Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

An Overview: The Evaluation of Formation Mechanisms, Preparation Techniques and Chemical and Analytical Characterization Methods of the In Situ Forming Implants

Author(s): Muge Kilicarslan* and Ayse Nur Buke

Volume 17, Issue 3, 2021

Published on: 16 June, 2020

Page: [375 - 408] Pages: 34

DOI: 10.2174/1573412916999200616125009

Price: $65

Abstract

One of the major developments of the last decade is the preparation of in situ implant formulations. Injectable, biocompatible and/or biodegradable polymer-based in situ implants are classified differently due to implant formation based on in vivo solid depot or formation mechanisms inducing liquid form, gel or solid depot. In this review, published studies to date regarding in situ forming implant systems were compiled and their formation mechanisms, materials and methods used, routes of administration, chemical and analytical characterizations, quality-control tests and in vitro dissolution tests were compared in Tables and were evaluated. There are several advantages and disadvantages of these dosage forms due to the formation mechanism, polymer and solvent type and the ratio used in formulations and all of these parameters have been discussed separately. In addition, new generation systems developed to overcome the difficulties encountered in in situ implants have been evaluated. There are some approved products of in situ implant preparations that can be used for different indications available on the market and the clinical phase studies nowadays. In vitro and in vivo data obtained by the analysis of the application of new technologies in many studies evaluated in this review showed that the number of approved drugs to be used for various indications would increase in the future.

Keywords: In situ implant, in situ crosslinked polymer systems, in situ solidifying organogels, in situ phase separation systems, photo-initiated crosslinked polymer systems, systems based on phase separation, solvent exchange, in situ microparticle, in situnanoencapsulation.

Graphical Abstract
[1]
AJ. M.Z.; Patil, S.K.; Baviskar, D.T.; Jain, D.K. Implantable drug delivery system: a review. Int. J. Pharm. Tech. Res., 2012, 4(1), 280-292.
[2]
Jantsen, G.M.; Robinson, J.R. Sustained- and Controlled-Release Drug-Delivery Systems, 4th ed; Marcel Dekker: New York, 2002.
[3]
Kleiner, L.W.; Wright, J.C.; Wang, Y. Evolution of implantable and insertable drug delivery systems. J. Control. Release, 2014, 181, 1-10.
[http://dx.doi.org/10.1016/j.jconrel.2014.02.006] [PMID: 24548479]
[4]
Ibrahim, H.M.; Ahmed, T.A.; Hussain, M.D.; Rahman, Z.; Samy, A.M.; Kaseem, A.A.; Nutan, M.T. Development of meloxicam in situ implant formulation by quality by design principle. Drug Dev. Ind. Pharm., 2014, 40(1), 66-73.
[http://dx.doi.org/10.3109/03639045.2012.746360] [PMID: 23298324]
[5]
Hatefi, A.; Amsden, B. Biodegradable injectable in situ forming drug delivery systems. J. Control. Release , 2002, 80 ( 1-3), 9-28.
[http://dx.doi.org/10.1016/S0168-3659(02)00008-1] [PMID: 11943384]
[6]
Kilicarslan, M.; Koerber, M.; Bodmeier, R. in situ forming implants for the delivery of metronidazole to periodontal pockets: formulation and drug release studies. Drug Dev. Ind. Pharm., 2014, 40(5), 619-624.
[http://dx.doi.org/10.3109/03639045.2013.873449] [PMID: 24369747]
[7]
Kempe, S.; Mäder, K. in situ forming implants - an attractive formulation principle for parenteral depot formulations. J. Control. Release, 2012, 161(2), 668-679.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.016] [PMID: 22543012 ]
[8]
Packhaeuser, C.B.; Schnieders, J.; Oster, C.G.; Kissel, T. in situ forming parenteral drug delivery systems: an overview. Eur. J. Pharm. Biopharm., 2004, 58(2), 445-455.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.003] [PMID: 15296966]
[9]
Thakur, R.R.; McMillan, H.L.; Jones, D.S. Solvent induced phase inversion-based in situ forming controlled release drug delivery implants. J. Control. Release, 2014, 176, 8-23.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.020] [PMID: 24374003]
[10]
Kranz, H.; Bodmeier, R. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles. Eur. J. Pharm. Sci., 2008, 34(2-3), 164-172.
[http://dx.doi.org/10.1016/j.ejps.2008.03.004] [PMID: 18501569]
[11]
Kempe, S.; Metz, H.; Mäder, K. Do in situ forming PLG/NMP implants behave similar in vitro and in vivo? A non-invasive and quantitative EPR investigation on the mechanisms of the implant formation process. J. Control. Release, 2008, 130(3), 220-225.
[http://dx.doi.org/10.1016/j.jconrel.2008.06.006] [PMID: 18611421]
[12]
Ruel-Gariépy, E.; Leroux, J.C. in situ-forming hydrogels--review of temperature-sensitive systems. Eur. J. Pharm. Biopharm., 2004, 58(2), 409-426.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.019] [PMID: 15296964]
[13]
Blanquer, S.B.; Grijpma, D.W.; Poot, A.A. Delivery systems for the treatment of degenerated intervertebral discs. Adv. Drug Deliv. Rev., 2015, 84, 172-187.
[http://dx.doi.org/10.1016/j.addr.2014.10.024] [PMID: 25451138]
[14]
Saul, J.M.; Williams, D.F. In: Handbook of Polymer Applications in Medicine and Medical Devices; K, Modjarrad; S Ebnesajjad, Modjarrad, Eds.; Elsevier, , 2011; pp. 279-302.
