital role in regulating the brain acetylcholine (ACh) neurotransmitter, but in the case of Alzheimer’s disease (AD), BuChE activity gradually increases in patients with a decrease in the acetylcholine (ACh) concentration via hydrolysis. ACh plays an essential role in regulating learning and memory as the cortex originates from the basal forebrain, and thus, is involved in memory consolidation in these sites.

Methods: In this work, we have developed a partial least squares (PLS)-regression based two dimensional quantitative structure-activity relationship (2D-QSAR) model using 1130 diverse chemical classes of compounds with defined activity against the BuChE enzyme. Keeping in mind the strict Organization for Economic Co-operation and Development (OECD) guidelines, we have tried to select significant descriptors from the large initial pool of descriptors using multi-layered variable selection strategy using stepwise regression followed by genetic algorithm (GA) followed by again stepwise regression technique and at the end best subset selection prior to development of final model thus reducing noise in the input. Partial least squares (PLS) regression technique was employed for the development of the final model while model validation was performed using various stringent validation criteria.

Results: The results obtained from the QSAR model suggested that the quality of the model is acceptable in terms of both internal (R2= 0.664, Q2= 0.650) and external (R2 Pred= 0.657) validation parameters. The QSAR studies were analyzed, and the structural features (hydrophobic, ring aromatic and hydrogen bond acceptor/donor) responsible for enhancement of the activity were identified. The developed model further suggests that the presence of hydrophobic features like long carbon chain would increase the BuChE inhibitory activity and presence of amino group and hydrazine fragment promoting the hydrogen bond interactions would be important for increasing the inhibitory activity against BuChE enzyme.

Conclusion: Furthermore, molecular docking studies have been carried out to understand the molecular interactions between the ligand and receptor, and the results are then correlated with the structural features obtained from the QSAR models. The information obtained from the QSAR models are well corroborated with the results of the docking study.

Keywords: QSAR, Butyrylcholinesterase inhibitors, Multi-layered variable selection, Validation, Alzheimer's disease, Genetic algorithm.

Graphical Abstract
[1]
Dinamarca, M.C.; Sagal, J.P.; Quintanilla, R.A. Godoy, J.A.; Arrázola, M.S. and Inestrosa. Amyloid-β-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Aβ peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol. Neurodegener., 2010, 5(1), 4.
[http://dx.doi.org/10.1186/1750-1326-5-4] [PMID: 20205793]
[2]
Zufferey, V.; Gunten, A.V.; Kherif, F. Interactions between personality, depression, anxiety and cognition to understand early stage of alzheimer’s disease. Curr. Top. Med. Chem., 2020, 20(9), 782-791.
[http://dx.doi.org/10.2174/1568026620666200211110545] [PMID: 32066361]
[3]
Ambure, P.; Kar, S.; Roy, K. Pharmacophore mapping-based virtual screening followed by molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer’s agents. Biosystems, 2014, 116, 10-20.
[http://dx.doi.org/10.1016/j.biosystems.2013.12.002] [PMID: 24325852]
[4]
Jucker, M. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Annals of neurology, L.C, 2011, 70(4), 532-540.
[5]
Sharma, P.; Sharma, A.; Fayaz, F.; Wakode, S.; Pottoo, F.H. Biological signatures of Alzheimer’s disease. Curr. Top. Med. Chem., 2020, 20(9), 770-781.
[http://dx.doi.org/10.2174/1568026620666200228095553] [PMID: 32108008]
[6]
McPhee, S.J. Ganong pathophysiology of disease: an introduction to clinical medicine; The McGraw-Hill Companies, Inc: Pennsylvania, ,2010, 493-500.
[7]
Reid, G.A.; Chilukuri, N.; Darvesh, S. Butyrylcholinesterase and the cholinergic system. Neuroscience, 2013, 234, 53-68.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.054] [PMID: 23305761]
[8]
Saido, T.C.; Iwata, N. Metabolism of amyloid β peptide and pathogenesis of Alzheimer’s disease. Towards presymptomatic diagnosis, prevention and therapy. Neurosci. Res., 2006, 54(4), 235-253.
[http://dx.doi.org/10.1016/j.neures.2005.12.015] [PMID: 16457902]
[9]
Iwata, N.; Higuchi, M.; Saido, T.C. Metabolism of amyloid-β peptide and Alzheimer’s disease. Pharmacol. Ther., 2005, 108(2), 129-148.
