Characteristic of Cyclodextrins: Their Role and Use in the Pharmaceutical Technology

Author(s): Malwina Lachowicz*, Andrzej Stańczak, Michał Kołodziejczyk

Journal Name: Current Drug Targets

Volume 21 , Issue 14 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

About 40% of newly-discovered entities are poorly soluble in water, and this may be an obstacle in the creation of new drugs. To address this problem, the present review article examines the structure and properties of cyclodextrins and the formation and potential uses of drug – cyclodextrin inclusion complexes. Cyclodextrins are cyclic oligosaccharides containing six or more D-(+)- glucopyranose units linked by α-1,4-glycosidic bonds, which are characterized by a favourable toxicological profile, low local toxicity and low mucous and eye irritability; they are virtually non-toxic when administered orally. They can be incorporated in the formulation of new drugs in their natural form (α-, β-, γ-cyclodextrin) or as chemically-modified derivatives. They may also be used as an excipient in drugs delivered by oral, ocular, dermal, nasal and rectal routes, as described in the present paper. Cyclodextrins are promising compounds with many beneficial properties, and their use may be increasingly profitable for pharmaceutical scientists.

Keywords: Cyclodextrin, inclusion complex, solubility, drug delivery, routes of administration, eye irritability.

[1]
Schöffer, J.D.N.; Matte, C.R.; Charqueiro, D.S.; de Menezes, E.W.; Costa, T.M.H.; Benvenutti, E.V.; Rodrigues, R.C.; Hertz, P.F. Effects of immobilization, pH and reaction time in the modulation of α-, β- or γ-cyclodextrins production by cyclodextrin glycosyltransferase: Batch and continuous process. Carbohydr. Polym., 2017, 169, 41-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.005 ] [PMID: 28504163]
[2]
Koo, Y.S.; Ko, D.S.; Jeong, D.W.; Shim, J.H. Development and application of cyclodextrin hydrolyzing mutant enzyme which hydrolyzes β-and γ-CD selectively. J. Agric. Food Chem., 2017, 65(11), 2331-2336.
[http://dx.doi.org/10.1021/acs.jafc.7b00269 ] [PMID: 28251851]
[3]
Kellett, K.; Kantonen, S.A.; Duggan, B.M.; Gilson, M.K. Toward expanded diversity of host–guest interactions via synthesis and characterization of cyclodextrin derivatives. J. Solution Chem., 2018, 47(10), 1597-1608.
[http://dx.doi.org/10.1007/s10953-018-0769-1]
[4]
di Cagno, M.P. The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview. Molecules, 2016, 22(1), 1.
[http://dx.doi.org/10.3390/molecules22010001 ] [PMID: 28029138]
[5]
Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 2018, 23(5), 1161.
[http://dx.doi.org/10.3390/molecules23051161 ] [PMID: 29751694]
[6]
Villiers, A. Sur la fermetation de la fécule de pommes par l’actiondu ferment butyrique. ComptRendAcadSci, 1891, 112, 536-538.
[7]
Laza-Knoerr, A.L.; Gref, R.; Couvreur, P. Cyclodextrins for drug delivery. J. Drug Target., 2010, 18(9), 645-656.
[http://dx.doi.org/10.3109/10611861003622552 ] [PMID: 20497090]
[8]
Crini, G. Review: a history of cyclodextrins. Chem. Rev., 2014, 114(21), 10940-10975.
[http://dx.doi.org/10.1021/cr500081p ] [PMID: 25247843]
[9]
Nalluri, B.N.; Chowdary, K.P.R.; Murthy, K.V.R.; Satyanarayana, V.; Hayman, A.R.; Becket, G. Inclusion complexation and dissolution properties of nimesulide and meloxicam–hydroxypropyl-β-cyclodextrin binary systems. J INCL PHENOM MACRO, 2005, 53(1-2), 103-110.
[http://dx.doi.org/10.1007/s10847-005-1676-9]
[10]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol., 2010, 62(11), 1607-1621.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01030.x ] [PMID: 21039545]
[11]
Devi, N.K.D.; Rani, A.P.; Javed, M.M.; Kumar, K.S.; Kaushik, J.; Sowjanya, V. Cyclodextrins in pharmacy - An overview. Pharmacophore, 2010, 1(3), 155-165.
[12]
Schardinger, F. Über Termophile Bakterien aus verschiedenen Speisen und Milch, sowie uber einige Umsetzungsprodukte derselben in kohlenhydrathaltigen Nahrlosungen, darunter krystallisierte Polysaccharide (Dextrine) aus Starke. Z. Untersuch. Nahr. Genussm., 1903, 6, 865-880.
[http://dx.doi.org/10.1007/BF02067497]
[13]
Schardinger, F. Bildung kristallisierter Polysaccharide (Dextrine) aus Stärkekleister durch Microben. Zentralbl. Bakteriol. Parasitenk. Abt. II, 1911, 29, 188-197.
[14]
Pringsheim, H.; Langhans, A. Über krystallisierte Polysaccharide aus Stärke. Ber. Dtsch. Chem. Ges., 1912, 45(2), 2533-2546.
[http://dx.doi.org/10.1002/cber.191204502156]
[15]
Pringsheim, H. Ein Umriß der heutigen Zuckerchemie. Angew. Chem., 1931, 44(33), 677-682.
[http://dx.doi.org/10.1002/ange.19310443302]
[16]
Higuchi, T.; Connors, K.A. Phase solubility techniques. Adv. Anal. Chem. Instrum., 1965, 4, 117-122.
[17]
Muankaew, C.; Loftsson, T. Cyclodextrin-Based Formulations: A Non-Invasive Platform for Targeted Drug Delivery. Basic Clin. Pharmacol. Toxicol., 2018, 122(1), 46-55.
[http://dx.doi.org/10.1111/bcpt.12917 ] [PMID: 29024354]
[18]
Karathanos, V.T.; Mourtzinos, I.; Yannakopoulou, K.; Andrikopoulos, N.K. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem., 2007, 101(2), 652-658.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.053]
[19]
Leemhuis, H.; Kelly, R.M.; Dijkhuizen, L. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl. Microbiol. Biotechnol., 2010, 85(4), 823-835.
[http://dx.doi.org/10.1007/s00253-009-2221-3 ] [PMID: 19763564]
[20]
Scriba, G.K. Cyclodextrins in capillary electrophoresis enantioseparations--recent developments and applications. J. Sep. Sci., 2008, 31(11), 1991-2011.
[http://dx.doi.org/10.1002/jssc.200800095 ] [PMID: 18491357]
[21]
Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm., 2018, 535(1-2), 272-284.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.018 ] [PMID: 29138045]
[22]
Panchal, R.R.; Rajput, K.N. Cyclodextrins: Structure and Applications. PIJR, 2016, 5(9), 268-270.
[23]
Li, J.; Loh, X.J. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Deliv. Rev., 2008, 60(9), 1000-1017.
[http://dx.doi.org/10.1016/j.addr.2008.02.011 ] [PMID: 18413280]
[24]
Vyas, A.; Saraf, S.; Saraf, S. Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem., 2008, 62, 23-42.
[http://dx.doi.org/10.1007/s10847-008-9456-y]
[25]
Cho, E.; Jung, S. Supramolecular complexation of carbohydrates for the bioavailability enhancement of poorly soluble drugs. Molecules, 2015, 20(10), 19620-19646.
[http://dx.doi.org/10.3390/molecules201019620 ] [PMID: 26516835]
[26]
Marques, H.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragrance J., 2010, 25(5), 313-326.
[http://dx.doi.org/10.1002/ffj.2019]
[27]
Astray, G.; Gonzales-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A review on the use of cyclodextrins in food. Food Hydrocoll., 2009, 23(7), 1631-1640.
[http://dx.doi.org/10.1016/j.foodhyd.2009.01.001]
[28]
Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov. Today, 2016, 21(2), 356-362.
[http://dx.doi.org/10.1016/j.drudis.2015.11.017 ] [PMID: 26686054]
[29]
Zhang, L.; Zhou, J.; Zhang, L. Structure and properties of β-cyclodextrin/cellulose hydrogels prepared in NaOH/urea aqueous solution. Carbohydr. Polym., 2013, 94(1), 386-393.
[http://dx.doi.org/10.1016/j.carbpol.2012.12.077 ] [PMID: 23544553]
[30]
Teijeiro-Osorio, D.; Remuñán-López, C.; Alonso, M.J. New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules, 2009, 10(2), 243-249.
[http://dx.doi.org/10.1021/bm800975j ] [PMID: 19117404]
[31]
Menezes, P.P.; Serafini, M.R.; Santana, B.V. Solid-state β-cyclodextrin complexes containing geraniol. Thermochim. Acta, 2012, 548, 45-50.
[http://dx.doi.org/10.1016/j.tca.2012.08.023]
[32]
Yuan, C.; Jin, Z.; Xu, X. Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. Carbohydr. Polym., 2012, 89(2), 492-496.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.033 ] [PMID: 24750749]
[33]
Loftsson, T.; Brewster, M.E. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci., 2012, 101(9), 3019-3032.
[http://dx.doi.org/10.1002/jps.23077 ] [PMID: 22334484]
[34]
Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm., 2013, 453(1), 167-180.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.055 ] [PMID: 22771733]
[35]
Qian, L.; Guan, Y.; Ziaee, Z.; He, B.; Zheng, A.; Xiao, H. Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin based polymers included with antibiotics. Cellulose, 2009, 16(2), 309-317.
[http://dx.doi.org/10.1007/s10570-008-9270-0]
[36]
Agrawal, R.; Gupta, V. Cyclodextrins—a review on pharmaceutical application for drug delivery. IJPFR, 2012, 2(1), 95-112.
[37]
Rita, L.; Amit, T.; Chandrashekhar, G. Current trends in β-cyclodextrin based drug delivery systems. Int. J. Res. Ayurvedic Pharma, 2011, 2(5), 1520-1526.
[38]
Doile, M.M.; Fortunato, K.A.; Schmücker, I.C.; Schucko, S.K.; Silva, M.A.; Rodrigues, P.O. Physicochemical properties and dissolution studies of dexamethasone acetate-beta-cyclodextrin inclusion complexes produced by different methods. AAPS PharmSci-Tech, 2008, 9(1), 314-321.
[http://dx.doi.org/10.1208/s12249-008-9042-z ] [PMID: 18446497]
[39]
Demirel, M.; Yurtdaş, G.; Genç, L. Inclusion complexes of ketoconazole with beta-cyclodextrin: physicochemical characterization and in vitro dissolution behaviour of its vaginal suppositories. J. Incl. Phenom. Macrocycl. Chem., 2011, 70(3-4), 437-445.
[http://dx.doi.org/10.1007/s10847-010-9922-1]
[40]
Voncina, B.; Vivod, V.; Chen, W.T. Surface Modification of PET Fibers with the Use of β-Cyclodextrin. J. Appl. Polym. Sci., 2009, 113(6), 3891-3895.
[http://dx.doi.org/10.1002/app.30400]
[41]
de Araujo, D.R.; Tsuneda, S.S.; Cereda, C.M.; Del, GF Carvalho, F.; Preté, P.S.; Fernandes, S.A.; Yokaichiya, F.; Franco, M.K.; Mazzaro, I.; Fraceto, L.F.; de F A Braga, A.; de Paula, E. Development and pharmacological evaluation of ropivacaine-2-hydroxypropyl-beta-cyclodextrin inclusion complex. Eur. J. Pharm. Sci., 2008, 33(1), 60-71.
[http://dx.doi.org/10.1016/j.ejps.2007.09.010 ] [PMID: 18036789]
[42]
Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech, 2005, 6(2), E329-E357.
[http://dx.doi.org/10.1208/pt060243 ] [PMID: 16353992]
[43]
Patel, R.; Purohit, N. Physico-chemical characterization and in vitro dissolution assessment of clonazepam-cyclodextrins inclusion compounds. AAPS PharmSciTech, 2009, 10(4), 1301-1312.
[http://dx.doi.org/10.1208/s12249-009-9321-3 ] [PMID: 19885735]
[44]
Arun, R.; Ashok, K.C.K.; Sravanthi, V.V.N.S.S. Cyclodextrins as drug carrier molecule: A Review. Sci. Pharm., 2008, 76, 567-598.
[http://dx.doi.org/10.3797/scipharm.0808-05]
[45]
Sabadini, E.; Cosgrove, T.; Egídio, Fdo.C. Solubility of cyclomaltooligosaccharides (cyclodextrins) in H2O and D2O: a comparative study. Carbohydr. Res., 2006, 341(2), 270-274.
[http://dx.doi.org/10.1016/j.carres.2005.11.004 ] [PMID: 16325788]
[46]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J. Pharm. Pharmacol., 2011, 63(9), 1119-1135.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01279.x ] [PMID: 21827484]
[47]
Messner, M.; Kurkov, S.V.; Jansook, P.; Loftsson, T. Selfassembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm., 2010, 387(1-2), 199-208.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.035 ] [PMID: 19963052]
[48]
Shimpi, S.; Chauhan, B.; Shimpi, P. Cyclodextrins: application in different routes of drug administration. Acta Pharm., 2005, 55(2), 139-156.
[PMID: 16179128]
[49]
Paul, R.; Paul, S. Synergistic host-guest hydrophobic and hydrogen bonding interactions in the complexation between endo functionalized molecular tube and strongly hydrophilic guest molecules in aqueous solution. Phys. Chem. Chem. Phys., 2018, 20(24), 16540-16550.
[http://dx.doi.org/10.1039/C8CP01502C ] [PMID: 29872790]
[50]
Zhou, J.; Ritter, H. Cyclodextrin functionalized polymers as drug delivery systems. Polym. Chem., 2010, 1, 1552-1559.
[http://dx.doi.org/10.1039/c0py00219d]
[51]
Zhang, J.; Ma, P.X. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev., 2013, 65(9), 1215-1233.
[http://dx.doi.org/10.1016/j.addr.2013.05.001 ] [PMID: 23673149]
[52]
Booij, L.H. Cyclodextrins and the emergence of sugammadex. Anaesthesia, 2009, 64(1)(Suppl. 1), 31-37.
[http://dx.doi.org/10.1111/j.1365-2044.2008.05868.x ] [PMID: 19222429]
[53]
Řezanka, M. Synthesis of substituted cyclodextrins. Environ. Chem. Lett., 2019, 17, 49-63.
[http://dx.doi.org/10.1007/s10311-018-0779-7]
[54]
Badr-Eldin, S.M.; Elkheshen, S.A.; Ghorab, M.M. Inclusion complexes of tadalafil with natural and chemically modified beta cyclodextrins. I: preparation and in-vitro evaluation. Eur. J. Pharm. Biopharm., 2008, 70(3), 819-827.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.024 ] [PMID: 18655829]
[55]
Yuan, C.; Jin, Z.; Xu, X.; Zhuang, H.; Shen, W. Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chem., 2008, 109(2), 264-268.
[http://dx.doi.org/10.1016/j.foodchem.2007.07.051 ] [PMID: 26003346]
[56]
Granero, G.E.; Maitre, M.M.; Garnero, C.; Longhi, M.R. Synthesis, characterization and in vitro release studies of a new acetazolamide-HP-β-CD-TEA inclusion complex. Eur. J. Med. Chem., 2008, 43(3), 464-470.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.037 ] [PMID: 17544174]
[57]
Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm., 2007, 329(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044 ] [PMID: 17137734]
[58]
Wu, Q.; Gao, J.; Chen, L.; Dong, S.; Li, H.; Qiu, H.; Zhao, L. Graphene quantum dots functionalized β-cyclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance. J. Chromatogr. A, 2019, 1600, 209-218.
[http://dx.doi.org/10.1016/j.chroma.2019.04.053 ] [PMID: 31047665]
[59]
Zhu, Q.; Scriba, G.K. Advances in the use of cyclodextrins as chiral selectors in capillary electrokinetic chromatography: fundamentals and applications. Chromatographia, 2016, 79(21-22), 1403-1435.
[http://dx.doi.org/10.1007/s10337-016-3167-0]
[60]
Salido-Fortuna, S.; Greño, M.; Castro-Puyana, M.; Marina, M.L. Amino acid chiral ionic liquids combined with hydroxypropyl-β-cyclodextrin for drug enantioseparation by capillary electrophoresis. J. Chromatogr. A, 2019, 1607, 460375.
[http://dx.doi.org/10.1016/j.chroma.2019.460375 ] [PMID: 31353071]
[61]
Guo, J.; Lin, Y.; Xiao, Y.; Crommen, J.; Jiang, Z. Recent developments in cyclodextrin functionalized monolithic columns for the enantioseparation of chiral drugs. J. Pharm. Biomed. Anal., 2016, 130, 110-125.
[http://dx.doi.org/10.1016/j.jpba.2016.05.023 ] [PMID: 27260139]
[62]
Carrier, R.L.; Miller, L.A.; Ahmed, I. The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release, 2007, 123(2), 78-99.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.018 ] [PMID: 17888540]
[63]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003 ] [PMID: 26579474]
[64]
Crini, G.; Peindy, H.N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Separ. Purif. Tech., 2007, 53(1), 97-110.
[http://dx.doi.org/10.1016/j.seppur.2006.06.018]
[65]
Wang, J.; Cao, Y.; Sun, B.; Wang, C. Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin. Food Chem., 2011, 124(3), 1069-1075.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.080]
[66]
Diniz, T.C.; Pinto, T.C.C.; Menezes, P.D. Cyclodextrins improving the physicochemical and pharmacological properties of antidepressant drugs: a patent review. Expert opinion on therapeutic patents, 2018, 28(1), 81-92.