[15]
Nirmal, H.B.; Bakliwal, S.R.; Pawar, S.P. In-Situ gel New trends in Controlled and Sustained Drug Delivery System. Int. J. Pharm. Tech. Res., 2010, 2(2), 1398-1408.
[16]
Chou, A.I.; Nicoll, S.B. Characterization of photocrosslinked alginate hydrogels for nucleus pulposus cell encapsulation. J. Biomed. Mater. Res. A, 2009, 91(1), 187-194.
[http://dx.doi.org/10.1002/jbm.a.32191] [PMID: 18785646]
[17]
Chou, A.I.; Akintoye, S.O.; Nicoll, S.B. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo. Osteoarthritis Cartilage, 2009, 17(10), 1377-1384.
[http://dx.doi.org/10.1016/j.joca.2009.04.012] [PMID: 19427928]
[18]
Potta, T.; Chun, C.; Song, S-C. Rapid photocrosslinkable thermoresponsive injectable polyphosphazene hydrogels. Macromol. Rapid Commun., 2010, 31(24), 2133-2139.
[http://dx.doi.org/10.1002/marc.201000350] [PMID: 21567641]
[19]
Ishihara, M.; Ono, K.; Saito, Y.; Yura, H.; Hattori, H.; Matsui, T.; Kurita, A. Photocrosslinkable chitosan: an effective adhesive with surgical applications.Int. Congr. Ser; , 2001, pp. , 1223, pp. 251-257.
[http://dx.doi.org/10.1016/S0531-5131(01)00430-7]
[20]
Hillel, A.T.; Unterman, S.; Nahas, Z.; Reid, B.; Coburn, J.M.; Axelman, J.; Chae, J.J.; Guo, Q.; Trow, R.; Thomas, A.; Hou, Z.; Lichtsteiner, S.; Sutton, D.; Matheson, C.; Walker, P.; David, N.; Mori, S.; Taube, J.M.; Elisseeff, J.H. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl. Med., 2011, 3(93)93ra67
[http://dx.doi.org/10.1126/scitranslmed.3002331] [PMID: 21795587]
[21]
Buwalda, S.J.; Dijkstra, P.J.; Feijen, J. In situ forming stereocomplexed and post-photocrosslinked acrylated star poly(ethylene glycol)- poly(lactide) hydrogels. Eur. Polym. J. 2017, 94, 152-161.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.07.002]
[22]
Jeon, O.; Powell, C.; Solorio, L.D.; Krebs, M.D.; Alsberg, E. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control. Release, 2011, 154(3), 258-266.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.027] [PMID: 21745508]
[23]
Wang, G.; Cao, X.; Dong, H.; Zeng, L.; Yu, C.; Chen, X. A hyaluronic acid based injectable hydrogel formed via photo-crosslinking reaction and thermal-induced diels-alder reaction for cartilage tissue engineering. Polymers (Basel), 2018, 10(9), 949.
[http://dx.doi.org/10.3390/polym10090949] [PMID: 30960874]
[24]
Jalalvandi, E.; Shavandi, A. Shear thinning/self-healing hydrogel based on natural polymers with secondary photocrosslinking for biomedical applications. J. Mech. Behav. Biomed. Mater., 2019, 90, 191-201.
[http://dx.doi.org/10.1016/j.jmbbm.2018.10.009] [PMID: 30368205]
[25]
Gupta, M.S.; Nicoll, S.B. Duration of TGF-β3 exposure impacts the chondrogenic maturation of human MSCs in photocrosslinked carboxymethylcellulose hydrogels. Ann. Biomed. Eng., 2015, 43(5), 1145-1157.
[http://dx.doi.org/10.1007/s10439-014-1179-1] [PMID: 25384834]
[26]
Gupta, M.S.; Cooper, E.S.; Nicoll, S.B. Transforming growth factor-beta 3 stimulates cartilage matrix elaboration by human marrow-derived stromal cells encapsulated in photocrosslinked carboxymethylcellulose hydrogels: potential for nucleus pulposus replacement. Tissue Eng. Part A, 2011, 17(23-24), 2903-2910.
[http://dx.doi.org/10.1089/ten.tea.2011.0152] [PMID: 21707438]
[27]
Reza, A.T.; Nicoll, S.B. Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater., 2010, 6(1), 179-186.
[http://dx.doi.org/10.1016/j.actbio.2009.06.004] [PMID: 19505596]
[28]
Yuan, L.; Wu, Y.; Gu, Q.S.; El-Hamshary, H.; El-Newehy, M.; Mo, X. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin. Int. J. Biol. Macromol., 2017, 96, 569-577.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.058] [PMID: 28017764]
[29]
Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications.Eur. J. Pharm. Biopharm., 2004, 57(1), 19-34.
[http://dx.doi.org/10.1016/S0939-6411(03)00161-9] [PMID: 14729078]
[30]
Hamdine, M.; Heuzey, M-C.; Bégin, A. Viscoelastic properties of phosphoric and oxalic acid-based chitosan hydrogels.Rheol. Acta, 2005, 45(5), 659-675..
[http://dx.doi.org/10.1007/s00397-005-0024-8]
[31]
Shu, X.Z.; Zhu, K.J.; Song, W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm., 2001, 212(1), 19-28.
[http://dx.doi.org/10.1016/S0378-5173(00)00582-2] [PMID: 11165817]
[32]
Shu, X.Z.; Zhu, K.J. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur. J. Pharm. Biopharm., 2002, 54(2), 235-243.
[http://dx.doi.org/10.1016/S0939-6411(02)00052-8] [PMID: 12191697]
[33]
Shu, X.Z.; Zhu, K.J. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int. J. Pharm., 2002, 233(1-2), 217-225.