[http://dx.doi.org/10.1016/j.pharmthera.2005.03.010] [PMID: 16112736]
[10]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[11]
Kumar, A.; Pintus, F.; Di Petrillo, A.; Medda, R.; Caria, P.; Matos, M.J.; Viña, D.; Pieroni, E.; Delogu, F.; Era, B.; Delogu, G.L.; Fais, A. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Sci. Rep., 2018, 8(1), 4424.
[http://dx.doi.org/10.1038/s41598-018-22747-2] [PMID: 29535344]
[12]
Giacobini, E. Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of Alzheimer’s disease? Drugs Aging, 2001, 18(12), 891-898.
[http://dx.doi.org/10.2165/00002512-200118120-00001] [PMID: 11888344]
[13]
Kandimalla, R.; Reddy, P.H. Therapeutics of neurotransmitters in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1049-1069.
[http://dx.doi.org/10.3233/JAD-161118] [PMID: 28211810]
[14]
Greig, N.H.; Lahiri, D.K.; Sambamurti, K. Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int. Psychogeriatr., 2002, 14(S1)(Suppl. 1), 77-91.
[http://dx.doi.org/10.1017/S1041610203008676] [PMID: 12636181]
[15]
Fang, J.; Pang, X.; Wu, P.; Yan, R.; Gao, L.; Li, C.; Lian, W.; Wang, Q.; Liu, A.L.; Du, G.H. Molecular modeling on berberine derivatives toward buche: an integrated study with quantitative structure-activity relationships models, molecular docking, and molecular dynamics simulations. Chem. Biol. Drug Des., 2016, 87(5), 649-663.
[http://dx.doi.org/10.1111/cbdd.12700] [PMID: 26648584]
[16]
Zheng, F.; Zhan, M.; Huang, X.; Abdul Hameed, M.D.; Zhan, C.G. Modeling in vitro inhibition of butyrylcholinesterase using molecular docking, multi-linear regression and artificial neural network approaches. Bioorg. Med. Chem., 2014, 22(1), 538-549.
[http://dx.doi.org/10.1016/j.bmc.2013.10.053] [PMID: 24290065]
[17]
Solomon, K.A.; Sundararajan, S.; Abirami, V. QSAR studies on N-aryl derivative activity towards Alzheimer’s disease. Molecules, 2009, 14(4), 1448-1455.
[http://dx.doi.org/10.3390/molecules14041448] [PMID: 19384276]
[18]
Bitam, S.; Hamadache, M.; Hanini, S. Prediction of therapeutic potency of tacrine derivatives as BuChE inhibitors from quantitative structure-activity relationship modelling. SAR QSAR Environ. Res., 2018, 29(3), 213-230.
[http://dx.doi.org/10.1080/1062936X.2018.1423640] [PMID: 29390887]
[19]
Ojha, P.K.; Roy, K. Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection. Chemom. Intell. Lab. Syst., 2011, 109(2), 146-161.
[http://dx.doi.org/10.1016/j.chemolab.2011.08.007]
[20]
Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst., 2011, 2015(145), 22-29.
[21]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[22]
Pal, S.; Kumar, V.; Kundu, B.; Bhattacharya, D.; Preethy, N.; Reddy, M.P.; Talukdar, A. Ligand-based Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Discovery of Potential Topoisomerase I Inhibitors. Comput. Struct. Biotechnol. J., 2019, 17, 291-310.
[http://dx.doi.org/10.1016/j.csbj.2019.02.006] [PMID: 30867893]
[23]
Sermboonpaisarn, T.; Sawasdee, P. Potent and selective butyrylcholinesterase inhibitors from Ficus foveolata. Fitoterapia, 2012, 83(4), 780-784.
[http://dx.doi.org/10.1016/j.fitote.2012.03.009] [PMID: 22450264]
[24]
Schulze, M.; Siol, O.; Decker, M.; Lehmann, J. Bivalent 5,8,9,13b-tetrahydro-6H-isoquino[1,2-a]isoquinolines and -isoquinolinium salts: novel heterocyclic templates for butyrylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(9), 2946-2949.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.011] [PMID: 20350808]
[25]
Yan, J.W.; Li, Y.P.; Ye, W.J.; Chen, S.B.; Hou, J.Q.; Tan, J.H.; Ou, T.M.; Li, D.; Gu, L.Q.; Huang, Z.S. Design, synthesis and evaluation of isaindigotone derivatives as dual inhibitors for acetylcholinesterase and amyloid beta aggregation. Bioorg. Med. Chem., 2012, 20(8), 2527-2534.
