MicroRNAs as Therapeutic Targets for Anticancer Drugs in Lung Cancer Therapy

Author(s): Yuan-Rong Liu, Ping-Yu Wang, Ning Xie*, Shu-Yang Xie*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 16 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.

Keywords: microRNAs, anticancer drugs, gene regulation, lung cancer, biological targets, cancer therapy.

[1]
Araz, O.; Ucar, E.Y.; Meral, M.; Yalcin, A.; Acemoglu, H.; Dogan, H.; Karaman, A.; Aydin, Y.; Gorguner, M.; Akgun, M. Frequency of Class I and II HLA alleles in patients with lung cancer according to chemotherapy response and 5-year survival. Clin. Respir. J., 2015, 9(3), 297-304.
[http://dx.doi.org/10.1111/crj.12143 ] [PMID: 24720676]
[2]
Latimer, K.M.; Mott, T.F. Lung cancer: Diagnosis, treatment principles, and screening. Am. Fam. Physician, 2015, 91(4), 250-256.
[PMID: 25955626]
[3]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.; Amin, A. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol., 2015, 35 Suppl, S276-S304.,
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007]
[4]
Rothschild, S.I. Targeted therapies in non-small cell lung cancer-beyond EGFR and ALK. Cancers (Basel), 2015, 7(2), 930-949.
[http://dx.doi.org/10.3390/cancers7020816 ] [PMID: 26018876]
[5]
Boolell, V.; Alamgeer, M.; Watkins, D.N.; Ganju, V. The evolution of therapies in non-small cell lung cancer. Cancers (Basel), 2015, 7(3), 1815-1846.
[http://dx.doi.org/10.3390/cancers7030864 ] [PMID: 26371045]
[6]
Silva, A.P.; Coelho, P.V.; Anazetti, M.; Simioni, P.U. Targeted therapies for the treatment of non-small-cell lung cancer: Monoclonal antibodies and biological inhibitors. Hum. Vaccin. Immunother., 2017, 13(4), 843-853.
[http://dx.doi.org/10.1080/21645515.2016.1249551 ] [PMID: 27831000]
[7]
Goldenberg, D.M.; Cardillo, T.M.; Govindan, S.V.; Rossi, E.A.; Sharkey, R.M. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an Antibody-Drug Conjugate (ADC). Oncotarget, 2015, 6(26), 22496-22512.
[http://dx.doi.org/10.18632/oncotarget.4318 ] [PMID: 26101915]
[8]
Tong, C.W.S.; Wu, W.K.K.; Loong, H.H.F.; Cho, W.C.S.; To, K.K.W. Drug combination approach to overcome resistance to EGFR tyrosine kinase inhibitors in lung cancer. Cancer Lett., 2017, 405, 100-110.
[http://dx.doi.org/10.1016/j.canlet.2017.07.023 ] [PMID: 28774798]
[9]
Shirode, A.B.; Bharali, D.J.; Nallanthighal, S.; Coon, J.K.; Mousa, S.A.; Reliene, R. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int. J. Nanomedicine, 2015, 10, 475-484.
[PMID: 25624761]
[10]
Rigas, B.; Tsioulias, G.J. The evolving role of nonsteroidal anti-inflammatory drugs in colon cancer prevention: A cause for optimism. J. Pharmacol. Exp. Ther., 2015, 353(1), 2-8.
[http://dx.doi.org/10.1124/jpet.114.220806 ] [PMID: 25589413]
[11]
Lall, R.K.; Syed, D.N.; Adhami, V.M.; Khan, M.I.; Mukhtar, H. Dietary polyphenols in prevention and treatment of prostate cancer. Int. J. Mol. Sci., 2015, 16(2), 3350-3376.
[http://dx.doi.org/10.3390/ijms16023350 ] [PMID: 25654230]
[12]
Macha, M.A.; Krishn, S.R.; Jahan, R.; Banerjee, K.; Batra, S.K.; Jain, M. Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer. Cancer Treat. Rev., 2015, 41(3), 277-288.
[http://dx.doi.org/10.1016/j.ctrv.2015.01.001 ] [PMID: 25624117]
[13]
Orellana, E.A.; Kasinski, A.L. MicroRNAs in cancer: A historical perspective on the path from discovery to therapy. Cancers (Basel), 2015, 7(3), 1388-1405.
[http://dx.doi.org/10.3390/cancers7030842 ] [PMID: 26226002]
[14]
Inamura, K.; Ishikawa, Y. MicroRNA in lung cancer: Novel biomarkers and potential tools for treatment. J. Clin. Med., 2016, 5(3)E36
[http://dx.doi.org/10.3390/jcm5030036 ] [PMID: 27005669]
[15]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246 ] [PMID: 28209991]
[16]
Inamura, K. Diagnostic and therapeutic potential of MicroRNAs in lung cancer. Cancers (Basel), 2017, 9(5),E49.
[http://dx.doi.org/10.3390/cancers9050049 ] [PMID: 28486396]
[17]
Li, C.; Lyu, J.; Meng, Q.H. MiR-93 promotes tumorigenesis and metastasis of non-small cell lung cancer cells by activating the PI3K/Akt pathway via inhibition of LKB1/PTEN/CDKN1A. J. Cancer, 2017, 8(5), 870-879.
[http://dx.doi.org/10.7150/jca.17958 ] [PMID: 28382150]
[18]
Ahmadi, A.; Khansarinejad, B.; Hosseinkhani, S.; Ghanei, M.; Mowla, S.J. miR-199a-5p and miR-495 target GRP78 within UPR pathway of lung cancer. Gene, 2017, 620, 15-22.
[http://dx.doi.org/10.1016/j.gene.2017.03.032 ] [PMID: 28363780]
[19]
Castro, D.; Moreira, M.; Gouveia, A.M.; Pozza, D.H.; De Mello, R.A. MicroRNAs in lung cancer. Oncotarget, 2017, 8(46), 81679-81685.
[http://dx.doi.org/10.18632/oncotarget.20955 ] [PMID: 29113423]
[20]
Wang, W.; Yang, J.; Yu, F.; Li, W.; Wang, L.; Zou, H.; Long, X. MicroRNA-122-3p inhibits tumor cell proliferation and induces apoptosis by targeting Forkhead box O in A549 cells. Oncol. Lett., 2018, 15(2), 2695-2699.
[PMID: 29434994]
[21]
Li, Y.; Zhang, X.; Yang, Z.; Li, Y.; Han, B.; Chen, L.A. miR-339-5p inhibits metastasis of non-small cell lung cancer by regulating the epithelial-to-mesenchymal transition. Oncol. Lett., 2018, 15(2), 2508-2514.
[PMID: 29434966]
[22]
Huang, R.S.; Zheng, Y.L.; Li, C.; Ding, C.; Xu, C.; Zhao, J. MicroRNA-485-5p suppresses growth and metastasis in non-small cell lung cancer cells by targeting IGF2BP2. Life Sci., 2018, 199, 104-111.
[http://dx.doi.org/10.1016/j.lfs.2018.03.005 ] [PMID: 29510198]
[23]
Yu, T.; Li, J.; Yan, M.; Liu, L.; Lin, H.; Zhao, F.; Sun, L.; Zhang, Y.; Cui, Y.; Zhang, F.; Li, J.; He, X.; Yao, M. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene, 2015, 34(4), 413-423.
[http://dx.doi.org/10.1038/onc.2013.574 ] [PMID: 24469061]
[24]
Trang, P.; Medina, P.P.; Wiggins, J.F.; Ruffino, L.; Kelnar, K.; Omotola, M.; Homer, R.; Brown, D.; Bader, A.G.; Weidhaas, J.B.; Slack, F.J. Regression of murine lung tumors by the let-7 microRNA. Oncogene, 2010, 29(11), 1580-1587.
[http://dx.doi.org/10.1038/onc.2009.445 ] [PMID: 19966857]
[25]
Chen, Y.; Gao, D.Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev., 2015, 81, 128-141.
[http://dx.doi.org/10.1016/j.addr.2014.05.009 ] [PMID: 24859533]
[26]
Bader, A.G.; Brown, D.; Stoudemire, J.; Lammers, P. Developing therapeutic microRNAs for cancer. Gene Ther., 2011, 18(12), 1121-1126.
[http://dx.doi.org/10.1038/gt.2011.79 ] [PMID: 21633392]
[27]
Zhang, S.; Zhang, C.; Li, Y.; Wang, P.; Yue, Z.; Xie, S. miR-98 regulates cisplatin-induced A549 cell death by inhibiting TP53 pathway. Biomed. Pharmacother., 2011, 65(6), 436-442.
[http://dx.doi.org/10.1016/j.biopha.2011.04.010 ] [PMID: 21880462]
[28]
Zhang, Y.X.; Yue, Z.; Wang, P.Y.; Li, Y.J.; Xin, J.X.; Pang, M.; Zheng, Q.Y.; Xie, S.Y. Cisplatin upregulates MSH2 expression by reducing miR-21 to inhibit A549 cell growth. Biomed. Pharmacother., 2013, 67(2), 97-102.
[http://dx.doi.org/10.1016/j.biopha.2012.11.008 ] [PMID: 23485110]
[29]
Yagishita, S.; Fujita, Y.; Kitazono, S.; Ko, R.; Nakadate, Y.; Sawada, T.; Kitamura, Y.; Shimoyama, T.; Maeda, Y.; Takahashi, F.; Takahashi, K.; Tamura, T.; Koizumi, F. Chemotherapy-regulated microRNA-125-HER2 pathway as a novel therapeutic target for trastuzumab-mediated cellular cytotoxicity in small cell lung cancer. Mol. Cancer Ther., 2015, 14(6), 1414-1423.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0625 ] [PMID: 25833836]
[30]
Yan, F.; Shen, N.; Pang, J.; Xie, D.; Deng, B.; Molina, J.R.; Yang, P.; Liu, S. Restoration of miR-101 suppresses lung tumorigenesis through inhibition of DNMT3a-dependent DNA methylation. Cell Death Dis., 2014, 5,e1413.
[http://dx.doi.org/10.1038/cddis.2014.380 ] [PMID: 25210796]
[31]
Coleman, C.B.; Lightell, D.J., Jr; Moss, S.C.; Bates, M.; Parrino, P.E.; Woods, T.C. Elevation of miR-221 and -222 in the internal mammary arteries of diabetic subjects and normalization with metformin. Mol. Cell. Endocrinol., 2013, 374(1-2), 125-129.
[http://dx.doi.org/10.1016/j.mce.2013.04.019 ] [PMID: 23648338]
[32]
You, B.R.; Park, W.H. Suberoylanilide hydroxamic acid induces thioredoxin1-mediated apoptosis in lung cancer cells via up-regulation of miR-129-5p. Mol. Carcinog., 2017, 56(12), 2566-2577.
[http://dx.doi.org/10.1002/mc.22701 ] [PMID: 28667779]
[33]
Chen, C.Q.; Chen, C.S.; Chen, J.J.; Zhou, L.P.; Xu, H.L.; Jin, W.W.; Wu, J.B.; Gao, S.M. Histone deacetylases inhibitor trichostatin A increases the expression of Dleu2/miR-15a/16-1 via HDAC3 in non-small cell lung cancer. Mol. Cell. Biochem., 2013, 383(1-2), 137-148.
[http://dx.doi.org/10.1007/s11010-013-1762-z ] [PMID: 23867991]
[34]
Gruszka, R.; Zakrzewska, M. The oncogenic relevance of miR-17-92 cluster and its paralogous miR-106b-25 and miR-106a-363 clusters in brain tumors. Int. J. Mol. Sci., 2018, 19(3),E879.
[http://dx.doi.org/10.3390/ijms19030879 ] [PMID: 29547527]
[35]
Pandima Devi, K.; Rajavel, T.; Daglia, M.; Nabavi, S.F.; Bishayee, A.; Nabavi, S.M. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Semin. Cancer Biol., 2017, 46, 146-157.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.001 ] [PMID: 28185862]
[36]
Jones-Rhoades, M.W.; Bartel, D.P.; Bartel, B. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol., 2006, 57, 19-53.
[http://dx.doi.org/10.1146/annurev.arplant.57.032905.105218 ] [PMID: 16669754]
[37]
Schnall-Levin, M.; Zhao, Y.; Perrimon, N.; Berger, B. Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3'UTRs. Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15751-15756.
[http://dx.doi.org/10.1073/pnas.1006172107 ] [PMID: 20729470]
[38]
Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet., 2008, 9(2), 102-114.
[http://dx.doi.org/10.1038/nrg2290 ] [PMID: 18197166]
[39]
Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655.
[http://dx.doi.org/10.1016/j.cell.2009.01.035 ] [PMID: 19239886]
[40]
Wienholds, E.; Plasterk, R.H. MicroRNA function in animal development. FEBS Lett., 2005, 579(26), 5911-5922.
[http://dx.doi.org/10.1016/j.febslet.2005.07.070 ] [PMID: 16111679]
[41]
Zheng, B.; Jeong, S.; Zhu, Y.; Chen, L.; Xia, Q. miRNA and lncRNA as biomarkers in cholangiocarcinoma (CCA). Oncotarget, 2017, 8(59), 100819-100830.
[http://dx.doi.org/10.18632/oncotarget.19044 ] [PMID: 29246025]
[42]
Shi, Q.; Yang, X. Circulating MicroRNA and long noncoding RNA as biomarkers of cardiovascular diseases. J. Cell. Physiol., 2016, 231(4), 751-755.
[http://dx.doi.org/10.1002/jcp.25174 ] [PMID: 26308238]
[43]
Li, J.; Guan, J.; Long, X.; Wang, Y.; Xiang, X. mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance. Oncol. Rep., 2016, 35(6), 3523-3531.
[http://dx.doi.org/10.3892/or.2016.4714 ] [PMID: 27035564]
[44]
Xu, W.; Hang, M.; Yuan, C.Y.; Wu, F.L.; Chen, S.B.; Xue, K. MicroRNA-139-5p inhibits cell proliferation and invasion by targeting insulin-like growth factor 1 receptor in human non-small cell lung cancer. Int. J. Clin. Exp. Pathol., 2015, 8(4), 3864-3870.
[PMID: 26097570]
[45]
Han, J.; Zhao, F.; Zhang, J.; Zhu, H.; Ma, H.; Li, X.; Peng, L.; Sun, J.; Chen, Z. miR-223 reverses the resistance of EGFR-TKIs through IGF1R/PI3K/Akt signaling pathway. Int. J. Oncol., 2016, 48(5), 1855-1867.
[http://dx.doi.org/10.3892/ijo.2016.3401 ] [PMID: 26936292]
[46]
Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol., 2007, 302(1), 1-12.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.028 ] [PMID: 16989803]
[47]
Fan, Q.; Hu, X.; Zhang, H.; Wang, S.; Zhang, H.; You, C.; Zhang, C.Y.; Liang, H.; Chen, X.; Ba, Y. MiR-193a-3p is an important tumour suppressor in lung cancer and directly targets KRAS. Cell. Physiol. Biochem., 2017, 44(4), 1311-1324.
[http://dx.doi.org/10.1159/000485491 ] [PMID: 29183007]
[48]
Kong, Q.; Shu, N.; Li, J.; Xu, N. miR-641 functions as a tumor suppressor by targeting MDM2 in human lung cancer. Oncol. Res., 2018, 26(5), 735-741.
[http://dx.doi.org/10.3727/096504017X15021536183490 ] [PMID: 28800790]
[49]
Tang, T.; Huan, L.; Zhang, S.; Zhou, H.; Gu, L.; Chen, X.; Zhang, L. MicroRNA-212 functions as a tumor-suppressor in human non-small cell lung cancer by targeting SOX4. Oncol. Rep., 2017, 38(4), 2243-2250.
[http://dx.doi.org/10.3892/or.2017.5885 ] [PMID: 28791372]
[50]
Zhou, F.; Nie, L.; Feng, D.; Guo, S.; Luo, R. MicroRNA-379 acts as a tumor suppressor in non-small cell lung cancer by targeting the IGF1R-mediated AKT and ERK pathways. Oncol. Rep., 2017, 38(3), 1857-1866.
[http://dx.doi.org/10.3892/or.2017.5835 ] [PMID: 28731178]
[51]
Zhao, Z.; Lv, B.; Zhang, L.; Zhao, N.; Lv, Y. miR-202 functions as a tumor suppressor in non-small cell lung cancer by targeting STAT3. Mol. Med. Rep., 2017, 16(2), 2281-2289.
[http://dx.doi.org/10.3892/mmr.2017.6841 ] [PMID: 28656198]
[52]
Zhang, G.; Jiang, G.; Wang, C.; Zhong, K.; Zhang, J.; Xue, Q.; Li, X.; Jin, H.; Li, B. Decreased expression of microRNA-320a promotes proliferation and invasion of non-small cell lung cancer cells by increasing VDAC1 expression. Oncotarget, 2016, 7(31), 49470-49480.
[http://dx.doi.org/10.18632/oncotarget.9943 ] [PMID: 27304056]
[53]
Wang, R.T.; Xu, M.; Xu, C.X.; Song, Z.G.; Jin, H. Decreased expression of miR216a contributes to non-small-cell lung cancer progression. Clin. Cancer Res., 2014, 20(17), 4705-4716.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0517 ] [PMID: 24958806]
[54]
Wang, J.; Tian, X.; Han, R.; Zhang, X.; Wang, X.; Shen, H.; Xue, L.; Liu, Y.; Yan, X.; Shen, J.; Mannoor, K.; Deepak, J.; Donahue, J.M.; Stass, S.A.; Xing, L.; Jiang, F. Downregulation of miR-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene, 2014, 33(9), 1181-1189.
[http://dx.doi.org/10.1038/onc.2013.42 ] [PMID: 23474761]
[55]
He, D.; Wang, J.; Zhang, C.; Shan, B.; Deng, X.; Li, B.; Zhou, Y.; Chen, W.; Hong, J.; Gao, Y.; Chen, Z.; Duan, C. Down-regulation of miR-675-5p contributes to tumor progression and development by targeting pro-tumorigenic GPR55 in non-small cell lung cancer. Mol. Cancer, 2015, 14, 73.
[http://dx.doi.org/10.1186/s12943-015-0342-0 ] [PMID: 25889562]
[56]
Liu, L.; Bi, N.; Wu, L.; Ding, X.; Men, Y.; Zhou, W.; Li, L.; Zhang, W.; Shi, S.; Song, Y.; Wang, L. MicroRNA-29c functions as a tumor suppressor by targeting VEGFA in lung adenocarcinoma. Mol. Cancer, 2017, 16(1), 50.
[http://dx.doi.org/10.1186/s12943-017-0620-0 ] [PMID: 28241836]
[57]
Li, Y.L.; Liu, X.M.; Zhang, C.Y.; Zhou, J.B.; Shao, Y.; Liang, C.; Wang, H.M.; Hua, Z.Y.; Lu, S.D.; Ma, Z.L. MicroRNA-34a/EGFR axis plays pivotal roles in lung tumorigenesis. Oncogenesis, 2017, 6(8),e372.
[http://dx.doi.org/10.1038/oncsis.2017.50 ] [PMID: 28825720]
[58]
Ma, T.; Zhao, Y.; Wei, K.; Yao, G.; Pan, C.; Liu, B.; Xia, Y.; He, Z.; Qi, X.; Li, Z.; Wang, J.; Shao, Y. MicroRNA-124 functions as a tumor suppressor by regulating CDH2 and epithelial-mesenchymal transition in non-small cell lung cancer. Cell. Physiol. Biochem., 2016, 38(4), 1563-1574.
[http://dx.doi.org/10.1159/000443097 ] [PMID: 27073840]
[59]
Zhong, L.; Sun, S.; Shi, J.; Cao, F.; Han, X.; Chen, Z. MicroRNA-125a-5p plays a role as a tumor suppressor in lung carcinoma cells by directly targeting STAT3. Tumour Biol., 2017, 39(6),1010428317697579.
[http://dx.doi.org/10.1177/1010428317697579 ] [PMID: 28631574]
[60]
Cao, Y.; Zhao, D.; Li, P.; Wang, L.; Qiao, B.; Qin, X.; Li, L.; Wang, Y. MicroRNA-181a-5p impedes IL-17-induced nonsmall cell lung cancer proliferation and migration through targeting VCAM-1. Cell. Physiol. Biochem., 2017, 42(1), 346-356.
[http://dx.doi.org/10.1159/000477389 ] [PMID: 28535543]
[61]
Feng, S.; Cong, S.; Zhang, X.; Bao, X.; Wang, W.; Li, H.; Wang, Z.; Wang, G.; Xu, J.; Du, B.; Qu, D.; Xiong, W.; Yin, M.; Ren, X.; Wang, F.; He, J.; Zhang, B. MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells. Nucleic Acids Res., 2011, 39(15), 6669-6678.
[http://dx.doi.org/10.1093/nar/gkr232 ] [PMID: 21511813]
[62]
Yongchun, Z.; Linwei, T.; Xicai, W.; Lianhua, Y.; Guangqiang, Z.; Ming, Y.; Guanjian, L.; Yujie, L.; Yunchao, H. MicroRNA-195 inhibits non-small cell lung cancer cell proliferation, migration and invasion by targeting MYB. Cancer Lett., 2014, 347(1), 65-74.
[http://dx.doi.org/10.1016/j.canlet.2014.01.019 ] [PMID: 24486218]
[63]
Bai, X.; Meng, L.; Sun, H.; Li, Z.; Zhang, X.; Hua, S. MicroRNA-196b inhibits cell growth and metastasis of lung cancer cells by targeting Runx2. Cell. Physiol. Biochem., 2017, 43(2), 757-767.
[http://dx.doi.org/10.1159/000481559 ] [PMID: 28950255]
[64]
Liu, X.; Gao, X.; Zhang, W.; Zhu, T.; Bi, W.; Zhang, Y. MicroRNA-204 deregulation in lung adenocarcinoma controls the biological behaviors of endothelial cells potentially by modulating Janus kinase 2-signal transducer and activator of transcription 3 pathway. IUBMB Life, 2018, 70(1), 81-91.
[http://dx.doi.org/10.1002/iub.1706 ] [PMID: 29281186]
[65]
Yang, Y.; Ding, L.; Hu, Q.; Xia, J.; Sun, J.; Wang, X.; Xiong, H.; Gurbani, D.; Li, L.; Liu, Y.; Liu, A. MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis. Mol. Cancer, 2017, 16(1), 141.
[http://dx.doi.org/10.1186/s12943-017-0710-z ] [PMID: 28830450]
[66]
Chen, W.; Wang, J.; Liu, S.; Wang, S.; Cheng, Y.; Zhou, W.; Duan, C.; Zhang, C. MicroRNA-361-3p suppresses tumor cell proliferation and metastasis by directly targeting SH2B1 in NSCLC. J. Exp. Clin. Cancer Res., 2016, 35, 76.
[http://dx.doi.org/10.1186/s13046-016-0357-4 ] [PMID: 27164951]
[67]
Wang, R.; Wang, Z.X.; Yang, J.S.; Pan, X.; De, W.; Chen, L.B. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene, 2011, 30(23), 2644-2658.
[http://dx.doi.org/10.1038/onc.2010.642 ] [PMID: 21358675]
[68]
Liu, M.; Zhang, Y.; Zhang, J.; Cai, H.; Zhang, C.; Yang, Z.; Niu, Y.; Wang, H.; Wei, X.; Wang, W.; Gao, P.; Li, H.; Zhang, J.; Sun, G. MicroRNA-1253 suppresses cell proliferation and invasion of non-small-cell lung carcinoma by targeting WNT5A. Cell Death Dis., 2018, 9(2), 189.
[http://dx.doi.org/10.1038/s41419-017-0218-x ] [PMID: 29415994]
[69]
Xiao, L.; Zhou, H.; Li, X.P.; Chen, J.; Fang, C.; Mao, C.X.; Cui, J.J.; Zhang, W.; Zhou, H.H.; Yin, J.Y.; Liu, Z.Q. MicroRNA-138 acts as a tumor suppressor in non small cell lung cancer via targeting YAP1. Oncotarget, 2016, 7(26), 40038-40046.
[http://dx.doi.org/10.18632/oncotarget.9480 ] [PMID: 27223073]
[70]
Zheng, H.; Wu, J.; Shi, J.; Lu, C.; Wang, Y.; Sun, Q.; Zhang, G.; Zhao, G. miR-125a-5p upregulation suppresses the proliferation and induces the cell apoptosis of lung adenocarcinoma by targeting NEDD9. Oncol. Rep., 2017, 38(3), 1790-1796.
[http://dx.doi.org/10.3892/or.2017.5812 ] [PMID: 28714018]
[71]
Sun, C.C.; Li, S.J.; Li, D.J. Hsa-miR-134 suppresses Non-Small Cell Lung Cancer (NSCLC) development through down-regulation of CCND1. Oncotarget, 2016, 7(24), 35960-35978.
[http://dx.doi.org/10.18632/oncotarget.8482 ] [PMID: 27166267]
[72]
Ye, Z.; Fang, B.; Pan, J.; Zhang, N.; Huang, J.; Xie, C.; Lou, T.; Cao, Z. miR-138 suppresses the proliferation, metastasis and autophagy of non-small cell lung cancer by targeting Sirt1. Oncol. Rep., 2017, 37(6), 3244-3252.
[http://dx.doi.org/10.3892/or.2017.5619 ] [PMID: 28498463]
[73]
Li, Y.L.; Wang, J.; Zhang, C.Y.; Shen, Y.Q.; Wang, H.M.; Ding, L.; Gu, Y.C.; Lou, J.T.; Zhao, X.T.; Ma, Z.L.; Jin, Y.X. MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2. Oncotarget, 2016, 7(37), 59287-59298.
[http://dx.doi.org/10.18632/oncotarget.11040 ] [PMID: 27494902]
[74]
Fang, C.; Chen, Y.X.; Wu, N.Y.; Yin, J.Y.; Li, X.P.; Huang, H.S.; Zhang, W.; Zhou, H.H.; Liu, Z.Q. MiR-488 inhibits proliferation and cisplatin sensibility in Non-Small-Cell Lung Cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway. Sci. Rep., 2017, 7, 40384.
[http://dx.doi.org/10.1038/srep40384 ] [PMID: 28074905]
[75]
Shi, L.; Zhang, B.; Sun, X.; Lu, S.; Liu, Z.; Liu, Y.; Li, H.; Wang, L.; Wang, X.; Zhao, C. MiR-204 inhibits human NSCLC metastasis through suppression of NUAK1. Br. J. Cancer, 2014, 111(12), 2316-2327.
[http://dx.doi.org/10.1038/bjc.2014.580 ] [PMID: 25412236]
[76]
Zhao, L.; Ni, X.; Zhao, L.; Zhang, Y.; Jin, D.; Yin, W.; Wang, D.; Zhang, W. MiroRNA-188 acts as tumor suppressor in non-small-cell lung cancer by targeting MAP3K3. Mol. Pharm., 2018, 15(4), 1682-1689.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00071 ] [PMID: 29528232]
[77]
Yoo, J.K.; Jung, H.Y.; Lee, J.M.; Yi, H.; Oh, S.H.; Ko, H.Y.; Yoo, H.; Kim, H.R.; Song, H.; Kim, S.; Kim, J.K. The novel miR-9500 regulates the proliferation and migration of human lung cancer cells by targeting Akt1. Cell Death Differ., 2014, 21(7), 1150-1159.
[http://dx.doi.org/10.1038/cdd.2014.33 ] [PMID: 24658401]
[78]
Seol, H.S.; Akiyama, Y.; Shimada, S.; Lee, H.J.; Kim, T.I.; Chun, S.M.; Singh, S.R.; Jang, S.J. Epigenetic silencing of microRNA-373 to epithelial-mesenchymal transition in non-small cell lung cancer through IRAK2 and LAMP1 axes. Cancer Lett., 2014, 353(2), 232-241.
[http://dx.doi.org/10.1016/j.canlet.2014.07.019 ] [PMID: 25063738]
[79]
Wang, H.H.; Wang, Y.C.; Wu, D.W.; Hung, C.S.; Chen, C.Y.; Lee, H. Targeting insulin-like growth factor-binding protein-3 by microRNA-125b promotes tumor invasion and poor outcomes in non-small-cell lung cancer. Tumour Biol., 2017, 39(4),1010428317694316.
[http://dx.doi.org/10.1177/1010428317694316 ] [PMID: 28378642]
[80]
Zhang, L.; Lin, J.; Ye, Y.; Oba, T.; Gentile, E.; Lian, J.; Wang, J.; Zhao, Y.; Gu, J.; Wistuba, I.I.; Roth, J.A.; Ji, L.; Wu, X. Serum MicroRNA-150 predicts prognosis for early-stage non-small cell lung cancer and promotes tumor cell proliferation by targeting tumor suppressor gene SRCIN1. Clin. Pharmacol. Ther., 2018, 103(6), 1061-1073.
[http://dx.doi.org/10.1002/cpt.870 ] [PMID: 28891208]
[81]
Jiang, L.P.; He, C.Y.; Zhu, Z.T. Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene. Oncotarget, 2017, 8(14), 23675-23689.
[http://dx.doi.org/10.18632/oncotarget.15644 ] [PMID: 28423589]
[82]
Yu, T.; Liu, L.; Li, J.; Yan, M.; Lin, H.; Liu, Y.; Chu, D.; Tu, H.; Gu, A.; Yao, M. MiRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN. Oncotarget, 2015, 6(30), 30239-30250.
[http://dx.doi.org/10.18632/oncotarget.4972 ] [PMID: 26317552]
[83]
Xiao, X.; Yang, D.; Gong, X.; Mo, D.; Pan, S.; Xu, J. miR-1290 promotes lung adenocarcinoma cell proliferation and invasion by targeting SOCS4. Oncotarget, 2018, 9(15), 11977-11988.
[http://dx.doi.org/10.18632/oncotarget.24046 ] [PMID: 29552286]
[84]
Yan, A.; Yang, C.; Chen, Z.; Li, C.; Cai, L. MiR-761 promotes progression and metastasis of non-small cell lung cancer by targeting ING4 and TIMP2. Cell. Physiol. Biochem., 2015, 37(1), 55-66.
[http://dx.doi.org/10.1159/000430333 ] [PMID: 26278569]
[85]
Xie, X.; Liu, H.T.; Mei, J.; Ding, F.B.; Xiao, H.B.; Hu, F.Q.; Hu, R.; Wang, M.S. miR-106a promotes growth and metastasis of non-small cell lung cancer by targeting PTEN. Int. J. Clin. Exp. Pathol., 2015, 8(4), 3827-3834.
[PMID: 26097565]
[86]
Xu, G.; Zhang, Z.; Zhang, L.; Chen, Y.; Li, N.; Lv, Y.; Li, Y.; Xu, X. miR-4326 promotes lung cancer cell proliferation through targeting tumor suppressor APC2. Mol. Cell. Biochem., 2018, 443(1-2), 151-157.
[http://dx.doi.org/10.1007/s11010-017-3219-2 ] [PMID: 29101731]
[87]
Liu, F.; Cai, Y.; Rong, X.; Chen, J.; Zheng, D.; Chen, L.; Zhang, J.; Luo, R.; Zhao, P.; Ruan, J. MiR-661 promotes tumor invasion and metastasis by directly inhibiting RB1 in non small cell lung cancer. Mol. Cancer, 2017, 16(1), 122.
[http://dx.doi.org/10.1186/s12943-017-0698-4 ] [PMID: 28716024]
[88]
Wang, Y.; Lv, Z.; Fu, J.; Wang, Z.; Fan, Z.; Lei, T. Endogenous microRNA-424 predicts clinical outcome and its inhibition acts as cancer suppressor in human non-small cell lung cancer. Biomed. Pharmacother., 2017, 89, 208-214.
[http://dx.doi.org/10.1016/j.biopha.2017.01.163 ] [PMID: 28231541]
[89]
Li, H.; Ouyang, R.; Wang, Z.; Zhou, W.; Chen, H.; Jiang, Y.; Zhang, Y.; Li, H.; Liao, M.; Wang, W.; Ye, M.; Ding, Z.; Feng, X.; Liu, J.; Zhang, B. MiR-150 promotes cellular metastasis in non-small cell lung cancer by targeting FOXO4. Sci. Rep., 2016, 6, 39001.
[http://dx.doi.org/10.1038/srep39001 ] [PMID: 27976702]
[90]
Wei, K.; Pan, C.; Yao, G.; Liu, B.; Ma, T.; Xia, Y.; Jiang, W.; Chen, L.; Chen, Y. MiR-106b-5p promotes proliferation and inhibits apoptosis by regulating BTG3 in non-small cell lung cancer. Cell. Physiol. Biochem., 2017, 44(4), 1545-1558.
[http://dx.doi.org/10.1159/000485650 ] [PMID: 29197876]
[91]
Zhang, X.; Ke, X.; Pu, Q.; Yuan, Y.; Yang, W.; Luo, X.; Jiang, Q.; Hu, X.; Gong, Y.; Tang, K.; Su, X.; Liu, L.; Zhu, W.; Wei, Y. MicroRNA-410 acts as oncogene in NSCLC through downregulating SLC34A2 via activating Wnt/β-catenin pathway. Oncotarget, 2016, 7(12), 14569-14585.
[http://dx.doi.org/10.18632/oncotarget.7538 ] [PMID: 26910912]
[92]
Liu, Z.L.; Wang, H.; Liu, J.; Wang, Z.X. MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol. Cell. Biochem., 2013, 372(1-2), 35-45.
[http://dx.doi.org/10.1007/s11010-012-1443-3 ] [PMID: 22956424]
[93]
Ye, Y.; Zhuang, J.; Wang, G.; He, S.; Ni, J.; Xia, W.; Wang, J. microRNA-605 promotes cell proliferation, migration and invasion in non-small cell lung cancer by directly targeting LATS2. Exp. Ther. Med., 2017, 14(1), 867-873.
[http://dx.doi.org/10.3892/etm.2017.4538 ] [PMID: 28673012]
[94]
Zhou, R.; Zhou, X.; Yin, Z.; Guo, J.; Hu, T.; Jiang, S.; Liu, L.; Dong, X.; Zhang, S.; Wu, G. MicroRNA-574-5p promotes metastasis of non-small cell lung cancer by targeting PTPRU. Sci. Rep., 2016, 6, 35714.
[http://dx.doi.org/10.1038/srep35714 ] [PMID: 27761023]
[95]
Wei, C.H.; Wu, G.; Cai, Q.; Gao, X.C.; Tong, F.; Zhou, R.; Zhang, R.G.; Dong, J.H.; Hu, Y.; Dong, X.R. MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J. Hematol. Oncol., 2017, 10(1), 125.
[http://dx.doi.org/10.1186/s13045-017-0493-0 ] [PMID: 28629431]
[96]
Cui, R.; Meng, W.; Sun, H.L.; Kim, T.; Ye, Z.; Fassan, M.; Jeon, Y.J.; Li, B.; Vicentini, C.; Peng, Y.; Lee, T.J.; Luo, Z.; Liu, L.; Xu, D.; Tili, E.; Jin, V.; Middleton, J.; Chakravarti, A.; Lautenschlaeger, T.; Croce, C.M. MicroRNA-224 promotes tumor progression in nonsmall cell lung cancer. Proc. Natl. Acad. Sci. USA, 2015, 112(31), E4288-E4297.
[http://dx.doi.org/10.1073/pnas.1502068112 ] [PMID: 26187928]
[97]
Zeng, Y.; Zhu, J.; Shen, D.; Qin, H.; Lei, Z.; Li, W.; Liu, Z.; Huang, J.A. MicroRNA-205 targets SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and in vivo. Oncotarget, 2017, 8(19), 30817-30829.
[http://dx.doi.org/10.18632/oncotarget.10339 ] [PMID: 28199217]
[98]
Ren, P.; Gong, F.; Zhang, Y.; Jiang, J.; Zhang, H. MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN. Tumour Biol., 2016, 37(3), 3215-3225.
[http://dx.doi.org/10.1007/s13277-015-4150-3 ] [PMID: 26432332]
[99]
Liu, X.; Sempere, L.F.; Ouyang, H.; Memoli, V.A.; Andrew, A.S.; Luo, Y.; Demidenko, E.; Korc, M.; Shi, W.; Preis, M.; Dragnev, K.H.; Li, H.; Direnzo, J.; Bak, M.; Freemantle, S.J.; Kauppinen, S.; Dmitrovsky, E. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J. Clin. Invest., 2010, 120(4), 1298-1309.
[http://dx.doi.org/10.1172/JCI39566 ] [PMID: 20237410]
[100]
Zhuang, L.; Shou, T.; Li, K.; Gao, C.L.; Duan, L.C.; Fang, L.Z.; Zhang, Q.Y.; Chen, Z.N.; Zhang, C.; Yang, S.T.; Li, G.F. MicroRNA-30e-5p promotes cell growth by targeting PTPN13 and indicates poor survival and recurrence in lung adenocarcinoma. J. Cell. Mol. Med., 2017, 21(11), 2852-2862.
[http://dx.doi.org/10.1111/jcmm.13198 ] [PMID: 28653805]
[101]
Gu, Y.; Liu, S.; Zhang, X.; Chen, G.; Liang, H.; Yu, M.; Liao, Z.; Zhou, Y.; Zhang, C.Y.; Wang, T.; Wang, C.; Zhang, J.; Chen, X. Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer. Protein Cell, 2017, 8(6), 455-466.
[http://dx.doi.org/10.1007/s13238-017-0393-7 ] [PMID: 28364280]
[102]
Liang, C.; Zhang, X.; Wang, H.M.; Liu, X.M.; Zhang, X.J.; Zheng, B.; Qian, G.R.; Ma, Z.L. MicroRNA-18a-5p functions as an oncogene by directly targeting IRF2 in lung cancer. Cell Death Dis., 2017, 8(5),e2764.
[http://dx.doi.org/10.1038/cddis.2017.145 ] [PMID: 28471447]
[103]
Sun, C.C.; Li, S.J.; Yuan, Z.P.; Li, D.J. MicroRNA-346 facilitates cell growth and metastasis, and suppresses cell apoptosis in human non-small cell lung cancer by regulation of XPC/ERK/Snail/E-cadherin pathway. Aging (Albany NY), 2016, 8(10), 2509-2524.
[http://dx.doi.org/10.18632/aging.101080 ] [PMID: 27777383]
[104]
Sun, Y.; Zhao, J.; Yin, X.; Yuan, X.; Guo, J.; Bi, J. miR-297 acts as an oncogene by targeting GPC5 in lung adenocarcinoma. Cell Prolif., 2016, 49(5), 636-643.