[http://dx.doi.org/10.1016/S0378-5173(01)00943-7] [PMID: 11897426]
[34]
Park, D.; Yoon, D.y.; Kim, J-C. Monoolein cubic phase including in situ ionically gelled alginate and its salt-responsive release property. J. Dispers. Sci. Technol., 2017, 1-8.
[35]
Wu, Y.; Wang, L.; Zhang, K.; Zhou, L.; Zhang, X.; Jiang, X.; Zhu, C. N-Butyl-2-cyanoacrylate-based injectable and in situ-forming implants for efficient intratumoral chemotherapy. Drug Deliv., 2017, 24(1), 729-736.
[http://dx.doi.org/10.1080/10717544.2017.1309478] [PMID: 28440691]
[36]
Nickerson, M.T.; Patel, J.; Heyd, D.V.; Rousseau, D.; Paulson, A.T. Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin. Int. J. Biol. Macromol., 2006, 39(4-5), 298-302.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.04.010] [PMID: 16797690]
[37]
Balakrishnan, B.; Jayakrishnan, A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials, 2005, 26(18), 3941-3951.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.005] [PMID: 15626441]
[38]
Bernkop-Schnürch, A.; Hornof, M.; Zoidl, T. Thiolated polymers--thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int. J. Pharm., 2003, 260(2), 229-237.
[http://dx.doi.org/10.1016/S0378-5173(03)00271-0] [PMID: 12842342]
[39]
Kafedjiiski, K.; Krauland, A.H.; Hoffer, M.H.; Bernkop-Schnürch, A. Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials, 2005, 26(7), 819-826.
[http://dx.doi.org/10.1016/j.biomaterials.2004.03.011] [PMID: 15350788]
[40]
Roldo, M.; Hornof, M.; Caliceti, P.; Bernkop-Schnürch, A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm., 2004, 57(1), 115-121.
[http://dx.doi.org/10.1016/S0939-6411(03)00157-7] [PMID: 14729087]
[41]
Lo, Y-W.; Sheu, M-T.; Chiang, W-H.; Chiu, Y-L.; Tu, C-M.; Wang, W-Y.; Wu, M-H.; Wang, Y-C.; Lu, M.; Ho, H-O. in situ chemically crosslinked injectable hydrogels for the subcutaneous delivery of trastuzumab to treat breast cancer. Acta Biomater., 2019, 86, 280-290.
[http://dx.doi.org/10.1016/j.actbio.2019.01.003] [PMID: 30616077]
[42]
Gold, G.T.; Varma, D.M.; Taub, P.J.; Nicoll, S.B. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system.Carbohydr. Polym, 2015, 134, 497-507.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.101] [PMID: 26428151]
[43]
Qiu, B.; Stefanos, S.; Ma, J.; Lalloo, A.; Perry, B.A.; Leibowitz, M.J.; Sinko, P.J.; Stein, S. A hydrogel prepared by in situ cross-linking of a thiol-containing poly(ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery. Biomaterials, 2003, 24(1), 11-18.
[http://dx.doi.org/10.1016/S0142-9612(02)00227-2] [PMID: 12417173]
[44]
Plourde, F.; Motulsky, A.; Couffin-Hoarau, A.C.; Hoarau, D.; Ong, H.; Leroux, J.C. First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs. J. Control. Release, 2005, 108(2-3), 433-441.
[http://dx.doi.org/10.1016/j.jconrel.2005.08.016] [PMID: 16182402]
[45]
Couffin-Hoarau, A.C.; Motulsky, A.; Delmas, P.; Leroux, J.C. in situ-forming pharmaceutical organogels based on the self-assembly of L-alanine derivatives. Pharm. Res., 2004, 21(3), 454-457.
[http://dx.doi.org/10.1023/B:PHAM.0000019299.01265.05] [PMID: 15070096]
[46]
Yang, Y.; Xu, L.; Gao, Y.; Wang, Q.; Che, X.; Li, S. Improved initial burst of estradiol organogel as long-term in situ drug delivery implant: formulation, in vitro and in vivo characterization. Drug Dev. Ind. Pharm., 2012, 38(5), 550-556.
[http://dx.doi.org/10.3109/03639045.2012.665928] [PMID: 22420863]
[47]
Vintiloiu, A.; Lafleur, M.; Bastiat, G.; Leroux, J.C. in situ-forming oleogel implant for rivastigmine delivery. Pharm. Res., 2008, 25(4), 845-852.
[http://dx.doi.org/10.1007/s11095-007-9384-3] [PMID: 17694395]
[48]
Hu, B.; Wang, W.; Wang, Y.; Yang, Y.; Xu, L.; Li, S. Degradation of glutamate-based organogels for biodegradable implants: in vitro study and in vivo observation. Mater. Sci. Eng. C, 2018, 82, 80-90.
[http://dx.doi.org/10.1016/j.msec.2017.08.065] [PMID: 29025677]
[49]
El-Nassan, H.B.; ElMeshad, A.N.; Wadie, W.; Sayed, R.H. Synthesis, characterization and biocompatibility of N-palmitoyl L-alanine-based organogels as sustained implants of granisetron and evaluation of thier antiemetic effect. Pharm. Res., 2018, 35(8), 149.
[http://dx.doi.org/10.1007/s11095-018-2433-2] [PMID: 29845459]
[50]
Wu, H.; Liu, Z.; Peng, J.; Li, L.; Li, N.; Li, J.; Pan, H. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int. J. Pharm., 2011, 410(1-2), 31-40.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.007] [PMID: 21397671]
[51]
Srividya, B.; Cardoza, R.M.; Amin, P.D. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J. Control. Release, 2001, 73(2-3), 205-211.