[http://dx.doi.org/10.1016/j.bmc.2012.02.061] [PMID: 22444876]
[26]
Takahashi, J.; Hijikuro, I.; Kihara, T.; Murugesh, M.G.; Fuse, S.; Tsumura, Y.; Akaike, A.; Niidome, T.; Takahashi, T.; Sugimoto, H. Design, synthesis and evaluation of carbamate-modified (-)-N(1)-phenethylnorphysostigmine derivatives as selective butyrylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(5), 1721-1723.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.035] [PMID: 20137941]
[27]
Tang, H.; Zhao, H.T.; Zhong, S.M.; Wang, Z.Y.; Chen, Z.F.; Liang, H. Novel oxoisoaporphine-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. Bioorg. Med. Chem. Lett., 2012, 22(6), 2257-2261.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.090] [PMID: 22341944]
[28]
Chen, Y.; Sun, J.; Huang, Z.; Liao, H.; Peng, S.; Lehmann, J.; Zhang, Y. NO-donating tacrine derivatives as potential butyrylcholinesterase inhibitors with vasorelaxation activity. Bioorg. Med. Chem. Lett., 2013, 23(11), 3162-3165.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.008] [PMID: 23639542]
[29]
Yu, L.; Cao, R.; Yi, W.; Yan, Q.; Chen, Z.; Ma, L.; Peng, W.; Song, H. Synthesis of 4-[(diethylamino)methyl]-phenol derivatives as novel cholinesterase inhibitors with selectivity towards butyrylcholinesterase. Bioorg. Med. Chem. Lett., 2010, 20(11), 3254-3258.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.059] [PMID: 20452769]
[30]
Mutahir, S.; Jończyk, J.; Bajda, M.; Khan, I.U.; Khan, M.A.; Ullah, N.; Ashraf, M. Qurat-ul-Ain; Riaz, S.; Hussain, S.; Yar, M. Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies. Bioorg. Chem., 2016, 64, 13-20.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.002] [PMID: 26595185]
[31]
Mughal, E.U.; Sadiq, A.; Murtaza, S.; Rafique, H.; Zafar, M.N.; Riaz, T.; Khan, B.A.; Hameed, A.; Khan, K.M. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors. Bioorg. Med. Chem., 2017, 25(1), 100-106.
[http://dx.doi.org/10.1016/j.bmc.2016.10.016] [PMID: 27780618]
[32]
Tang, H.; Wei, Y.B.; Zhang, C.; Ning, F.X.; Qiao, W.; Huang, S.L.; Ma, L.; Huang, Z.S.; Gu, L.Q. Synthesis, biological evaluation and molecular modeling of oxoisoaporphine and oxoaporphine derivatives as new dual inhibitors of acetylcholinesterase/butyrylcholinesterase. Eur. J. Med. Chem., 2009, 44(6), 2523-2532.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.021] [PMID: 19243862]
[33]
Tasso, B.; Catto, M.; Nicolotti, O.; Novelli, F.; Tonelli, M.; Giangreco, I.; Pisani, L.; Sparatore, A.; Boido, V.; Carotti, A.; Sparatore, F. Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer’s disease. Eur. J. Med. Chem., 2011, 46(6), 2170-2184.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.071] [PMID: 21459491]
[34]
da Costa, J.S.; Lopes, J.P.B.; Russowsky, D.; Petzhold, C.L.; Borges, A.C.; Ceschi, M.A.; Konrath, E.; Batassini, C.; Lunardi, P.S.; Gonçalves, C.A.S. Synthesis of tacrine-lophine hybrids via one-pot four component reaction and biological evaluation as acetyl- and butyrylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 62, 556-563.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.029] [PMID: 23422935]
[35]
Jabeen, F.; Oliferenko, P.V.; Oliferenko, A.A.; Pillai, G.G.; Ansari, F.L.; Hall, C.D.; Katritzky, A.R. Dual inhibition of the α-glucosidase and butyrylcholinesterase studied by molecular field topology analysis. Eur. J. Med. Chem., 2014, 80, 228-242.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.018] [PMID: 24780600]
[36]
Darvesh, S.; Darvesh, K.V.; McDonald, R.S.; Mataija, D.; Walsh, R.; Mothana, S.; Lockridge, O.; Martin, E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J. Med. Chem., 2008, 51(14), 4200-4212.