[http://dx.doi.org/10.1111/cpr.12288 ] [PMID: 27554041]
[105]
Chen, X.; Zhu, L.; Ma, Z.; Sun, G.; Luo, X.; Li, M.; Zhai, S.; Li, P.; Wang, X. Oncogenic miR-9 is a target of erlotinib in NSCLCs. Sci. Rep., 2015, 5, 17031.
[http://dx.doi.org/10.1038/srep17031 ] [PMID: 26593208]
[106]
Li, B.; Ding, C.M.; Li, Y.X.; Peng, J.C.; Geng, N.; Qin, W.W. Over-regulation of microRNA-133b inhibits cell proliferation of cisplatin-induced non-small cell lung cancer cells through PI3K/Akt and JAK2/STAT3 signaling pathway by targeting EGFR. Oncol. Rep., 2018, 39(3), 1227-1234.
[http://dx.doi.org/10.3892/or.2018.6215 ] [PMID: 29344640]
[107]
Narita, M.; Shimura, E.; Nagasawa, A.; Aiuchi, T.; Suda, Y.; Hamada, Y.; Ikegami, D.; Iwasawa, C.; Arakawa, K.; Igarashi, K.; Kuzumaki, N.; Yoshioka, Y.; Ochiya, T.; Takeshima, H.; Ushijima, T.; Narita, M. Chronic treatment of non-small-cell lung cancer cells with gefitinib leads to an epigenetic loss of epithelial properties associated with reductions in microRNA-155 and -200c. PLoS One, 2017, 12(2),e0172115.
[http://dx.doi.org/10.1371/journal.pone.0172115 ] [PMID: 28225782]
[108]
Li, Q.C.; Xu, H.; Wang, X.; Wang, T.; Wu, J. miR-34a increases cisplatin sensitivity of osteosarcoma cells in vitro through up-regulation of c-Myc and Bim signal. Cancer Biomark., 2017, 21(1), 135-144.
[http://dx.doi.org/10.3233/CBM-170452 ] [PMID: 29060932]
[109]
Juliachs, M.; Muñoz, C.; Moutinho, C.A.; Vidal, A.; Condom, E.; Esteller, M.; Graupera, M.; Casanovas, O.; Germà, J.R.; Villanueva, A.; Viñals, F. The PDGFRβ-AKT pathway contributes to CDDP-acquired resistance in testicular germ cell tumors. Clin. Cancer Res., 2014, 20(3), 658-667.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1131 ] [PMID: 24277456]
[110]
Mir, R.; Stanzani, E.; Martinez-Soler, F.; Villanueva, A.; Vidal, A.; Condom, E.; Ponce, J.; Gil, J.; Tortosa, A.; Giménez-Bonafé, P. YM155 sensitizes ovarian cancer cells to cisplatin inducing apoptosis and tumor regression. Gynecol. Oncol., 2014, 132(1), 211-220.
[http://dx.doi.org/10.1016/j.ygyno.2013.11.013 ] [PMID: 24262875]
[111]
Yu, R.; Jin, H.; Jin, C.; Huang, X.; Lin, J.; Teng, Y. Inhibition of the CSF-1 receptor sensitizes ovarian cancer cells to cisplatin. Cell Biochem. Funct., 2018, 36(2), 80-87.
[http://dx.doi.org/10.1002/cbf.3319 ] [PMID: 29372560]
[112]
Sakaizawa, T.; Matsumura, T.; Fujii, C.; Hida, S.; Toishi, M.; Shiina, T.; Yoshida, K.; Hamanaka, K.; Ito, K.I.; Taniguchi, S. Potential role of ASC, a proapoptotic protein, for determining the cisplatin susceptibility of lung cancer cells. Tohoku J. Exp. Med., 2018, 244(2), 133-144.
[http://dx.doi.org/10.1620/tjem.244.133 ] [PMID: 29459573]
[113]
Zhang, N.; Liu, Y.; Wang, Y.; Zhao, M.; Tu, L.; Luo, F. Decitabine reverses TGF-β1-induced epithelial-mesenchymal transition in non-small-cell lung cancer by regulating miR-200/ZEB axis. Drug Des. Devel. Ther., 2017, 11, 969-983.
[http://dx.doi.org/10.2147/DDDT.S129305 ] [PMID: 28405157]
[114]
Zhang, J.; Li, G.; Chen, Y.; Fang, L.; Guan, C.; Bai, F.; Ma, M.; Lyu, J.; Meng, Q.H. Metformin inhibits tumorigenesis and tumor growth of breast cancer cells by upregulating miR-200c but downregulating AKT2 expression. J. Cancer, 2017, 8(10), 1849-1864.
[http://dx.doi.org/10.7150/jca.19858 ] [PMID: 28819383]
[115]
Wang, Y.; Dai, W.; Chu, X.; Yang, B.; Zhao, M.; Sun, Y. Metformin inhibits lung cancer cells proliferation through repressing microRNA-222. Biotechnol. Lett., 2013, 35(12), 2013-2019.
[http://dx.doi.org/10.1007/s10529-013-1309-0 ] [PMID: 23974492]
[116]
He, X.; Li, C.; Wu, X.; Yang, G. Docetaxel inhibits the proliferation of non-small-cell lung cancer cells via upregulation of microRNA-7 expression. Int. J. Clin. Exp. Pathol., 2015, 8(8), 9072-9080.
[PMID: 26464649]
[117]
Wu, F.; Zhang, S.; Gao, G.; Zhao, J.; Ren, S.; Zhou, C. Successful treatment using apatinib with or without docetaxel in heavily pretreated advanced non-squamous non-small cell lung cancer: A case report and literature review. Cancer Biol. Ther., 2018, 19(3), 141-144.
[http://dx.doi.org/10.1080/15384047.2017.1414757 ] [PMID: 29261000]
[118]
Brisdelli, F.; D’Andrea, G.; Bozzi, A. Resveratrol: A natural polyphenol with multiple chemopreventive properties. Curr. Drug Metab., 2009, 10(6), 530-546.
[http://dx.doi.org/10.2174/138920009789375423 ] [PMID: 19702538]
[119]
Yousef, M.; Vlachogiannis, I.A.; Tsiani, E. Effects of resveratrol against lung cancer: In vitro and in vivo studies. Nutrients, 2017, 9(11),E1231.
[http://dx.doi.org/10.3390/nu9111231 ] [PMID: 29125563]
[120]
Yu, Y.H.; Chen, H.A.; Chen, P.S.; Cheng, Y.J.; Hsu, W.H.; Chang, Y.W.; Chen, Y.H.; Jan, Y.; Hsiao, M.; Chang, T.Y.; Liu, Y.H.; Jeng, Y.M.; Wu, C.H.; Huang, M.T.; Su, Y.H.; Hung, M.C.; Chien, M.H.; Chen, C.Y.; Kuo, M.L.; Su, J.L. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene, 2013, 32(4), 431-443.
[http://dx.doi.org/10.1038/onc.2012.74 ] [PMID: 22410781]
[121]
Mudduluru, G.; George-William, J.N.; Muppala, S.; Asangani, I.A.; Kumarswamy, R.; Nelson, L.D.; Allgayer, H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci. Rep., 2011, 31(3), 185-197.
[http://dx.doi.org/10.1042/BSR20100065 ] [PMID: 20815812]
[122]
Zhang, J.; Du, Y.; Wu, C.; Ren, X.; Ti, X.; Shi, J.; Zhao, F.; Yin, H. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol. Rep., 2010, 24(5), 1217-1223.
[http://dx.doi.org/10.3892/or_00000975 ] [PMID: 20878113]
[123]
Zhang, J.; Zhang, T.; Ti, X.; Shi, J.; Wu, C.; Ren, X.; Yin, H. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem. Biophys. Res. Commun., 2010, 399(1), 1-6.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.013 ] [PMID: 20627087]
[124]
Zhang, W.; Bai, W.; Zhang, W. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin. Transl. Oncol., 2014, 16(8), 708-713.
[http://dx.doi.org/10.1007/s12094-013-1135-9 ] [PMID: 24293118]
[125]
Jin, H.; Qiao, F.; Wang, Y.; Xu, Y.; Shang, Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol. Rep., 2015, 34(5), 2782-2789.
[http://dx.doi.org/10.3892/or.2015.4258 ] [PMID: 26351877]
[126]
Ye, M.; Zhang, J.; Zhang, J.; Miao, Q.; Yao, L.; Zhang, J. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett., 2015, 357(1), 196-205.
[http://dx.doi.org/10.1016/j.canlet.2014.11.028 ] [PMID: 25444916]
[127]
Zhu, K.; Wang, W. Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumour Biol., 2016, 37(4), 4373-4382.
[http://dx.doi.org/10.1007/s13277-015-4187-3 ] [PMID: 26499783]
[128]
Wang, H.; Bian, S.; Yang, C.S. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis, 2011, 32(12), 1881-1889.
[http://dx.doi.org/10.1093/carcin/bgr218 ] [PMID: 21965273]
[129]
Zhou, D.H.; Wang, X.; Feng, Q. EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr. Cancer, 2014, 66(4), 636-644.
[http://dx.doi.org/10.1080/01635581.2014.894101 ] [PMID: 24712372]
[130]
Lv, C.; Kong, H.; Dong, G.; Liu, L.; Tong, K.; Sun, H.; Chen, B.; Zhang, C.; Zhou, M. Antitumor efficacy of α-solanine against pancreatic cancer in vitro and in vivo. PLoS One, 2014, 9(2),e87868.
[http://dx.doi.org/10.1371/journal.pone.0087868 ] [PMID: 24505326]
[131]
Lu, M.K.; Shih, Y.W.; Chang, Chien. T.T.; Fang, L.H.; Huang, H.C.; Chen, P.S. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities. Biol. Pharm. Bull., 2010, 33(10), 1685-1691.
[http://dx.doi.org/10.1248/bpb.33.1685 ] [PMID: 20930376]
[132]
Mohsenikia, M.; Alizadeh, A.M.; Khodayari, S.; Khodayari, H.; Kouhpayeh, S.A.; Karimi, A.; Zamani, M.; Azizian, S.; Mohagheghi, M.A. The protective and therapeutic effects of alpha-solanine on mice breast cancer. Eur. J. Pharmacol., 2013, 718(1-3), 1-9.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.015 ] [PMID: 24051269]
[133]
Zhang, F.; Yang, R.; Zhang, G.; Cheng, R.; Bai, Y.; Zhao, H.; Lu, X.; Li, H.; Chen, S.; Li, J.; Wu, S.; Li, P.; Chen, X.; Sun, Q.; Zhao, G. Anticancer function of α-solanine in lung adenocarcinoma cells by inducing microRNA-138 expression. Tumour Biol., 2016, 37(5), 6437-6446.
[http://dx.doi.org/10.1007/s13277-015-4528-2 ] [PMID: 26631041]
[134]
Xu, X.H.; Zhang, L.L.; Wu, G.S.; Chen, X.; Li, T.; Chen, X. Solasodine induces apoptosis, affects autophagy, and attenuates metastasis in ovarian cancer cells., Planta. Med., 2017, 83(3-04), 254-260.
[135]
Shen, K.H.; Hung, J.H.; Chang, C.W.; Weng, Y.T.; Wu, M.J.; Chen, P.S. Solasodine inhibits invasion of human lung cancer cell through downregulation of miR-21 and MMPs expression. Chem. Biol. Interact., 2017, 268, 129-135.
[http://dx.doi.org/10.1016/j.cbi.2017.03.005 ] [PMID: 28283413]
[136]
Jiang, L.L.; Zhou, S.J.; Zhang, X.M.; Chen, H.Q.; Liu, W. Sulforaphane suppresses in vitro and in vivo lung tumorigenesis through downregulation of HDAC activity. Biomed. Pharmacother., 2016, 78, 74-80.
[http://dx.doi.org/10.1016/j.biopha.2015.11.007 ] [PMID: 26898427]
[137]
Atwell, L.L.; Beaver, L.M.; Shannon, J.; Williams, D.E.; Dashwood, R.H.; Ho, E. Epigenetic regulation by sulforaphane: Opportunities for breast and prostate cancer chemoprevention. Curr. Pharmacol. Rep., 2015, 1(2), 102-111.
[http://dx.doi.org/10.1007/s40495-014-0002-x ] [PMID: 26042194]
[138]
Amjad, A.I.; Parikh, R.A.; Appleman, L.J.; Hahm, E.R.; Singh, K.; Singh, S.V. Broccoli-derived sulforaphane and chemoprevention of prostate cancer: From bench to bedside. Curr. Pharmacol. Rep., 2015, 1(6), 382-390.
[http://dx.doi.org/10.1007/s40495-015-0034-x ] [PMID: 26557472]
[139]
Kim, D.H.; Sung, B.; Kang, Y.J.; Hwang, S.Y.; Kim, M.J.; Yoon, J.H. Im, E.; Kim, N.D. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells. Int. J. Oncol., 2015, 47(6), 2226-2232.
[http://dx.doi.org/10.3892/ijo.2015.3200 ] [PMID: 26498863]
[140]
Mondal, A.; Biswas, R.; Rhee, Y.H.; Kim, J.; Ahn, J.C. Sulforaphene promotes Bax/Bcl2, MAPK-dependent human gastric cancer AGS cells apoptosis and inhibits migration via EGFR, p-ERK1/2 down-regulation. Gen. Physiol. Biophys., 2016, 35(1), 25-34.
[PMID: 26612919]
[141]
Gerhauser, C. Epigenetic impact of dietary isothiocyanates in cancer chemoprevention. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(4), 405-410.
[http://dx.doi.org/10.1097/MCO.0b013e328362014e ] [PMID: 23657153]
[142]
Lan, F.; Pan, Q.; Yu, H.; Yue, X. Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/β-catenin signaling in glioblastoma. J. Neurochem., 2015, 134(5), 811-818.
[http://dx.doi.org/10.1111/jnc.13174 ] [PMID: 25991372]
[143]
Liu, C.M.; Peng, C.Y.; Liao, Y.W.; Lu, M.Y.; Tsai, M.L.; Yeh, J.C.; Yu, C.H.; Yu, C.C. Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction. J. Formos. Med. Assoc., 2017, 116(1), 41-48.
[http://dx.doi.org/10.1016/j.jfma.2016.01.004 ] [PMID: 26879838]
[144]
Wang, D.X.; Zou, Y.J.; Zhuang, X.B.; Chen, S.X.; Lin, Y.; Li, W.L.; Lin, J.J.; Lin, Z.Q. Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3β/β-catenin signaling pathways. Acta Pharmacol. Sin., 2017, 38(2), 241-251.
[http://dx.doi.org/10.1038/aps.2016.122 ] [PMID: 27890917]
[145]
Li, Q.Q.; Xie, Y.K.; Wu, Y.; Li, L.L.; Liu, Y.; Miao, X.B.; Liu, Q.Z.; Yao, K.T.; Xiao, G.H. Sulforaphane inhibits cancer stem-like cell properties and cisplatin resistance through miR-214-mediated downregulation of c-MYC in non-small cell lung cancer. Oncotarget, 2017, 8(7), 12067-12080.
[http://dx.doi.org/10.18632/oncotarget.14512 ] [PMID: 28076844]
[146]
Luan, W.; Qian, Y.; Ni, X.; Chanda, T.K.; Xia, Y.; Wang, J.; Yan, Y.; Xu, B. Polygonatum odoratum lectin promotes BECN1 expression and induces autophagy in malignant melanoma by regulation of miR1290. OncoTargets Ther., 2017, 10, 4569-4577.
[http://dx.doi.org/10.2147/OTT.S147406 ] [PMID: 29066911]
[147]
Wu, L.; Liu, T.; Xiao, Y.; Li, X.; Zhu, Y.; Zhao, Y.; Bao, J.; Wu, C. Polygonatum odoratum lectin induces apoptosis and autophagy by regulation of microRNA-1290 and microRNA-15a-3p in human lung adenocarcinoma A549 cells. Int. J. Biol. Macromol., 2016, 85, 217-226.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.014 ] [PMID: 26562549]
[148]
Yang, Q.; Wang, P.; Cui, J.; Wang, W.; Chen, Y.; Zhang, T. Panax notoginseng saponins attenuate lung cancer growth in part through modulating the level of Met/miR-222 axis. J. Ethnopharmacol., 2016, 193, 255-265.
[http://dx.doi.org/10.1016/j.jep.2016.08.040 ] [PMID: 27566197]
[149]
Chun-Zhi, Z.; Lei, H.; An-Ling, Z.; Yan-Chao, F.; Xiao, Y.; Guang-Xiu, W.; Zhi-Fan, J.; Pei-Yu, P.; Qing-Yu, Z.; Chun-Sheng, K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer, 2010, 10, 367.
[http://dx.doi.org/10.1186/1471-2407-10-367 ] [PMID: 20618998]
[150]
Li, B.; Lu, Y.; Wang, H.; Han, X.; Mao, J.; Li, J.; Yu, L.; Wang, B.; Fan, S.; Yu, X.; Song, B. miR-221/222 enhance the tumorigenicity of human breast cancer stem cells via modulation of PTEN/Akt pathway. Biomed. Pharmacother., 2016, 79, 93-101.
[http://dx.doi.org/10.1016/j.biopha.2016.01.045 ] [PMID: 27044817]
[151]
Wang, C.; Li, Y.; Gao, S.; Cheng, D.; Zhao, S.; Liu, E. Breviscapine injection improves the therapeutic effect of western medicine on angina pectoris patients. PLoS One, 2015, 10(6),e0129969.
[http://dx.doi.org/10.1371/journal.pone.0129969 ] [PMID: 26052709]
[152]
Guan, Y.B.; Yang, D.R.; Nong, S.J.; Ni, J.; Hu, C.H.; Li, J.; Zhu, J.; Shan, Y.X. Breviscapine (BVP) inhibits prostate cancer progression through damaging DNA by minichromosome maintenance protein-7 (MCM-7) modulation. Biomed. Pharmacother., 2017, 93, 103-116.
[http://dx.doi.org/10.1016/j.biopha.2017.06.024 ] [PMID: 28628830]
[153]
Zeng, J.; Cai, S. Breviscapine suppresses the growth of non-small cell lung cancer by enhancing microRNA-7 expression. J. Biosci., 2017, 42(1), 121-129.
[http://dx.doi.org/10.1007/s12038-017-9670-0 ] [PMID: 28229971]
[154]
Liu, Y-Q.; Li, Y.; Qin, J.; Wang, Q.; She, Y-L.; Luo, Y-L.; He, J.X.; Li, J.Y.; Xie, X.D. Matrine reduces proliferation of human lung cancer cells by inducing apoptosis and changing miRNA expression profiles. Asian Pac. J. Cancer Prev., 2014, 15(5), 2169-2177.
[http://dx.doi.org/10.7314/APJCP.2014.15.5.2169 ] [PMID: 24716952]
[155]
An, Q.; Han, C.; Zhou, Y.; Li, F.; Li, D.; Zhang, X.; Yu, Z.; Duan, Z.; Kan, Q. Matrine induces cell cycle arrest and apoptosis with recovery of the expression of miR-126 in the A549 non-small cell lung cancer cell line. Mol. Med. Rep., 2016, 14(5), 4042-4048.
[http://dx.doi.org/10.3892/mmr.2016.5753 ] [PMID: 27665734]
[156]
Liao, H.; Zhao, X.; Qu, J.; Zhang, J.; Cai, H. Matrine suppresses invasion and metastasis of NCI-H1299 cells by enhancing microRNA-133a expression. Int. J. Clin. Exp. Med., 2015, 8(7), 10714-10722.
[PMID: 26379863]
[157]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050 ] [PMID: 18991571]
[158]
Meng, G.; Chai, K.; Li, X.; Zhu, Y.; Huang, W. Luteolin exerts pro-apoptotic effect and anti-migration effects on A549 lung adenocarcinoma cells through the activation of MEK/ERK signaling pathway. Chem. Biol. Interact., 2016, 257, 26-34.
[http://dx.doi.org/10.1016/j.cbi.2016.07.028 ] [PMID: 27474067]
[159]
Choi, H.J.; Choi, H.J.; Chung, T.W.; Ha, K.T. Luteolin inhibits recruitment of monocytes and migration of Lewis lung carcinoma cells by suppressing chemokine (C-C motif) ligand 2 expression in tumor-associated macrophage. Biochem. Biophys. Res. Commun., 2016, 470(1), 101-106.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.002 ] [PMID: 26766793]
[160]
Han, K.; Meng, W.; Zhang, J.J.; Zhou, Y.; Wang, Y.L.; Su, Y.; Lin, S.C.; Gan, Z.H.; Sun, Y.N.; Min, D.L. Luteolin inhibited proliferation and induced apoptosis of prostate cancer cells through miR-301. OncoTargets Ther., 2016, 9, 3085-3094.
[http://dx.doi.org/10.2147/OTT.S102862 ] [PMID: 27307749]
[161]
Wu, H.; Huang, M.; Liu, Y.; Shu, Y.; Liu, P. Luteolin induces apoptosis by up-regulating miR-34a in human gastric cancer cells. Technol. Cancer Res. Treat., 2015, 14(6), 747-755.
[http://dx.doi.org/10.7785/tcrt.2012.500434 ] [PMID: 24988056]
[162]
Jiang, Z.Q.; Li, M.H.; Qin, Y.M.; Jiang, H.Y.; Zhang, X.; Wu, M.H. Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of MicroRNA-34a-5p. Int. J. Mol. Sci., 2018, 19(2),E447.
[http://dx.doi.org/10.3390/ijms19020447 ] [PMID: 29393891]
[163]
Xu, R.; Shen, H.; Guo, R.; Sun, J.; Gao, W.; Shu, Y. Combine therapy of gefitinib and fulvestrant enhances antitumor effects on NSCLC cell lines with acquired resistance to gefitinib. Biomed. Pharmacother., 2012, 66(5), 384-389.
[http://dx.doi.org/10.1016/j.biopha.2012.02.004 ] [PMID: 22560634]
[164]
Shen, H.; Liu, J.; Wang, R.; Qian, X.; Xu, R.; Xu, T.; Li, Q.; Wang, L.; Shi, Z.; Zheng, J.; Chen, Q.; Shu, Y. Fulvestrant increases gefitinib sensitivity in non-small cell lung cancer cells by upregulating let-7c expression. Biomed. Pharmacother., 2014, 68(3), 307-313.
[http://dx.doi.org/10.1016/j.biopha.2013.10.007 ] [PMID: 24268810]
[165]
Dong, S.; Zhang, X.C.; Cheng, H.; Zhu, J.Q.; Chen, Z.H.; Zhang, Y.F.; Xie, Z.; Wu, Y.L. Everolimus synergizes with gefitinib in non-small-cell lung cancer cell lines resistant to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Chemother. Pharmacol., 2012, 70(5), 707-716.
[http://dx.doi.org/10.1007/s00280-012-1946-3 ] [PMID: 22941374]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 16
Year: 2020
Page: [1883 - 1894]
Pages: 12
DOI: 10.2174/1871520620666200615133011
Price: $65

Article Metrics

PDF: 25
HTML: 2