[http://dx.doi.org/10.1080/13543776.2017.1384816]
[67]
Fenyvesi, E. Statistics on Cyclodextrin-related Patents (Review based on the paper of Deorsola et al. in World Patent Information). Cyclodextrins 3news 2014, 28(10)
[68]
Kim, D.H.; Lee, S.E.; Pyo, Y.C.; Tran, P.; Park, J.S. Solubility enhancement and application of cyclodextrins in local drug delivery. J. Pharm. Investig., 2019, 5(3), 1-11.
[69]
Abdalla, A.; Klein, S.; Mäder, K. A new self-emulsifying drug delivery system (SEDDS) for poorly soluble drugs: characterization, dissolution, in vitro digestion and incorporation into solid pellets. Eur. J. Pharm. Sci., 2008, 35(5), 457-464.
[http://dx.doi.org/10.1016/j.ejps.2008.09.006 ] [PMID: 18940249]
[70]
Gupta, S.; Kesarla, R.; Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm., 2013.2013848043.
[http://dx.doi.org/10.1155/2013/848043 ] [PMID: 24459591]
[71]
Jun, S.W.; Kim, M.S.; Kim, J.S.; Park, H.J.; Lee, S.; Woo, J.S.; Hwang, S.J. Preparation and characterization of simvastatin/hydroxypropyl-beta-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm., 2007, 66(3), 413-421.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.013 ] [PMID: 17240129]
[72]
George, S.; Vasudevan, D. Studies on the Preparation, Characterization, and Solubility of 2-HP-β-Cyclodextrin-Meclizine HCl Inclusion Complexes. J. Young Pharm., 2012, 4(4), 220-227.
[http://dx.doi.org/10.4103/0975-1483.104365 ] [PMID: 23493156]
[73]
Bikiaris, D.N. Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv., 2011, 8(11), 1501-1519.
[http://dx.doi.org/10.1517/17425247.2011.618181 ] [PMID: 21919807]
[74]
Tang, J.; Sun, J.; He, Z.G. Self-emulsifying drug delivery systems: strategy for improving oral delivery of poorly soluble drugs. Curr. Drug Ther., 2007, 2(1), 85-93.
[http://dx.doi.org/10.2174/157488507779422400]
[75]
Lee, S.Y.; Jung, I.I.; Kim, J.K.; Lim, G.B.; Ryu, J.H. Preparation of itraconazole/HP-β-CD inclusion complexes using supercritical aerosol solvent extraction system and their dissolution characteristics. J. Supercrit. Fluids, 2008, 44(3), 400-408.
[http://dx.doi.org/10.1016/j.supflu.2007.09.006]
[76]
Zhang, X.; Xing, H.; Zhao, Y.; Ma, Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics, 2018, 10(3), 1-33.
[http://dx.doi.org/10.3390/pharmaceutics10030074 ] [PMID: 29937483]
[77]
Krishnaiah, Y.S.R. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J. Bioequivalence Bioavailab., 2010, 2(2), 28-26.
[http://dx.doi.org/10.4172/jbb.1000027]
[78]
Patil, J.S.; Kadam, D.V.; Marapur, S.C.; Kamalapur, M.V. Inclusion complex system; a novel technique to improve the solubility and bioavailability of poorly soluble drugs: A review. Int. J. Pharm. Sci. Rev. Res., 2010, 2(2), 29-34.
[79]
Raj, R.A. Formulation and evaluation of cyclodextrin inclusion complex tablets of carvedilol. Asian J Pharm, 2016, 10(2), 84-94.
[80]
Tiwari, G.; Tiwari, R.; Rai, A.K. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci., 2010, 2(2), 72-79.
[http://dx.doi.org/10.4103/0975-7406.67003 ] [PMID: 21814436]
[81]
Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol., 2008, 36(1), 30-42.
[http://dx.doi.org/10.1177/0192623307310945 ] [PMID: 18337219]
[82]
Shityakov, S.; Salmas, R.E.; Durdagi, S.; Roewer, N.; Förster, C.; Broscheit, J. Solubility profiles, hydration and desolvation of curcumin complexed with γ-cyclodextrin and hydroxypropyl-γ-cyclodextrin. J. Mol. Struct., 2017, 1134, 91-98.
[http://dx.doi.org/10.1016/j.molstruc.2016.12.028]
[83]
Mohandoss, S.; Atchudan, R.; Immanuel Edison, T.N.J.; Mandal, T.K.; Palanisamy, S.; You, S.; Napoleon, A.A.; Shim, J.J.; Lee, Y.R. Enhanced solubility of guanosine by inclusion complexes with cyclodextrin derivatives: Preparation, characterization, and evaluation. Carbohydr. Polym., 2019, 224, 115166.
[http://dx.doi.org/10.1016/j.carbpol.2019.115166 ] [PMID: 31472864]
[84]
Nicolescu, C.; Arama, A.; Nedelcu, A.; Monciu, C.M. Phase solubility studies of the inclusion complexes of repaglinide with β-cyclodextrin and β-cyclodextrin derivatives. Farmacia, 2010, 58(5), 620-628.
[85]
García, A.; Leonardi, D.; Salazar, M.O.; Lamas, M.C. Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. complete in vitro evaluation and characterization. PLoS One, 2014, 9(2)e88234
[http://dx.doi.org/10.1371/journal.pone.0088234 ] [PMID: 24551084]
[86]
Ono, N.; Miyamoto, Y.; Ishiguro, T.; Motoyama, K.; Hirayama, F.; Iohara, D.; Seo, H.; Tsuruta, S.; Arima, H.; Uekama, K. Reduction of bitterness of antihistaminic drugs by complexation with β-cyclodextrins. J. Pharm. Sci., 2011, 100(5), 1935-1943.
[http://dx.doi.org/10.1002/jps.22417 ] [PMID: 21374625]
[87]
Tóth, G.; Mohácsi, R.; Rácz, Á. Equilibrium and structural characterization of ofloxacin–cyclodextrin complexation. J. Incl. Phenom. Macrocycl. Chem., 2013, 77(1-4), 291-300.
[http://dx.doi.org/10.1007/s10847-012-0245-2]
[88]
Muhammad, E.F.; Adnan, R. Computational Investigation of the Monomer Insulin-β-CD Complex for the New Insulin Formulation. Aust. J. Basic Appl. Sci., 2015, 9(17), 7-13.
[89]
Miranda, J.C.; Martins, T.E.A.; Veiga, F.; Ferraz, H.G. Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. Braz. J. Pharm. Sci., 2011, 47(4), 665-681.
[http://dx.doi.org/10.1590/S1984-82502011000400003]
[90]
Ghosh, A.; Biswas, S.; Ghosh, T. Preparation and Evaluation of Silymarin β-cyclodextrin Molecular Inclusion Complexes. J. Young Pharm., 2011, 3(3), 205-210.
[http://dx.doi.org/10.4103/0975-1483.83759 ] [PMID: 21897659]
[91]
Liu, L.; Zhu, S. Preparation and characterization of inclusion complexes of prazosin hydrochloride with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. J. Pharm. Biomed. Anal., 2006, 40(1), 122-127.
[http://dx.doi.org/10.1016/j.jpba.2005.06.022 ] [PMID: 16095859]
[92]
Zidovetzki, R.; Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta, 2007, 1768(6), 1311-1324.
[http://dx.doi.org/10.1016/j.bbamem.2007.03.026 ] [PMID: 17493580]
[93]
Jadhav, G.S.; Vavia, P.R. Physicochemical, in silico and in vivo evaluation of a danazol-β-cyclodextrin complex. Int. J. Pharm., 2008, 352(1-2), 5-16.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.005 ] [PMID: 18023545]
[94]
Cal, K.; Centkowska, K. Use of cyclodextrins in topical formulations: practical aspects. Eur. J. Pharm. Biopharm., 2008, 68(3), 467-478.
[http://dx.doi.org/10.1016/j.ejpb.2007.08.002 ] [PMID: 17826046]
[95]
Alvira, E. Molecular dynamics study of the factors influencing the β-cyclodextrin inclusion complex formation of the isomers of linear molecules. J. Chem., 2017, 1-9.
[http://dx.doi.org/10.1155/2017/6907421]
[96]
Boonyarattanakalin, K.; Viernstein, H.; Wolschann, P.; Lawtrakul, L. Influence of ethanol as a co-solvent in cyclodextrin inclusion complexation: a molecular dynamics study. Sci. Pharm., 2015, 83(2), 387-399.
[http://dx.doi.org/10.3797/scipharm.1412-08 ] [PMID: 26839825]
[97]
Charumanee, S.; Okonogi, S.; Sirithunyalug, J.; Wolschann, P.; Viernstein, H. Effect of cyclodextrin types and co-solvent on solubility of a poorly water soluble drug. Sci. Pharm., 2016, 84(4), 694-704.
[http://dx.doi.org/10.3390/scipharm84040694 ] [PMID: 27763573]
[98]
Patel, H.M.; Suhagia, B.N.; Shah, S.A.; Rathod, I.S.; Parmar, V.K. Preparation and characterization of etoricoxib-beta-cyclodextrin complexes prepared by the kneading method. Acta Pharm., 2007, 57(3), 351-359.
[http://dx.doi.org/10.2478/v10007-007-0028-2 ] [PMID: 17878114]
[99]
Garnero, C.; Zoppi, A.; Genovese, D.; Longhi, M. Studies on trimethoprim:hydroxypropyl-β-cyclodextrin: aggregate and complex formation. Carbohydr. Res., 2010, 345(17), 2550-2556.
[http://dx.doi.org/10.1016/j.carres.2010.08.018 ] [PMID: 20933225]
[100]
Kaur, K.; Jindal, R.; Jindal, D. Synthesis, characterization and studies on host-guest interactions of inclusion complexes of metformin hydrochloride with β–cyclodextrin. J. Mol. Liq., 2019, 282, 162-168.
[http://dx.doi.org/10.1016/j.molliq.2019.02.127]
[101]
Jagtap, S.; Chandrakant, M. Enhanced dissolution and solubility of Epalrestat with β-Cyclodextrin ternary complex using Arginine. J. Drug Deliv. Ther., 2018, 8(6), 62-67.
[http://dx.doi.org/10.22270/jddt.v8i6.2014]
[102]
Al-Marzouqi, A.H.; Jobe, B.; Dowaidar, A.; Maestrelli, F.; Mura, P. Evaluation of supercritical fluid technology as preparative technique of benzocaine-cyclodextrin complexes--comparison with conventional methods. J. Pharm. Biomed. Anal., 2007, 43(2), 566-574.
[http://dx.doi.org/10.1016/j.jpba.2006.08.019 ] [PMID: 17010552]
[103]
Lee, C.W.; Kim, S.J.; Youn, Y.S. Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J. Supercrit. Fluids, 2010, 55(1), 348-357.
[http://dx.doi.org/10.1016/j.supflu.2010.05.028]
[104]
Al-Marzouqi, A.H.; Elwy, H.M.; Shehadi, I.; Adem, A. Physicochemical properties of antifungal drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Pharm. Biomed. Anal., 2009, 49(2), 227-233.
[http://dx.doi.org/10.1016/j.jpba.2008.10.032 ] [PMID: 19062214]
[105]
Lin, S.Y.; Hsu, C.H.; Sheu, M.T. Curve-fitting FTIR studies of loratadine/hydroxypropyl-β-cyclodextrin inclusion complex induced by co-grinding process. J. Pharm. Biomed. Anal., 2010, 53(3), 799-803.
[http://dx.doi.org/10.1016/j.jpba.2010.06.010 ] [PMID: 20619996]
[106]
Liu, J.; Qiu, L.; Gao, J.; Jin, Y. Preparation, characterization and in vivo evaluation of formulation of baicalein with hydroxypropyl-β-cyclodextrin. Int. J. Pharm., 2006, 312(1-2), 137-143.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.011 ] [PMID: 16459034]
[107]
Nguyen, T.A.; Liu, B.; Zhao, J.; Thomas, D.S.; Hook, J.M. An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem., 2013, 136(1), 186-192.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.104 ] [PMID: 23017411]
[108]
Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm., 2009, 6(3), 659-668.
[http://dx.doi.org/10.1021/mp900015y ] [PMID: 19267452]
[109]
Tang, K.; Zhang, P.; Pan, C.; Li, H. Equilibrium studies on enantioselective extraction of oxybutynin enantiomers by hydrophilic β‐cyclodextrin derivatives. AIChE J., 2011, 57(11), 3027-3036.
[http://dx.doi.org/10.1002/aic.12513]
[110]
Panda, B.; Subhadarsini, R.; Mallick, S. Biointerfacial phenomena of amlodipine buccomucosal tablets of HPMC matrix system containing polyacrylate polymer/β-cyclodextrin: Correlation of swelling and drug delivery performance. Expert Opin. Drug Deliv., 2016, 13(5), 633-643.
[http://dx.doi.org/10.1517/17425247.2016.1154038 ] [PMID: 26878690]
[111]
Huang, H.; Wu, Z.; Qi, X.; Zhang, H.; Chen, Q.; Xing, J.; Chen, H.; Rui, Y. Compression-coated tablets of glipizide using hydroxypropylcellulose for zero-order release: in vitro and in vivo evaluation. Int. J. Pharm., 2013, 446(1-2), 211-218.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.039 ] [PMID: 23370433]
[112]
Shah, S.; Patel, R.; Soniwala, M.; Chavda, J. Development and optimization of press coated tablets of release engineered valsartan for pulsatile delivery. Drug Dev. Ind. Pharm., 2015, 41(11), 1835-1846.
[http://dx.doi.org/10.3109/03639045.2015.1014374 ] [PMID: 25721985]
[113]
Zeng, F.; Wang, L.; Zhang, W.; Shi, K.; Zong, L. Formulation and in vivo evaluation of orally disintegrating tablets of clozapine/hydroxypropyl-β-cyclodextrin inclusion complexes. AAPS PharmSciTech, 2013, 14(2), 854-860.
[http://dx.doi.org/10.1208/s12249-013-9973-x ] [PMID: 23649995]
[114]
Gyanani, V.; Siddalingappa, B.; Betageri, G.V. Evaluation of various processes for simultaneous complexation and granulation to incorporate drug-cyclodextrin complexes into solid dosage forms. Drug Dev. Ind. Pharm., 2015, 41(11), 1856-1863.
[http://dx.doi.org/10.3109/03639045.2015.1018273 ] [PMID: 25754112]
[115]
Labib, G.S. Novel levocetirizine HCl tablets with enhanced palatability: synergistic effect of combining taste modifiers and effervescence technique. Drug Des. Devel. Ther., 2015, 9, 5135-5146.
[http://dx.doi.org/10.2147/DDDT.S92245 ] [PMID: 26379426]
[116]
Conceição, J.; Adeoye, O.; Cabral-Marques, H.M.; Lobo, J.M.S. Cyclodextrins as excipients in tablet formulations. Drug Discov. Today, 2018, 23(6), 1274-1284.
[http://dx.doi.org/10.1016/j.drudis.2018.04.009 ] [PMID: 29689302]
[117]
Simões, S.M.; Rey-Rico, A.; Concheiro, A.; Alvarez-Lorenzo, C. Supramolecular cyclodextrin-based drug nanocarriers. Chem. Commun. (Camb.), 2015, 51(29), 6275-6289.
[http://dx.doi.org/10.1039/C4CC10388B ] [PMID: 25679097]
[118]
Jansook, P.; Pichayakorn, W.; Muankaew, C.; Loftsson, T. Cyclodextrin-poloxamer aggregates as nanocarriers in eye drop formulations: dexamethasone and amphotericin B. Drug Dev. Ind. Pharm., 2016, 42(9), 1446-1454.
[http://dx.doi.org/10.3109/03639045.2016.1141932 ] [PMID: 26765786]
[119]
Viale, M.; Giglio, V.; Monticone, M.; Maric, I.; Lentini, G.; Rocco, M.; Vecchio, G. New doxorubicin nanocarriers based on cyclodextrins. Invest. New Drugs, 2017, 35(5), 539-544.
[http://dx.doi.org/10.1007/s10637-017-0461-0 ] [PMID: 28378257]
[120]
Giglio, V.; Viale, M.; Monticone, M. Cyclodextrin polymers as carries for the platinum-based anticancer agent LA-12. RSC Advances, 2016, 6, 12461-12466.
[http://dx.doi.org/10.1039/C5RA22398A]
[121]
Femminò, S.; Penna, C.; Bessone, F.; Caldera, F.; Dhakar, N.; Cau, D.; Pagliaro, P.; Cavalli, R.; Trotta, F. α-Cyclodextrin and α-Cyclodextrin polymers as oxygen nanocarriers to limit hypoxia/reoxygenation injury: Implications from an in vitro model. Polymers (Basel), 2018, 10(2), 211.
[http://dx.doi.org/10.3390/polym10020211 ] [PMID: 30966247]
[122]
Akae, Y.; Sogawa, H.; Takata, T. Cyclodextrin-based [3]rotaxanecrosslinked fluorescent polymer: synthesis and de-crosslinking using size complementarity. Angew. Chem. Int. Ed. Engl., 2018, 57(45), 14832-14836.
[http://dx.doi.org/10.1002/anie.201809171 ] [PMID: 30239079]
[123]
Morin-Crini, N.; Winterton, P.; Fourmentin, S.; Wilson, L.D.; Fenyvesi, E.; Crini, G. Water-insoluble β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Prog. Polym. Sci., 2018, 78, 1-23.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.07.004]
[124]
Sanna, D.; Alzari, V.; Nuvoli, D.; Nuvoli, L.; Rassu, M.; Sanna, V.; Mariani, A. β-Cyclodextrin-based supramolecular poly(Nisopropylacrylamide) hydrogels prepared by frontal polymerization. Carbohydr. Polym., 2017, 166, 249-255.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.099 ] [PMID: 28385230]
[125]
Farcas, A.; Liu, Y.C.; Nilam, M. Synthesis and photophysical properties of inclusion complexes between conjugated polyazomethines with γ-cyclodextrin and its tris-O-methylated derivative. Eur. Polym. J., 2019, 113, 236-243.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.01.067]
[126]
Jang, K.; Iijima, K.; Koyama, Y.; Uchida, S.; Asai, S.; Takata, T. Synthesis and properties of rotaxane-cross-linked polymers using a double-stranded γ-CD-based inclusion complex as a supramolecular cross-linker. Polymer (Guildf.), 2017, 128, 379-385.
[http://dx.doi.org/10.1016/j.polymer.2017.01.062]
[127]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067 ] [PMID: 26706565]
[128]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrinbased carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int., 2015, 2015: 198268.
[http://dx.doi.org/10.1155/2015/198268 ] [PMID: 26582104]
[129]
Giglio, V.; Viale, M.; Bertone, V.; Maric, I.; Vaccarone, R.; Vecchio, G. Cyclodextrin polymers as nanocarriers for sorafenib. Invest. New Drugs, 2018, 36(3), 370-379.
[http://dx.doi.org/10.1007/s10637-017-0538-9 ] [PMID: 29116478]
[130]
Kane, J.M. Comments on abilify MyCite. Clin. Schizophr. Relat. Psychoses, 2018, 11(4), 205-206.
[http://dx.doi.org/10.3371/CSRP.KA.010318 ] [PMID: 29341820]
[131]
Conceição, J.; Farto-Vaamonde, X.; Goyanes, A.; Adeoye, O.; Concheiro, A.; Cabral-Marques, H.; Sousa , Lobo. J.M.; Alvarez-Lorenzo, C. Hydroxypropyl-β-cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohydr. Polym., 2019, 221, 55-62.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.084 ] [PMID: 31227167]
[132]
Alvarez-Lorenzo, C.; García-González, C.A.; Concheiro, A. Cyclodextrins as versatile building blocks for regenerative medicine. J. Control. Release, 2017, 268, 269-281.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.038 ] [PMID: 29107127]
[133]
Cyclodextrins used as excipients. www.ema.europa.eu [access date: 09.10.2019].
[134]
Annex to the European Commission guideline on ‘Excipients in the labelling and package leaflet of medicinal products for human use’ (SANTE-2017-11668). www.ema.europa.eu [access date: 09.10.2019]
[135]
Coisne, C.; Tilloy, S.; Monflier, E.; Wils, D.; Fenart, L.; Gosselet, F. Cyclodextrins as emerging therapeutic tools in the treatment of cholesterol-associated vascular and neurodegenerative diseases. Molecules, 2016, 21(12), 1748.
[http://dx.doi.org/10.3390/molecules21121748 ] [PMID: 27999408]
[136]
www.clinicaltrials.gov Identifier: NCT01131299. Evaluation of Oral Alpha-Cyclodextrin for Decreasing Serum Cholesterol. [access date: 08.10.2019].
[137]
Amar, M.J.; Kaler, M.; Courville, A.B.; Shamburek, R.; Sampson, M.; Remaley, A.T. Randomized double blind clinical trial on the effect of oral α-cyclodextrin on serum lipids. Lipids Health Dis., 2016, 15(1), 115.
[http://dx.doi.org/10.1186/s12944-016-0284-6 ] [PMID: 27405337]
[138]
www.clinicaltrials.gov Identifier: NCT01747135. Hydroxypropyl Beta Cyclodextrin for Niemann-Pick Type C1 Disease. [access date: 08.10.2019]
[139]
Farmer, C.A.; Thurm, A.; Farhat, N.; Bianconi, S.; Keener, L.A.; Porter, F.D. Long-Term Neuropsychological Outcomes from an Open-Label Phase I/IIa Trial of 2-Hydroxypropyl-β-Cyclodextrins (VTS-270) in Niemann-Pick Disease, Type C1. CNS Drugs, 2019, 33(7), 677-683.
[http://dx.doi.org/10.1007/s40263-019-00642-2 ] [PMID: 31187454]
[140]
Identifier: NCT03931057. The Use of ADV6209 for Premedication in Pediatric Anesthesia. [access date: 08.10.2019]. www.clinicaltrials.gov
[141]
www.clinicaltrials.govIdentifier: NCT02822001. Sugammadex vs. Placebo to Prevent Residual Neuromuscular Block in the Post--‐ Anesthesia Care Unit (Sugammadex). [access date: 08.10.2019].
[142]
Gamsiz, E.D.; Miller, L.; Thombre, A.G.; Ahmed, I.; Carrier, R.L. Modeling the influence of cyclodextrins on oral absorption of low solubility drugs: I. Model development. Biotechnol. Bioeng., 2010, 105(2), 409-420.
[http://dx.doi.org/10.1002/bit.22523 ] [PMID: 19725042]
[143]
Nair, A.B.; Attimarad, M.; Al-Dhubiab, B.E.; Wadhwa, J.; Harsha, S.; Ahmed, M. Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-β-cyclodextrin. Drug Deliv., 2014, 21(7), 540-547.
[http://dx.doi.org/10.3109/10717544.2013.853213 ] [PMID: 24215288]
[144]
Terao, K.; Nakata, D.; Fukumi, H. Enhancement of oral bioavailability of coenzyme Q10 by complexation with γ-cyclodextrin in healthy adults. Nutr. Res., 2006, 26(10), 503-508.
[http://dx.doi.org/10.1016/j.nutres.2006.08.004]
[145]
Maharjan, P.; Cho, KH; Maharjan, A; Shin, MC; Moon, C; Min, KA Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. Journal of Pharmaceutical. Investigation., 2018, 1-14, 215-228.
[146]
Gaudana, R.; Jwala, J.; Boddu, S.H.; Mitra, A.K. Recent perspectives in ocular drug delivery. Pharm. Res., 2009, 26(5), 1197-1216.
[http://dx.doi.org/10.1007/s11095-008-9694-0 ] [PMID: 18758924]
[147]
Maharjan, P.; Cho, K.H.; Maharjan, A.; Shin, M.C.; Moon, C.; Min, K.A. Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. J. Pharm. Investig., 2019, 49(2), 215-228.
[http://dx.doi.org/10.1007/s40005-018-0404-6]
[148]
Sahoo, S.K.; Dilnawaz, F.; Krishnakumar, S. Nanotechnology in ocular drug delivery. Drug Discov. Today, 2008, 13(3-4), 144-151.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021 ] [PMID: 18275912]
[149]
Das, O.; Ghate, V.M.; Lewis, S.A. Utility of Sulfobutyl Ether beta-Cyclodextrin Inclusion Complexes in Drug Delivery: A Review. Indian J. Pharm. Sci., 2019, 81(4), 589-600.
[150]
Abd El-Gawad, A.E.H.; Soliman, O.A.; El-Dahan, M.S.; Al-Zuhairy, S.A.S. Improvement of the ocular bioavailability of econazole nitrate upon complexation with cyclodextrins. AAPS PharmSciTech, 2017, 18(5), 1795-1809.
[http://dx.doi.org/10.1208/s12249-016-0609-9 ] [PMID: 27830515]
[151]
Benson, H.A. Transdermal drug delivery: penetration enhancement techniques. Curr. Drug Deliv., 2005, 2(1), 23-33.
[http://dx.doi.org/10.2174/1567201052772915 ] [PMID: 16305405]
[152]
Maestrelli, F.; González-Rodríguez, M.L.; Rabasco, A.M.; Mura, P. Preparation and characterisation of liposomes encapsulating ketoprofen-cyclodextrin complexes for transdermal drug delivery. Int. J. Pharm., 2005, 298(1), 55-67.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.033 ] [PMID: 15941634]
[153]
Scalia, S.; Tursilli, R.; Iannuccelli, V. Complexation of the sunscreen agent, 4-methylbenzylidene camphor with cyclodextrins: effect on photostability and human stratum corneum penetration. J. Pharm. Biomed. Anal., 2007, 44(1), 29-34.
[http://dx.doi.org/10.1016/j.jpba.2007.01.016 ] [PMID: 17291707]
[154]
Loftsson, T.; Vogensen, S.B.; Brewster, M.E.; Konrádsdóttir, F. Effects of cyclodextrins on drug delivery through biological membranes. J. Pharm. Sci., 2007, 96(10), 2532-2546.
[http://dx.doi.org/10.1002/jps.20992 ] [PMID: 17630644]
[155]
Fenyvesi, É.; Puskás, I.; Szente, L. Applications of steroid drugs entrapped in cyclodextrins. Environ. Chem. Lett., 2019, 17(1), 375-391.
[http://dx.doi.org/10.1007/s10311-018-0807-7]
[156]
Masahiko, K.; Fumitoshi, H.; Kaneto, U. Improvement of oral and rectal bioavailabilities of carmofur by methylated β-cyclodextrin complexations. Int. J. Pharm., 1987, 38(1-3), 191-198.
[http://dx.doi.org/10.1016/0378-5173(87)90114-1]
[157]
Jadhav, K.R.; Gambhire, M.N.; Shaikh, I.M.; Kadam, V.J.; Pisal, S.S. Nasal Drug Delivery System-Factors Affecting and Applications. Curr. Drug Ther., 2007, 2(1), 27-38.
[http://dx.doi.org/10.2174/157488507779422374]
[158]
Grassin-Delyle, S.; Buenestado, A.; Naline, E.; Faisy, C.; Blouquit-Laye, S.; Couderc, L.J.; Le Guen, M.; Fischler, M.; Devillier, P. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol. Ther., 2012, 134(3), 366-379.
[http://dx.doi.org/10.1016/j.pharmthera.2012.03.003 ] [PMID: 22465159]
[159]
Lakshmi Prasanna, J.; Deepthi, B.; Rama Rao, N. Rectal drug delivery: A promising route for enhancing drug absorption. Asian J. Res. Pharm. Sci., 2012, 2(4), 143-149.
[160]
Matilainen, L.; Toropainen, T.; Vihola, H.; Hirvonen, J.; Järvinen, T.; Jarho, P.; Järvinen, K. In vitro toxicity and permeation of cyclodextrins in Calu-3 cells. J. Control. Release, 2008, 126(1), 10-16.
[http://dx.doi.org/10.1016/j.jconrel.2007.11.003 ] [PMID: 18160169]
[161]
Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev., 2007, 59(7), 645-666.
[http://dx.doi.org/10.1016/j.addr.2007.05.012 ] [PMID: 17601630]
[162]
Del Valle, E.M.M. Cyclodextrins and their uses: a review. Process Biochem., 2004, 39(9), 1033-1046.
[http://dx.doi.org/10.1016/S0032-9592(03)00258-9]
[163]
Gould, S.; Scott, R.C. 2-Hydroxypropyl-beta-cyclodextrin (HPbeta-CD): a toxicology review. Food Chem. Toxicol., 2005, 43(10), 1451-1459.
[http://dx.doi.org/10.1016/j.fct.2005.03.007 ] [PMID: 16018907]
[164]
Jullian, C.; Moyano, L.; Yañez, C.; Olea-Azar, C. Complexation of quercetin with three kinds of cyclodextrins: an antioxidant study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 67(1), 230-234.
[http://dx.doi.org/10.1016/j.saa.2006.07.006 ] [PMID: 16950645]
[165]
Jullian, C.; Orosteguis, T.; Pérez-Cruz, F.; Sánchez, P.; Mendizabal, F.; Olea-Azar, C. Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 71(1), 269-275.
[http://dx.doi.org/10.1016/j.saa.2007.12.020 ] [PMID: 18262835]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 14
Year: 2020
Published on: 15 June, 2020
Page: [1495 - 1510]
Pages: 16
DOI: 10.2174/1389450121666200615150039

Article Metrics

PDF: 31
HTML: 13
EPUB: 2
PRC: 1