[http://dx.doi.org/10.1021/jm8002075]
[37]
Yu, QS; Holloway, HW; Flippen-Anderson, JL; Hoffman, B Bross,i A; Greig, NH. . Methyl analogues of the experimental Alzheimer drug phenserine: synthesis and structure/activity relationships for acetyl-and butyrylcholinesterase inhibitory action. J. Med. Chem., 2001, 22;44(24), 4062-71.
[38]
Decker, M. Novel inhibitors of acetyl- and butyrylcholinesterase derived from the alkaloids dehydroevodiamine and rutaecarpine. Eur. J. Med. Chem., 2005, 40(3), 305-313.
[http://dx.doi.org/10.1016/j.ejmech.2004.12.003] [PMID: 15725500]
[39]
Orhan, I.E.; Senol, F.S.; Shekfeh, S.; Skalicka-Wozniak, K.; Banoglu, E. Pteryxin - A promising butyrylcholinesterase-inhibiting coumarin derivative from Mutellina purpurea. Food Chem. Toxicol., 2017, 109(Pt 2), 970-974.
[http://dx.doi.org/10.1016/j.fct.2017.03.016] [PMID: 28286309]
[40]
Zhang, N.; Casida, J.E. Novel irreversible butyrylcholinesterase inhibitors: 2-chloro-1-(substituted-phenyl)ethylphosphonic acids. Bioorg. Med. Chem., 2002, 10(5), 1281-1290.
[http://dx.doi.org/10.1016/S0968-0896(01)00391-1] [PMID: 11886791]
[41]
Bolea, I.; Juárez-Jiménez, J.; de Los Ríos, C.; Chioua, M.; Pouplana, R.; Luque, F.J.; Unzeta, M.; Marco-Contelles, J.; Samadi, A. Synthesis, biological evaluation, and molecular modeling of donepezil and N-[(5-(benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine hybrids as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2011, 54(24), 8251-8270.
[http://dx.doi.org/10.1021/jm200853t] [PMID: 22023459]
[42]
Savini, L.; Gaeta, A.; Fattorusso, C.; Catalanotti, B.; Campiani, G.; Chiasserini, L.; Pellerano, C.; Novellino, E.; McKissic, D.; Saxena, A. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors. J. Med. Chem., 2003, 46(1), 1-4.
[http://dx.doi.org/10.1021/jm0255668] [PMID: 12502352]
[43]
Lam, Y. Berberine target key enzymes and amino acid inibitiors in AD treatment creation from berberine-based structure screening. IJPSR, 2014, 5(07), 350-363.
[44]
Chen, X.; Tikhonova, I.G.; Decker, M. Probing the mid-gorge of cholinesterases with spacer-modified bivalent quinazolinimines leads to highly potent and selective butyrylcholinesterase inhibitors. Bioorg. Med. Chem., 2011, 19(3), 1222-1235.
[http://dx.doi.org/10.1016/j.bmc.2010.12.034] [PMID: 21232964]
[45]
Maryamabadi, A.; Hasaninejad, A.; Nowrouzi, N.; Mohebbi, G.; Asghari, B. Application of PEG-400 as a green biodegradable polymeric medium for the catalyst-free synthesis of spiro-dihydropyridines and their use as acetyl and butyrylcholinesterase inhibitors. Bioorg. Med. Chem., 2016, 24(6), 1408-1417.
[http://dx.doi.org/10.1016/j.bmc.2016.02.019] [PMID: 26879857]
[46]
Nadri, H.; Pirali-Hamedani, M.; Moradi, A.; Sakhteman, A.; Vahidi, A.; Sheibani, V.; Asadipour, A.; Hosseinzadeh, N.; Abdollahi, M.; Shafiee, A.; Foroumadi, A. 5,6-Dimethoxybenzofuran-3-one derivatives: a novel series of dual Acetylcholinesterase/Butyrylcholinesterase inhibitors bearing benzyl pyridinium moiety. Daru, 2013, 21(1), 15.