[http://dx.doi.org/10.1016/S0168-3659(01)00279-6] [PMID: 11516498]
[52]
Jackson, J.K.; Zhang, X.; Llewellen, S.; Hunter, W.L.; Burt, H.M. The characterization of novel polymeric paste formulations for intratumoral delivery. Int. J. Pharm., 2004, 270(1-2), 185-198.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.010] [PMID: 14726134]
[53]
Zhang, X.; Jackson, J.K.; Wong, W.; Min, W.; Cruz, T.; Hunter, W.L.; Burt, H.M. Development of biodegradable polymeric paste formulations for taxol: An in vitro and in vivo study. Int. J. Pharm 1996, 137(2), 199-208.
[http://dx.doi.org/10.1016/0378-5173(96)04521-8]
[54]
Rençber, S.; Karavana, S.Y.; Şenyiğit, Z.A.; Eraç, B.; Limoncu, M.H.; Baloğlu, E. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation. Pharm. Dev. Technol., 2017, 22(4), 551-561.
[http://dx.doi.org/10.3109/10837450.2016.1163385] [PMID: 27055376]
[55]
Pandit, N.K.; McGowan, R. Gelation of Pluronic F127-polyethylene glycol mixtures: relationship to PEG molecular weight. Drug Dev. Ind. Pharm., 1998, 24(2), 183-186.
[http://dx.doi.org/10.3109/03639049809085605] [PMID: 15605450]
[56]
Rao, M.; Agrawal, D.K.; Shirsath, C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev. Ind. Pharm., 2017, 43(1), 142-150.
[http://dx.doi.org/10.1080/03639045.2016.1225754] [PMID: 27533244]
[57]
Zhao, Y.; Zhou, L.; Liu, J.; Chen, Z.; Yang, L.; Shi, H. Preparation and investigation of a novel levobupivacaine in situ implant gel for prolonged local anesthetics. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 404-408.
[http://dx.doi.org/10.3109/21691401.2016.1160406] [PMID: 26982080]
[58]
Seo, B.B.; Choi, H.; Koh, J.T.; Song, S.C. Sustained BMP-2 delivery and injectable bone regeneration using thermosensitive polymeric nanoparticle hydrogel bearing dual interactions with BMP-2. J. Control. Release, 2015, 209, 67-76.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.023] [PMID: 25910579]
[59]
Town, A.R.; Giardiello, M.; Gurjar, R.; Siccardi, M.; Briggs, M.E.; Akhtar, R.; McDonald, T.O. Dual-stimuli responsive injectable microgel/solid drug nanoparticle nanocomposites for release of poorly soluble drugs. Nanoscale, 2017, 9(19), 6302-6314.
[http://dx.doi.org/10.1039/C6NR07858C] [PMID: 28368063]
[60]
Yadav, M.; Guzman-Aranguez, A.; Perez de Lara, M.J.; Singh, M.; Singh, J.; Kaur, I.P. Bimatoprost loaded nanovesicular long-acting sub-conjunctival in-situ gelling implant: in vitro and in vivo evaluation. Mater. Sci. Eng. C, 2019.103109730
[http://dx.doi.org/10.1016/j.msec.2019.05.015] [PMID: 31349399]
[61]
Kulkarni, J.A.; Avachat, A.M. Pharmacodynamic and pharmacokinetic investigation of cyclodextrin-mediated asenapine maleate in situ nasal gel for improved bioavailability. Drug Dev. Ind. Pharm., 2017, 43(2), 234-245.
[http://dx.doi.org/10.1080/03639045.2016.1236808] [PMID: 27625143]
[62]
Fatouh, A.M.; Elshafeey, A.H.; Abdelbary, A. Agomelatine-based in situ gels for brain targeting via the nasal route: statistical optimization, in vitro, and in vivo evaluation. Drug Deliv., 2017, 24(1), 1077-1085.
[http://dx.doi.org/10.1080/10717544.2017.1357148] [PMID: 28745530]
[63]
Alizadeh, B.; Bahari Javan, N.; Akbari Javar, H.; Khoshayand, M.R.; Dorkoosh, F. Prolonged injectable formulation of Nafarelin using in situ gel combination delivery system. Pharm. Dev. Technol., 2017, 1-13.
[PMID: 28430010]
[64]
Moawad, F.A.; Ali, A.A.; Salem, H.F. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: preparation, in vitro and in vivo performance. Drug Deliv., 2017, 24(1), 252-260.
[http://dx.doi.org/10.1080/10717544.2016.1245369] [PMID: 28156169]
[65]
Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.D.; Hoemann, C.D.; Leroux, J.C.; Atkinson, B.L.; Binette, F.; Selmani, A. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 2000, 21(21), 2155-2161.
[http://dx.doi.org/10.1016/S0142-9612(00)00116-2] [PMID: 10985488]
[66]
Nasra, M.M.; Khiri, H.M.; Hazzah, H.A.; Abdallah, O.Y. Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis. Drug Deliv., 2017, 24(1), 133-142.
[http://dx.doi.org/10.1080/10717544.2016.1233591] [PMID: 28156166]
[67]
Dong, L.; Hoffman, A.S. A novel approach for preparation of pHsensitive hydrogels for enteric drug delivery. J. Control. Release 1991, 15(2), 141-152.
[http://dx.doi.org/10.1016/0168-3659(91)90072-L]
[68]
Guo, J.; Wang, J.; Cai, C.; Xu, J.; Yu, H.; Xu, H.; Xing, T. The anti-melanoma efficiency of the intratumoral injection of cucurbitacin-loaded sustained release carriers: in situ-forming implants. AAPS PharmSciTech, 2015, 16(4), 973-985.
[http://dx.doi.org/10.1208/s12249-015-0292-2] [PMID: 25609378]
[69]
Camargo, J.A.; Sapin, A.; Nouvel, C.; Daloz, D.; Leonard, M.; Bonneaux, F.; Six, J.L.; Maincent, P. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization. Drug Dev. Ind. Pharm., 2013, 39(1), 146-155.
[http://dx.doi.org/10.3109/03639045.2012.660952] [PMID: 22397675]
[70]
Yehia, S.A.; Halim, S.A.A.; Aziz, M.Y. Polymeric and non polymeric injectable in-situ forming implant systems for sustained delivery of lornoxicam: in vitro and in vivo evaluation. Curr. Drug Deliv., 2018, 15(8), 1193-1203.
[http://dx.doi.org/10.2174/1567201815666180320101125] [PMID: 29557743]
[71]
Śmiga-Matuszowicz, M.; Korytkowska-Wałach, A.; Nowak, B. Isosorbide-based polysebacates as polymeric components for development of in situ forming implants.Polym. Adv. Technol, 2019, 30(4), 1072-1082.
[http://dx.doi.org/10.1002/pat.4541]
[72]
Śmiga-Matuszowicz, M.; Korytkowska-Wałach, A.; Nowak, B.; Pilawka, R.; Lesiak, M.; Sieroń, A.L. Poly(isosorbide succinate)-based in situ forming implants as potential systems for local drug delivery: Preliminary studies. Mater. Sci. Eng. C, 2018, 91, 311-317.
[http://dx.doi.org/10.1016/j.msec.2018.05.046] [PMID: 30033260]
[73]
Avachat, A.M.; Kapure, S.S. Asenapine maleate in situ forming biodegradable implant: an approach to enhance bioavailability. Int. J. Pharm., 2014, 477(1-2), 64-72.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.006] [PMID: 25305379]
[74]
Tang, Y.; Singh, J. Controlled delivery of aspirin: effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. Int. J. Pharm., 2008, 357(1-2), 119-125.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.053] [PMID: 18329202]
[75]
Ahmed, T.A.; Alharby, Y.A.; El-Helw, A.R.; Hosny, K.M.; El-Say, K.M. Depot injectable atorvastatin biodegradable in situ gel: development, optimization, in vitro, and in vivo evaluation. Drug Des. Devel. Ther., 2016, 10, 405-415.
[PMID: 26855565]
[76]
Andriano, K.P.; Chandrashekar, B.; McEnery, K.; Dunn, R.L.; Moyer, K.; Balliu, C.M.; Holland, K.M.; Garrett, S.; Huffer, W.E. Preliminary in vivo studies on the osteogenic potential of bone morphogenetic proteins delivered from an absorbable puttylike polymer matrix. J. Biomed. Mater. Res., 2000, 53(1), 36-43.
[http://dx.doi.org/10.1002/(SICI)1097-4636(2000)53:1<36:AID-JBM5>3.0.CO;2-H] [PMID: 10634950]
[77]
Karfeld-Sulzer, L.S.; Ghayor, C.; Siegenthaler, B.; de Wild, M.; Leroux, J.C.; Weber, F.E. N-methyl pyrrolidone/bone morphogenetic protein-2 double delivery with in situ forming implants. J. Control. Release, 2015, 203, 181-188.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.019] [PMID: 25697800]
[78]
Kranz, H.; Yilmaz, E.; Brazeau, G.A.; Bodmeier, R. in vitro and in vivo drug release from a novel in situ forming drug delivery system. Pharm. Res., 2008, 25(6), 1347-1354.
[http://dx.doi.org/10.1007/s11095-007-9478-y] [PMID: 17968634]
[79]
Prabhu, S.; Tran, L.P.; Betageri, G.V. Effect of co-solvents on the controlled release of calcitonin polypeptide from in situ biodegradable polymer implants. Drug Deliv., 2005, 12(6), 393-398.
[http://dx.doi.org/10.1080/10717540590968873] [PMID: 16253955]
[80]
Manaspon, C.; Nittayacharn, P.; Vejjasilpa, K.; Fongsuk, C.; Nasongkla, N. In: SN-38: β-cyclodextrin inclusion complex for in situ solidifying injectable polymer implants In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, Massachusetts, USA 2011, August 30 - September 3 2011, ;, pp. 3241-3244.
[81]
Agossa, K.; Lizambard, M.; Rongthong, T.; Delcourt-Debruyne, E.; Siepmann, J.; Siepmann, F. Physical key properties of antibiotic-free, PLGA/HPMC-based in-situ forming implants for local periodontitis treatment. Int. J. Pharm., 2017, 521(1-2), 282-293.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.039] [PMID: 28223246]
[82]
Batool, F.; Agossa, K.; Lizambard, M.; Petit, C.; Bugueno, I.M.; Delcourt-Debruyne, E.; Benkirane-Jessel, N.; Tenenbaum, H.; Siepmann, J.; Siepmann, F.; Huck, O. In-situ forming implants loaded with chlorhexidine and ibuprofen for periodontal treatment: Proof of concept study in vivo. Int. J. Pharm., 2019.569118564
[http://dx.doi.org/10.1016/j.ijpharm.2019.118564] [PMID: 31352049]
[83]
Kasinathan, N.; Amirthalingam, M.; Reddy, N.D.; Jagani, H.V.; Volety, S.M.; Rao, J.V. In-situ implant containing PCL-curcumin nanoparticles developed using design of experiments. Drug Deliv., 2016, 23(3), 1017-1025.
[http://dx.doi.org/10.3109/10717544.2014.927021] [PMID: 24956468]
[84]
Jain, R.A.; Rhodes, C.T.; Railkar, A.M.; Malick, A.W.; Shah, N.H. Comparison of various injectable protein-loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices: in-situ-formed implant versus in-situ-formed microspheres versus isolated microspheres. Pharm. Dev. Technol., 2000, 5(2), 201-207.
[http://dx.doi.org/10.1081/PDT-100100535] [PMID: 10810750]
[85]
Bode, C.; Kranz, H.; Kruszka, A.; Siepmann, F.; Siepmann, J. Insitu forming PLGA implants: How additives affect swelling and drug release. J. Drug Deliv. Sci. Technol., 2019. 53101180
[http://dx.doi.org/10.1016/j.jddst.2019.101180]
[86]
Bode, C.; Kranz, H.; Siepmann, F.; Siepmann, J. In-situ forming PLGA implants for intraocular dexamethasone delivery. Int. J. Pharm., 2018, 548(1), 337-348.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.013] [PMID: 29981408]
[87]
Yehia, S.A.; Elshafeey, A.H.; Elsayed, I. A novel injectable in situ forming poly-DL-lactide and DL-lactide/glycolide implant containing lipospheres for controlled drug delivery. J. Liposome Res., 2012, 22(2), 128-138.
[http://dx.doi.org/10.3109/08982104.2011.631141] [PMID: 22091557]
[88]
Do, M.P.; Neut, C.; Metz, H.; Delcourt, E.; Mäder, K.; Siepmann, J.; Siepmann, F. In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance. Int. J. Pharm., 2015, 486(1-2), 38-51.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.026] [PMID: 25791762]
[89]
Kapoor, D.N.; Katare, O.P.; Dhawan, S. in situ forming implant for controlled delivery of an anti-HIV fusion inhibitor. Int. J. Pharm., 2012, 426(1-2), 132-143.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.005] [PMID: 22266533]
[90]
Wischke, C.; Zhang, Y.; Mittal, S.; Schwendeman, S.P. Development of PLGA-based injectable delivery systems for hydrophobic fenretinide. Pharm. Res., 2010, 27(10), 2063-2074.
[http://dx.doi.org/10.1007/s11095-010-0202-y] [PMID: 20668921]
[91]
Patel, R.B.; Solorio, L.; Wu, H.; Krupka, T.; Exner, A.A. Effect of injection site on in situ implant formation and drug release in vivo. J. Control. Release, 2010, 147(3), 350-358.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.020] [PMID: 20728486]
[92]
Manaspon, C.; Hernandez, C.; Nittayacharn, P.; Jeganathan, S.; Nasongkla, N.; Exner, A.A. Increasing distribution of drugs released from in situ forming PLGA implants using therapeutic ultrasound. Ann. Biomed. Eng., 2017, 45(12), 2879-2887.
[http://dx.doi.org/10.1007/s10439-017-1926-1] [PMID: 28929267]
[93]
Hopkins, K.A.; Vike, N.; Li, X.; Kennedy, J.; Simmons, E.; Rispoli, J.; Solorio, L. Noninvasive characterization of in situ forming implant diffusivity using diffusion-weighted MRI. J. Control. Release, 2019, 309, 289-301.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.019] [PMID: 31323243]
[94]
Algin-Yapar, E.; Ari, N.; Baykara, T. Evaluation of in vitro and in vivo performance of granisetron in situ forming implants: effect of sterilization, storage condition and degradation. Trop. J. Pharm. Res., 2014, 13(3)
[http://dx.doi.org/10.4314/tjpr.v13i3.1]
[95]
Ahmed, T.A.; Ibrahim, H.M.; Ibrahim, F.; Samy, A.M.; Kaseem, A.; Nutan, M.T.; Hussain, M.D. Development of biodegradable in situ implant and microparticle injectable formulations for sustained delivery of haloperidol. J. Pharm. Sci., 2012, 101(10), 3753-3762.
[http://dx.doi.org/10.1002/jps.23250] [PMID: 22753324]
[96]
Körber, M.; Bodmeier, R. Development of an in situ forming PLGA drug delivery system I. Characterization of a non-aqueous protein precipitation. Eur. J. Pharm. Sci., 2008, 35(4), 283-292.
[http://dx.doi.org/10.1016/j.ejps.2008.07.007] [PMID: 18721875]
[97]
Brodbeck, K.J.; Pushpala, S.; McHugh, A.J. Sustained release of human growth hormone from PLGA solution depots. Pharm. Res., 1999, 16(12), 1825-1829.
[http://dx.doi.org/10.1023/A:1018943107688] [PMID: 10644069]
[98]
Dhawan, S.; Kapil, R.; Kapoor, D.N. Development and evaluation of in situ gel-forming system for sustained delivery of insulin. J. Biomater. Appl., 2011, 25(7), 699-720.
[http://dx.doi.org/10.1177/0885328209359959] [PMID: 20207780]
[99]
Mashayekhi, R.; Mobedi, H.; Najafi, J.; Enayati, M. In-vitro/In-vivo comparison of leuprolide acetate release from an in-situ forming PLGA system. Daru, 2013, 21(1), 57.
[http://dx.doi.org/10.1186/2008-2231-21-57] [PMID: 23856431]
[100]
Chen, S.; Singh, J. in vitro release of levonorgestrel from phase sensitive and thermosensitive smart polymer delivery systems. Pharm. Dev. Technol., 2005, 10(2), 319-325.
[http://dx.doi.org/10.1081/PDT-54479] [PMID: 15926681]
[101]
Wang, L.; Kleiner, L.; Venkatraman, S. Structure formation in injectable poly(lactide-co-glycolide) depots. J. Control. Release, 2003, 90(3), 345-354.
[http://dx.doi.org/10.1016/S0168-3659(03)00198-6] [PMID: 12880701]
[102]
Wang, L.; Venkatraman, S.; Kleiner, L. Drug release from injectable depots: two different in vitro mechanisms. J. Control. Release, 2004, 99(2), 207-216.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.021] [PMID: 15380631]
[103]
Eliaz, R.E.; Szoka, F.C., Jr Robust and prolonged gene expression from injectable polymeric implants. Gene Ther., 2002, 9(18), 1230-1237.
[http://dx.doi.org/10.1038/sj.gt.3301786] [PMID: 12215890]
[104]
Ahmed, T.A.; Ibrahim, H.M.; Samy, A.M.; Kaseem, A.; Nutan, M.T.; Hussain, M.D. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability. AAPS PharmSciTech, 2014, 15(3), 772-780.
[http://dx.doi.org/10.1208/s12249-014-0101-3] [PMID: 24648158]
[105]
Bakhshi, R.; Vasheghani-Farahani, E.; Mobedi, H.; Jamshidi, A.; Khakpour, M. The effect of additives on naltrexone hydrochloride release and solvent removal rate from an injectablein situ forming PLGA implant.Polym. Adv. Technol., 2006, 17(5), 354-359.
[http://dx.doi.org/10.1002/pat.717]
[106]
Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Mohajeri, S.A.; Nazari, A.; Jafarian, A.H. Comparison of in-situ forming composite using PLGA-PEG-PLGA with in-situ forming implant using PLGA: Invitro, ex-vivo, and in-vivo evaluation of naltrexone release. J. Drug Deliv. Sci. Technol., 2019, 50, 188- 200 .
[http://dx.doi.org/10.1016/j.jddst.2019.01.011]
[107]
Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Yazdian-Robati, R.; Haghbin, A.; Zohuri, G. An in-situ forming implant formulation of naltrexone with minimum initial burst release using mixture of PLGA copolymers and ethyl heptanoate as an additive: In-vitro, exvivo, and in-vivo release evaluation. J. Drug Deliv. Sci. Technol 2018, 47, 95- 105 .
[http://dx.doi.org/10.1016/j.jddst.2018.06.027]
[108]
Elkasabgy, N.A.; Abdel-Salam, F.S.; Mahmoud, A.A.; Basalious, E.B.; Amer, M.S.; Mostafa, A.A.; Elkheshen, S.A. Long lasting in-situ forming implant loaded with raloxifene HCl: An injectable delivery system for treatment of bone injuries. Int. J. Pharm., 2019.571118703
[http://dx.doi.org/10.1016/j.ijpharm.2019.118703] [PMID: 31536761]
[109]
Dong, S.; Wang, S.; Zheng, C.; Liang, W.; Huang, Y. An in situforming, solid lipid/PLGA hybrid implant for long-acting antipsychotics. Soft Matter 2011, 7(12)
[http://dx.doi.org/10.1039/c1sm05310h]
[110]
Wang, L.; Wang, A.; Zhao, X.; Liu, X.; Wang, D.; Sun, F.; Li, Y. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism. Int. J. Pharm., 2012, 427(2), 284-292.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.015] [PMID: 22387369]
[111]
Lu, L.; Zhang, W.; Wu, X.; Wang, X.; Zhang, M.; Zhu, Q.; Ding, X.; Xu, Z.; Gao, S.; Gao, J. A novel ropivacaine-loaded in situ forming implant prolongs the effect of local analgesia in rats. Arch. Med. Sci., 2013, 9(4), 614-621.
[http://dx.doi.org/10.5114/aoms.2012.30829] [PMID: 24049519]
[112]
Madhu, M.; Shaila, L.; Anwar, B.J. Biodegradable injectable implant systems for sustained delivery using poly (lactide-co-glycolide) copolymers. Int. J. Pharm. Pharm. Sci., 2009, 1(Suppl. 1), 103-107.
[113]
Gad, H.A.; El-Nabarawi, M.A.; Abd El-Hady, S.S. Formulation and evaluation of PLA and PLGA in situ implants containing secnidazole and/or doxycycline for treatment of periodontitis. AAPS PharmSciTech, 2008, 9(3), 878-884.
[http://dx.doi.org/10.1208/s12249-008-9126-9] [PMID: 18654864]
[114]
Chen, S.; Singh, J. Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int. J. Pharm., 2005, 295(1-2), 183-190.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.023] [PMID: 15848003]
[115]
Liu, Q.; Zhang, H.; Zhou, G.; Xie, S.; Zou, H.; Yu, Y.; Li, G.; Sun, D.; Zhang, G.; Lu, Y.; Zhong, Y. in vitro and in vivo study of thymosin alpha1 biodegradable in situ forming poly(lactide-co-glycolide) implants. Int. J. Pharm., 2010, 397(1-2), 122-129.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.015] [PMID: 20650309]
[116]
Qin, Y.; Yuan, M.; Li, L.; Li, W.; Xue, J. Formulation and evaluation of in situ forming PLA implant containing tinidazole for the treatment of periodontitis. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(8), 2197-2202.
[http://dx.doi.org/10.1002/jbm.b.32788] [PMID: 22887609]
[117]
Eliaz, R.E.; Wallach, D.; Kost, J. Delivery of soluble tumor necrosis factor receptor from in-situ forming PLGA implants: in-vivo. Pharm. Res., 2000, 17(12), 1546-1550.
[http://dx.doi.org/10.1023/A:1007621512647] [PMID: 11303966]
[118]
Sheshala, R.; Hong, G.C.; Yee, W.P.; Meka, V.S.; Thakur, R.R.S. in situ forming phase-inversion implants for sustained ocular delivery of triamcinolone acetonide. Drug Deliv. Transl. Res., 2019, 9(2), 534-542.
[http://dx.doi.org/10.1007/s13346-018-0491-y] [PMID: 29484530]
[119]
Jeganathan, S.; Budziszewski, E.; Hernandez, C.; Bielecki, P.; Kolios, M.C.; Exner, A.A. 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, JapanOctober 22-25, 2018, pp. 1-4.
[120]
Wang, S.H.; Yin, L.N.; Liang, Z.H.; Lu, S.J.; Zeng, S. Stereoselective behavior of a novel biodegradable racemic ketoprofen injectable implant in rats. Chirality, 2007, 19(10), 769-774.
[http://dx.doi.org/10.1002/chir.20453] [PMID: 17687761]
[121]
Ravivarapu, H.B.; Moyer, K.L.; Dunn, R.L. Parameters affecting the efficacy of a sustained release polymeric implant of leuprolide. Int. J. Pharm., 2000, 194(2), 181-191.
[http://dx.doi.org/10.1016/S0378-5173(99)00371-3] [PMID: 10692642]
[122]
Yapar, E.A.; İnal, Ö.; Özkan, Y.; Baykara, T. Injectable in situ forming microparticles: a novel drug delivery system. Trop. J. Pharm. Res., 2012, 11(2)
[http://dx.doi.org/10.4314/tjpr.v11i2.19]
[123]
Luan, X.; Bodmeier, R. Influence of the poly(lactide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems. J. Control. Release, 2006, 110(2), 266-272.
[http://dx.doi.org/10.1016/j.jconrel.2005.10.005] [PMID: 16300851]
[124]
Rungseevijitprapa, W.; Bodmeier, R. Injectability of biodegradable in situ forming microparticle systems (ISM). Eur. J. Pharm. Sci., 2009, 36(4-5), 524-531.
[http://dx.doi.org/10.1016/j.ejps.2008.12.003] [PMID: 19124076]
[125]
Chen, D.; Yu, H.; Sun, K.; Liu, W.; Wang, H. Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery. Drug Deliv., 2014, 21(4), 258-264.
[http://dx.doi.org/10.3109/10717544.2013.838717] [PMID: 24102086]
[126]
Luan, X.; Bodmeier, R. in situ forming microparticle system for controlled delivery of leuprolide acetate: influence of the formulation and processing parameters. Eur. J. Pharm. Sci., 2006, 27(2-3), 143-149.
[http://dx.doi.org/10.1016/j.ejps.2005.09.002] [PMID: 16243496]
[127]
Wischke, C.; Schwendeman, S.P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm., 2008, 364(2), 298-327.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.042] [PMID: 18621492]
[128]
Chou, H.S.; Larsson, M.; Hsiao, M.H.; Chen, Y.C.; Röding, M.; Nydén, M.; Liu, D.M. Injectable insulin-lysozyme-loaded nanogels with enzymatically-controlled degradation and release for basal insulin treatment: in vitro characterization and in vivo observation. J. Control. Release, 2016, 224, 33-42.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.036] [PMID: 26723525]
[129]
Guo, Q.; Wu, Z.; Zhang, X.; Sun, L.; Li, C. Phenylboronate-diol crosslinked glycopolymeric nanocarriers for insulin delivery at physiological pH. Soft Matter, 2014, 10(6), 911-920.
[http://dx.doi.org/10.1039/c3sm52485j] [PMID: 24835766]
[130]
Khang, M.K.; Zhou, J.; Huang, Y.; Hakamivala, A.; Tang, L. Preparation of a novel injectable in situ-gelling nanoparticle with applications in controlled protein release and cancer cell entrapment. RSC Advances, 2018, 8(60), 34625-34633.
[http://dx.doi.org/10.1039/C8RA06589F]
[131]
Hsiao, M.H.; Larsson, M.; Larsson, A.; Evenbratt, H.; Chen, Y.Y.; Chen, Y.Y.; Liu, D.M. Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide. J. Control. Release, 2012, 161(3), 942-948.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.038] [PMID: 22652548]
[132]
Gu, Z.; Dang, T.T.; Ma, M.; Tang, B.C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D.G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano, 2013, 7(8), 6758-6766.
[http://dx.doi.org/10.1021/nn401617u] [PMID: 23834678]
[133]
Ravaine, V.; Ancla, C.; Catargi, B. Chemically controlled closed-loop insulin delivery. J. Control. Release, 2008, 132(1), 2-11.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.009] [PMID: 18782593]
[134]
Wang, K.; Jia, Q.; Han, F.; Liu, H.; Li, S. Self-assembled L-alanine derivative organogel as in situ drug delivery implant: characterization, biodegradability, and biocompatibility. Drug Dev. Ind. Pharm., 2010, 36(12), 1511-1521.
[http://dx.doi.org/10.3109/03639045.2010.488694] [PMID: 21050137]
[135]
Tang, Y.; Singh, J. Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein. Int. J. Pharm., 2009, 365(1-2), 34-43.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.018] [PMID: 18786623]
[136]
De Souza, R.; Zahedi, P.; Allen, C.J.; Piquette-Miller, M. Biocompatibility of injectable chitosan-phospholipid implant systems. Biomaterials, 2009, 30(23-24), 3818-3824.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.003] [PMID: 19394688]
[137]
Kang, F.; Singh, J. in vitro release of insulin and biocompatibility of in situ forming gel systems. Int. J. Pharm., 2005, 304(1-2), 83-90.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.024] [PMID: 16181752]
[138]
U.S. Food and Drug Administration. U.S. Department of Health and Human Services. https://www.accessdata.fda.gov/scripts/cder/daf/ (Accessed on: Jan 31, 2020).
[139]
National Library of Medicine ClinicalTrials.gov. https://clinicaltrials.gov (Accessed on: Jan 31, 2020)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy