Fluorescence Fluoride Ion Sensor Utilizing Desilylation of N-Silylated 9- Aminoanthracene

Author(s): Yosuke Uchiyama*, Yu Yasuda, Hideyo Matsuzawa

Journal Name: Current Green Chemistry

Volume 7 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

N,N-Bis(trimethylsilyl)-9-aminoanthracene (Si9AA) was synthesized by deprotonation of 9-aminoanthracne (9AA) with n-BuLi followed by the addition of trimethylsilyl chloride (TMSCl). Under ultraviolet, Si9AA showed blue fluorescence originated from the anthracene skeleton due to orthogonal relation between anthracene skeleton and bis(trimethylsilyl)amino group, which was determined by X-ray crystallographic analysis, while 9AA, in which conjugation exists between the anthracene and the amino group, showed green fluorescence. In a THF solution, Si9AA was converted to 9AA by desilylation of bis(trimethylsilyl)amino group with fluoride ion, which was contained in tetrabutylammonium fluoride (TBAF) or KF-18-crown-6 complex, resulting in fluorescence color change from blue to green. Si9AA was found to utilize as a sensor to detect fluoride ion in THF solution or on a thin layer chromatography (TLC) via the fluorescence color change without any metals, regarding a metal free fluorescence fluoride sensor in green chemistry.

Keywords: Fluorescence fluoride sensor, desilylation, fluorescence color change, X-ray crystallographic analysis, 1H NMR spectral monitoring, 9-aminoanthracenes.

[1]
Kawashima, T.; Agou, T.; Yoshino, J. Chemical Sensors: Main Group Compounds for Anion Detection. Comprehensive Inorganic Chemistry II; Reedijk, J; Poeppelmeier, K., Ed.; Elsevier: Oxford, 2013, Vol. 1, pp. 1053-1068.
[http://dx.doi.org/10.1016/B978-0-08-097774-4.00140-6]
[2]
Dey, S.; Giri, B. Fluoride Fact on Human health and Health Problems: A Review. Med. Clin. Rev., 2016, 2(1), 1-6.
[http://dx.doi.org/10.21767/2471-299X.1000011]
[3]
Kono, K. [Health effects of fluorine and its compounds Nippon Eiseigaku Zasshi, 1994, 49(5), 852-860.
[http://dx.doi.org/10.1265/jjh.49.852] [PMID: 7830341]
[4]
Yamaguchi, S.; Akiyama, S.; Tamao, K. Colorimetric fluoride ion sensing by boron-containing π-electron systems. J. Am. Chem. Soc., 2001, 123(46), 11372-11375.
[http://dx.doi.org/10.1021/ja015957w] [PMID: 11707112]
[5]
Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Highly selective phosphorescent chemosensor for fluoride based on an iridium(III) complex containing arylborane units. Inorg. Chem., 2008, 47(20), 9256-9264.
[http://dx.doi.org/10.1021/ic800500c] [PMID: 18811148]
[6]
Iwahara, H.; Kushida, T.; Yamaguchi, S. A planarized 9-phenylanthracene: A simple electron-donating building block for fluorescent materials. Chem. Commun. (Camb.), 2016, 52(6), 1124-1127.
[http://dx.doi.org/10.1039/C5CC08259E] [PMID: 26515716]
[7]
Rigaudy, J.; Izoret, G. Autoxydation des Anthracène Mésoaminés. Peroxydes Intemédiaires. L’anthraquinione Monoimine. Compt. Rend. Acad. Sci., 1954, 238, 824-826.
[8]
Uchiyama, Y.; Watanabe, R.; Kurotaki, T.; Kuniya, S.; Kimura, S.; Sawamura, Y.; Ohtsuki, T.; Kikuchi, Y.; Matsuzawa, H.; Uchiyama, K.; Itakura, M.; Kawakami, F.; Maruyama, H. Maintaining of the Green Fluorescence Emission of 9-Aminoanthracene for Bioimaging Applications. ACS Omega, 2017, 2(7), 3371-3379.
[http://dx.doi.org/10.1021/acsomega.7b00711] [PMID: 31457660]
[9]
Uchiyama, Y.; Matsuzawa, H.; Yasuda, Y. Compounds and its application. JP Patent 2018-228396, December 5, 2018.
[10]
Braun, C. E.; Cook, C. D.; Merritt, C., Jr; Rousseau, L. E. 9- Nitroanthracene, Organic Syntheses, Coll. Vol. 4, 1963, 711-713. 1951, 31-33
[11]
Hirano, K.; Urban, S.; Wang, C.; Glorius, F. A modular synthesis of highly substituted imidazolium salts. Org. Lett., 2009, 11(4), 1019-1022.
[http://dx.doi.org/10.1021/ol8029609] [PMID: 19170624]
[12]
Schulz, F.; Sumerin, V.; Leskelä, M.; Repo, T.; Rieger, B. Frustrated Lewis pairs: Reactivities of TMS protected amines and phosphines in the presence of B(C(6)F(5))(3). Dalton Trans., 2010, 39(8), 1920-1922.
[http://dx.doi.org/10.1039/B923196J] [PMID: 20148203]
[13]
Uchiyama, Y.; Mazaki, Y. Synthesis, Isolation, and Skeletal Inversion of 5,10-Dihydrophosphanthrenes. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(4), 822-825.
[http://dx.doi.org/10.1080/10426507.2010.515957]
[14]
Uchiyama, Y. Synthesis, Isolation, and Isomerization of Two Stereoisomers of 2,3,7,8-Tetramethyl-5,10-di(p-tol)-5,10-dihydrostibanthrene. Heteroatom Chem., 2011, 22(3/4), 377-387.
[http://dx.doi.org/10.1002/hc.20693]
[15]
Uchiyama, Y.; Kawaguchi, T.; Kuroda, K. Synthesis, Crystal Structures, and Skeletal Inversion of Dithienodiphosphorines. Heteroatom Chem., 2014, 25(5), 326-336.
[http://dx.doi.org/10.1002/hc.21163]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 2
Year: 2020
Published on: 16 June, 2020
Page: [249 - 254]
Pages: 6
DOI: 10.2174/2213346107999200616110841

Article Metrics

PDF: 21
HTML: 3