[http://dx.doi.org/10.1186/2008-2231-21-15] [PMID: 23445881]
[47]
Ilhami, G.; Malahat, A.; Taslimi, P.; Zubeyir, H.; Leyla, S.; Afsun, S.; Vagif, F.; Sukru, B.; Saleh, H.A.; Claudiu, T.S. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyrylcholines-terase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1174-1182.
[48]
Sakkiah, S.; Lee, K.W. Pharmacophore-based virtual screening and density functional theory approach to identifying novel butyrylcholinesterase inhibitors. Acta Pharmacol. Sin., 2012, 33(7), 964-978.
[http://dx.doi.org/10.1038/aps.2012.21] [PMID: 22684028]
[49]
Zeb, A.; Hameed, A.; Khan, L.; Khan, I.; Dalvandi, K.; Choudhary, M.I.; Basha, F.Z. Quinoxaline derivatives: novel and selective butyrylcholinesterase inhibitors. Med. Chem., 2014, 10(7), 724-729.
[http://dx.doi.org/10.2174/1573406410666140526145429] [PMID: 24875826]
[50]
Chen, Y.; Lin, H.; Yang, H.; Tan, R.; Bian, Y.; Fu, T.; Li, W.; Wu, L.; Pei, Y.; Sun, H. Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Advances, 2017, 7(6), 3429-3438.
[http://dx.doi.org/10.1039/C6RA25887E]
[51]
Guido, R.V.; Castilho, M.S.; Mota, S.G.; Oliva, G.; Andricopulo, A.D. Classical and Hologram QSAR Studies on a Series of Inhibitors of Trypanosomatid Glyceraldehyde‐3‐Phosphate Dehydrogenase. QSAR Comb. Sci., 2008, 27(6), 768-781.
[http://dx.doi.org/10.1002/qsar.200710139]
[52]
Cherif, O.; Allouche, F.; Chabchoub, F.; Chioua, M.; Soriano, E.; Yañez, M.; Cacabelos, R.; Romero, A.; López, M.G.; Marco-Contelles, J. Isoxazolotacrines as non-toxic and selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Future Med. Chem., 2014, 6(17), 1883-1891.
[http://dx.doi.org/10.4155/fmc.14.115] [PMID: 25495982]
[53]
Silva, D; Chioua, M; Samadi, A; Agostinho, P; Garção, P; Lajarín-Cuesta, R; de los Ríos, C; Iriepa, I; Moraleda, I; Gonzalez-Lafuente, L; Mendes, E Synthesis, pharmacological assessment, and molecular modeling of acetylcholinesterase/butyrylcholinesterase inhibitors: effect against amyloid-β-induced neurotoxicity. ACS Chem. Neurosci., 2013, 17, 4(4), 547-65.
[54]
Decker, M.; Kraus, B.; Heilmann, J. Design, synthesis and pharmacological evaluation of hybrid molecules out of quinazolinimines and lipoic acid lead to highly potent and selective butyrylcholinesterase inhibitors with antioxidant properties. Bioorg. Med. Chem., 2008, 16(8), 4252-4261.
[http://dx.doi.org/10.1016/j.bmc.2008.02.083] [PMID: 18343673]
[55]
Schott, Y.; Decker, M.; Rommelspacher, H.; Lehmann, J. 6-Hydroxy- and 6-methoxy-β-carbolines as acetyl- and butyrylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(22), 5840-5843.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.067] [PMID: 16945529]
[56]
Dolles, D.; Nimczick, M.; Scheiner, M.; Ramler, J.; Stadtmüller, P.; Sawatzky, E.; Drakopoulos, A.; Sotriffer, C.; Wittmann, H.J.; Strasser, A.; Decker, M. Aminobenzimidazoles and structural isomers as templates for dual-acting butyrylcholinesterase inhibitors and hcb2 r ligands to combat neurodegenerative disorders. ChemMedChem, 2016, 11(12), 1270-1283.
[http://dx.doi.org/10.1002/cmdc.201500418] [PMID: 26548365]
[57]
Granica, S.; Kiss, A.K.; Jarończyk, M.; Maurin, J.K.; Mazurek, A.P.; Czarnocki, Z. Synthesis of imperatorin analogs and their evaluation as acetylcholinesterase and butyrylcholinesterase inhibitors. Arch. Pharm. (Weinheim), 2013, 346(11), 775-782.
[http://dx.doi.org/10.1002/ardp.201300259] [PMID: 24123207]
[58]
Woo, Y.J.; Lee, B.H.; Yeun, G.H.; Kim, H.J.; Won, M.H.; Kim, S.H.; Lee, B.H.; Park, J.H. Selective butyrylcholinesterase inhibitors using polyphenol-polyphenol hybrid molecules. Bull. Korean Chem. Soc., 2011, 32(8), 2593-2598.
[http://dx.doi.org/10.5012/bkcs.2011.32.8.2593]
[59]
Decker, M. Homobivalent quinazolinimines as novel nanomolar inhibitors of cholinesterases with dirigible selectivity toward butyrylcholinesterase. J. Med. Chem., 2006, 49(18), 5411-5413.
[http://dx.doi.org/10.1021/jm060682m] [PMID: 16942014]
[60]
Conejo-García, A.; Pisani, L. Núñez, Mdel.C.; Catto, M.; Nicolotti, O.; Leonetti, F.; Campos, J.M.; Gallo, M.A.; Espinosa, A.; Carotti, A. Homodimeric bis-quaternary heterocyclic ammonium salts as potent acetyl- and butyrylcholinesterase inhibitors: a systematic investigation of the influence of linker and cationic heads over affinity and selectivity. J. Med. Chem., 2011, 54(8), 2627-2645.
[http://dx.doi.org/10.1021/jm101299d] [PMID: 21417225]
[61]
Chen, Y.; Sun, J.; Fang, L.; Liu, M.; Peng, S.; Liao, H.; Lehmann, J.; Zhang, Y. Tacrine-ferulic acid-nitric oxide (NO) donor trihybrids as potent, multifunctional acetyl- and butyrylcholinesterase inhibitors. J. Med. Chem., 2012, 55(9), 4309-4321.
[http://dx.doi.org/10.1021/jm300106z] [PMID: 22512543]
[62]
Rivera-Becerril, E.; Joseph-Nathan, P.; Pérez-Alvarez, V.M.; Morales-Ríos, M.S. Synthesis and biological evaluation of (-)- and (+)-debromoflustramine B and its analogues as selective butyrylcholinesterase inhibitors. J. Med. Chem., 2008, 51(17), 5271-5284.
[http://dx.doi.org/10.1021/jm800277g] [PMID: 18686941]
[63]
Yu, Q.; Holloway, H.W.; Utsuki, T.; Brossi, A.; Greig, N.H. Synthesis of novel phenserine-based-selective inhibitors of butyrylcholinesterase for Alzheimer’s disease. J. Med. Chem., 1999, 42(10), 1855-1861.
[http://dx.doi.org/10.1021/jm980459s] [PMID: 10346939]
[64]
Makhaeva, G.F.; Lushchekina, S.V.; Boltneva, N.P.; Sokolov, V.B.; Grigoriev, V.V.; Serebryakova, O.G.; Vikhareva, E.A.; Aksinenko, A.Y.; Barreto, G.E.; Aliev, G.; Bachurin, S.O. Conjugates of γ-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease. Sci. Rep., 2015, 5, 13164.
[http://dx.doi.org/10.1038/srep13164] [PMID: 26281952]
[65]
Jones, M.; Wang, J.; Harmon, S.; Kling, B.; Heilmann, J.; Gilmer, J.F. Novel selective butyrylcholinesterase inhibitors incorporating antioxidant functionalities as potential bimodal therapeutics for Alzheimer’s disease. Molecules, 2016, 21(4), 440.
[http://dx.doi.org/10.3390/molecules21040440] [PMID: 27534722]
[66]
Delogu, G.L.; Matos, M.J.; Fanti, M.; Era, B.; Medda, R.; Pieroni, E.; Fais, A.; Kumar, A.; Pintus, F. 2-Phenylbenzofuran derivatives as butyrylcholinesterase inhibitors: Synthesis, biological activity and molecular modeling. Bioorg. Med. Chem. Lett., 2016, 26(9), 2308-2313.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.039] [PMID: 26995529]
[67]
Shan, W.J.; Huang, L.; Zhou, Q.; Meng, F.C.; Li, X.S. Synthesis, biological evaluation of 9-N-substituted berberine derivatives as multi-functional agents of antioxidant, inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. Eur. J. Med. Chem., 2011, 46(12), 5885-5893.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.051] [PMID: 22019228]
[68]
Liu, H.; Liu, L.; Gao, X.; Liu, Y.; Xu, W.; He, W.; Jiang, H.; Tang, J.; Fan, H.; Xia, X. Novel ferulic amide derivatives with tertiary amine side chain as acetylcholinesterase and butyrylcholinesterase inhibitors: The influence of carbon spacer length, alkylamine and aromatic group. Eur. J. Med. Chem., 2017, 126, 810-822.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.003] [PMID: 27951489]
[69]
Sawatzky, E.; Wehle, S.; Kling, B.; Wendrich, J.; Bringmann, G.; Sotriffer, C.A.; Heilmann, J.; Decker, M. Discovery of highly selective and nanomolar carbamate-based butyrylcholinesterase inhibitors by rational investigation into their inhibition mode. J. Med. Chem., 2016, 59(5), 2067-2082.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01674] [PMID: 26886849]
[70]
Khoobi, M.; Alipour, M.; Sakhteman, A.; Nadri, H.; Moradi, A.; Ghandi, M.; Emami, S.; Foroumadi, A.; Shafiee, A. Design, synthesis, biological evaluation and docking study of 5-oxo-4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 68, 260-269.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.038] [PMID: 23988409]
[71]
Zaheer-ul, H.; Uddin, R.; Yuan, H.; Petukhov, P.A.; Choudhary, M.I.; Madura, J.D. Receptor-based modeling and 3D-QSAR for a quantitative production of the butyrylcholinesterase inhibitors based on genetic algorithm. J. Chem. Inf. Model., 2008, 48(5), 1092-1103.
[http://dx.doi.org/10.1021/ci8000056] [PMID: 18444627]
[72]
Asadipour, A.; Alipour, M.; Jafari, M.; Khoobi, M.; Emami, S.; Nadri, H.; Sakhteman, A.; Moradi, A.; Sheibani, V.; Homayouni Moghadam, F.; Shafiee, A.; Foroumadi, A. Novel coumarin-3-carboxamides bearing N-benzylpiperidine moiety as potent acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 70, 623-630.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.024] [PMID: 24211638]
[73]
Rahim, F.; Javed, M.T.; Ullah, H.; Wadood, A.; Taha, M.; Ashraf, M. Qurat-ul-Ain; Khan, M.A.; Khan, F.; Mirza, S.; Khan, K.M. Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorg. Chem., 2015, 62, 106-116.
[http://dx.doi.org/10.1016/j.bioorg.2015.08.002] [PMID: 26318401]
[74]
Bolognesi, M.L.; Bartolini, M.; Cavalli, A.; Andrisano, V.; Rosini, M.; Minarini, A.; Melchiorre, C. Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues. J. Med. Chem., 2004, 47(24), 5945-5952.
[http://dx.doi.org/10.1021/jm049782n] [PMID: 15537349]
[75]
Pang, X.; Fu, H.; Yang, S.; Wang, L.; Liu, A.L.; Wu, S.; Du, G.H. Evaluation of novel dual acetyl-and butyrylcholinesterase inhibitors as potential anti-Alzheimer’s disease agents using pharmacophore, 3D-QSAR, and molecular docking approaches. Molecules, 2017, 22(8), 1254.
[http://dx.doi.org/10.3390/molecules22081254] [PMID: 28933746]
[76]
Gogoi, D.; Chaliha, A.K.; Sarma, D.; Kakoti, B.B.; Buragohain, A.K. Novel butyrylcholinesterase inhibitors through pharmacophore modeling, virtual screening and DFT-based approaches along-with design of bioisosterism-based analogues. Biomed. Pharmacother., 2017, 85, 646-657.
[http://dx.doi.org/10.1016/j.biopha.2016.11.076] [PMID: 27903422]
[77]
CambridgeSoft. Chemdraw ultra 12.0.; Ohio: USA. Available on: https://chemistry.com.pk/software/free-download-chemdraw-ultra-12/
[78]
ChemAxon. Marvin; Budapest: Hungary. Available on: https://chemaxon.com/products/marvin
[79]
Mauri, A.; Consonni, V.; Pavan, M. Dragon software: An easy approach to molecular descriptor calculations. Match (Mulh.), 2006, 56(2), 237-248.
[80]
Yap, C.W. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[81]
Roy, K.; Das, R.N.; Ambure, P.; Aher, R.B. Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom. Intell. Lab. Syst., 2016, 152, 18-33.
[http://dx.doi.org/10.1016/j.chemolab.2016.01.008]
[82]
Khan, K.; Benfenati, E.; Roy, K. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Ecotoxicol. Environ. Saf., 2019, 168(168), 287-297.
[http://dx.doi.org/10.1016/j.ecoenv.2018.10.060] [PMID: 30390527]
[83]
Das, S.; Ojha, P.K.; Roy, K. Multilayered variable selection in QSPR: a case study of modeling melting point of bromide ionic liquids. IJQSPR, 2017, 2(1), 106-124.
[http://dx.doi.org/10.4018/IJQSPR.2017010108]
[84]
Das, S.; Ojha, P.K.; Roy, K. Development of a temperature dependent 2D-QSPR model for viscosity of diverse functional ionic liquids. J. Mol. Liq., 2017, 240, 454-467.
[http://dx.doi.org/10.1016/j.molliq.2017.05.113]
[85]
Ojha, P.K.; Roy, K. Chemometric modeling of odor threshold property of diverse aroma components of wine. RSC Advances, 2018, 8(9), 4750-4760.
[86]
Ojha, P.K.; Roy, K. PLS regression-based chemometric modeling of odorant properties of diverse chemical constituents of black tea and coffee. RSC Advances, 2018, 8(5), 2293-2304.
[87]
Minitab; . Pennsylvania: USA. Available on: http://www.minitab. com/en-US/default.aspx
[88]
SIMCA-P; Umeå: Sweden. Available on: https://umetrics.com/kb/getting-started-simca-p
[89]
Rücker, C.; Rücker, G.; Meringer, M. y-Randomization and its variants in QSPR/QSAR. J. Chem. Inf. Model., 2007, 47(6), 2345-2357.
[http://dx.doi.org/10.1021/ci700157b] [PMID: 17880194]
[90]
Veerasamy, R.; Harish, R.; Abhishek, J.; Shalini, S. Varghese Christapher P and Agrawal R. K. Validation of QSAR models-strategies and importance. RRJoDDD, 2011, 2(3), 511-519.
[91]
Khan, K.; Khan, P.M.; Lavado, G.; Valsecchi, C.; Pasqualini, J.; Baderna, D.; Marzo, M.; Lombardo, A.; Roy, K.; Benfenati, E. QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors. Chemosphere, 2019, 229(229), 8-17.
[http://dx.doi.org/10.1016/j.chemosphere.2019.04.204] [PMID: 31063877]
[92]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[93]
Dighe, S.N.; de la Mora, E.; Chan, S.; Kantham, S.; McColl, M.; Veliyath, S.K.; Miles, J.A.; Nessar, Z.; McGeary, R.P.; Silman, I.; Parat, M.O.; Weik, M.; Brazzolotto, X.; Ros, B.P. Rivastigmine and metabolite analogues with putative Alzheimer’s disease-modifying properties in a Caenorhabditis elegans model. Commun. Chem., 2019. Available from: https://www.rcsb.org/structure/6EZ2
[94]
Dassault Systemes. BIOVIA, Vélizy-Villacoublay: France. Available from: https://3dsbiovia.com/resource-center/downloads/
[95]
Popelier, P.L.A.; Smith, P.J. QSAR models based on quantum topological molecular similarity. Eur. J. Med. Chem., 2006, 41(7), 862-873.
[http://dx.doi.org/10.1016/j.ejmech.2006.03.004] [PMID: 16697489]
[96]
Ivanciuc, O. Balaban; Teodor-Silviu, and Balaban, Alexandru T. Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices. J. Math. Chem., 1993, 1(12), 309-318.
[http://dx.doi.org/10.1007/BF01164642]
[97]
National Center for Biotechnology Information. PubChem Database. Pyridine, CID=1049, Available from: https://pubchem.ncbi.nlm.nih.gov/compound/pyridine (Accessed on June 9, 2020)
[98]
Yu, Qian-sheng.; Holloway, Harold, W.; Utsuki, Tadanobu. Brossi, Arnold and Greig, Nigel H. Synthesis of novel phenserine-basedselective inhibitors of butyrylcholinesterase for Alzheimer's disease. J. med. Chem, 1993, 42, 10(42), 1855-1861.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy