MAPK: A Key Player in the Development and Progression of Stroke

Author(s): Yangmin Zheng, Ziping Han, Haiping Zhao, Yumin Luo*

Journal Name: CNS & Neurological Disorders - Drug Targets
Formerly Current Drug Targets - CNS & Neurological Disorders

Volume 19 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Stroke is a complex disease caused by genetic and environmental factors, and its etiological mechanism has not been fully clarified yet, which brings great challenges to its effective prevention and treatment. MAPK signaling pathway regulates gene expression of eukaryotic cells and basic cellular processes such as cell proliferation, differentiation, migration, metabolism and apoptosis, which are considered as therapeutic targets for many diseases. Up to now, mounting evidence has shown that MAPK signaling pathway is involved in the pathogenesis and development of ischemic stroke. However, the upstream kinase and downstream kinase of MAPK signaling pathway are complex and the influencing factors are numerous, the exact role of MAPK signaling pathway in the pathogenesis of ischemic stroke has not been fully elucidated. MAPK signaling molecules in different cell types in the brain respond variously after stroke injury, therefore, the present review article is committed to summarizing the pathological process of different cell types participating in stroke, discussed the mechanism of MAPK participating in stroke. We further elucidated that MAPK signaling pathway molecules can be used as therapeutic targets for stroke, thus promoting the prevention and treatment of stroke.

Keywords: Ischemic stroke, MAPK pathway, inflammation, oxidative stress, neuroprotection, different cell types.

[1]
Zhang X, Shu B, Zhang D, Huang L, Fu Q, Du G. The efficacy and safety of pharmacological treatments for post-stroke aphasia. CNS Neurol Disord Drug Targets 2018; 17(7): 509-21.
[http://dx.doi.org/10.2174/1871527317666180706143051] [PMID: 29984673]
[2]
Bar B, Biller J. Select hyperacute complications of ischemic stroke: cerebral edema, hemorrhagic transformation, and orolingual angioedema secondary to intravenous Alteplase. Expert Rev Neurother 2018; 18(10): 749-59.
[http://dx.doi.org/10.1080/14737175.2018.1521723] [PMID: 30215283]
[3]
Group GBDNDC. GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 2017; 16(11): 877-97.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5] [PMID: 28931491]
[4]
Luengo-Fernandez R, Paul NL, Gray AM, et al. Population-based study of disability and institutionalization after transient ischemic attack and stroke: 10-year results of the Oxford Vascular Study. Stroke 2013; 44(10): 2854-61.
[http://dx.doi.org/10.1161/STROKEAHA.113.001584] [PMID: 23920019]
[5]
Feigin VL, Forouzanfar MH, Krishnamurthi R, et al. Global burden of diseases, injuries, and risk factors study 2010 (GBD 2010) and the GBD stroke experts group. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease study 2010. Lancet 2014; 383(9913): 245-54.
[http://dx.doi.org/10.1016/S0140-6736(13)61953-4] [PMID: 24449944]
[6]
Wang S, Ma F, Huang L, et al. Dl-3-n-Butylphthalide (NBP): a promising therapeutic agent for ischemic stroke. CNS Neurol Disord Drug Targets 2018; 17(5): 338-47.
[http://dx.doi.org/10.2174/1871527317666180612125843] [PMID: 29895257]
[7]
Benjamin EJ, Blaha MJ, Chiuve SE, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics-2017 Update: a report from the American Heart Association. Circulation 2017; 135(10): e146-603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885]
[8]
Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy Overview. Circ Res 2017; 120(3): 541-58.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309278] [PMID: 28154103]
[9]
Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 2014; 115: 25-44.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.003] [PMID: 24291544]
[10]
Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 2016; 15(8): 869-81.
[http://dx.doi.org/10.1016/S1474-4422(16)00114-9] [PMID: 27180033]
[11]
Lorenzano S, Rost NS, Khan M, et al. Early molecular oxidative stress biomarkers of ischemic penumbra in acute stroke. Neurology 2019; 93(13): e1288-98.
[http://dx.doi.org/10.1212/WNL.0000000000008158] [PMID: 31455665]
[12]
McCrary MR, Jiang MQ, Giddens MM, et al. Protective effects of GPR37 via regulation of inflammation and multiple cell death pathways after ischemic stroke in mice. FASEB J 2019; 33(10): 10680-91.
[http://dx.doi.org/10.1096/fj.201900070R] [PMID: 31268736]
[13]
Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004; 68(2): 320-44.
[http://dx.doi.org/10.1128/MMBR.68.2.320-344.2004] [PMID: 15187187]
[14]
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79(1): 143-80.
[http://dx.doi.org/10.1152/physrev.1999.79.1.143] [PMID: 9922370]
[15]
Li J, Zhou Y, Du G, Qin X, Gao L. Bioinformatic analysis reveals Key genes and pathways in aging brain of senescence-accelerated mouse P8 (SAMP8). CNS Neurol Disord Drug Targets 2018; 17(9): 712-22.
[http://dx.doi.org/10.2174/1871527317666180816094741] [PMID: 30113006]
[16]
Bartels S, González Besteiro MA, Lang D, Ulm R. Emerging functions for plant MAP kinase phosphatases. Trends Plant Sci 2010; 15(6): 322-9.
[http://dx.doi.org/10.1016/j.tplants.2010.04.003] [PMID: 20452268]
[17]
Jiang L, Chen Y, Luo L, Peck SC. Central roles and regulatory mechanisms of dual-specificity MAPK phosphatases in developmental and stress signaling. Front Plant Sci 2018; 9: 1697.
[http://dx.doi.org/10.3389/fpls.2018.01697] [PMID: 30515185]
[18]
Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015; 89(6): 867-82.
[http://dx.doi.org/10.1007/s00204-015-1472-2] [PMID: 25690731]
[19]
Roskoski R Jr. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res 2019; 142: 151-68.
[http://dx.doi.org/10.1016/j.phrs.2019.01.039] [PMID: 30794926]
[20]
Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J 2017; 284(24): 4177-95.
[http://dx.doi.org/10.1111/febs.14122] [PMID: 28548464]
[21]
Fritz G, Henninger C. Rho GTPases: Novel players in the regulation of the DNA damage response? Biomolecules 2015; 5(4): 2417-34.
[http://dx.doi.org/10.3390/biom5042417] [PMID: 26437439]
[22]
Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K. JNK signaling in cancer cell survival. Med Res Rev 2019; 39(6): 2082-104.
[http://dx.doi.org/10.1002/med.21574] [PMID: 30912203]
[23]
Menon MB, Gropengießer J, Fischer J, et al. p38MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat Cell Biol 2017; 19(10): 1248-59.
[http://dx.doi.org/10.1038/ncb3614] [PMID: 28920954]
[24]
Simões AE, Rodrigues CM, Borralho PM. The MEK5/ERK5 signalling pathway in cancer: a promising novel therapeutic target. Drug Discov Today 2016; 21(10): 1654-63.
[http://dx.doi.org/10.1016/j.drudis.2016.06.010] [PMID: 27320690]
[25]
Sun J, Nan G. The Mitogen-Activated Protein Kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci 2016; 59(1): 90-8.
[http://dx.doi.org/10.1007/s12031-016-0717-8] [PMID: 26842916]
[26]
Huang Y, Xu Z, Xiong S, et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci 2018; 21(4): 530-40.
[http://dx.doi.org/10.1038/s41593-018-0090-8] [PMID: 29472620]
[27]
Askew K, Li K, Olmos-Alonso A, et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 2017; 18(2): 391-405.
[http://dx.doi.org/10.1016/j.celrep.2016.12.041] [PMID: 28076784]
[28]
Weinhard L, di Bartolomei G, Bolasco G, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 2018; 9(1): 1228.
[http://dx.doi.org/10.1038/s41467-018-03566-5] [PMID: 29581545]
[29]
Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013; 155(7): 1596-609.
[http://dx.doi.org/10.1016/j.cell.2013.11.030] [PMID: 24360280]
[30]
Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci 2017; 18(10): E2135.
[http://dx.doi.org/10.3390/ijms18102135] [PMID: 29027964]
[31]
Liu ZJ, Ran YY, Qie SY, et al. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther 2019; 25(12): 1353-62.
[http://dx.doi.org/10.1111/cns.13261] [PMID: 31793209]
[32]
Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol 2016; 142: 23-44.
[http://dx.doi.org/10.1016/j.pneurobio.2016.05.001] [PMID: 27166859]
[33]
Gong Z, Pan J, Li X, Wang H, He L, Peng Y. Hydroxysafflor yellow a reprograms TLR9 signalling pathway in ischaemic cortex after cerebral ischaemia and reperfusion. CNS Neurol Disord Drug Targets 2018; 17(5): 370-82.
[http://dx.doi.org/10.2174/1871527317666180502110205] [PMID: 29732997]
[34]
Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 2014; 11: 98.
[http://dx.doi.org/10.1186/1742-2094-11-98] [PMID: 24889886]
[35]
Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011; 11(11): 775-87.
[http://dx.doi.org/10.1038/nri3086] [PMID: 22025055]
[36]
Walker DG, Lue LF. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther 2015; 7(1): 56.
[http://dx.doi.org/10.1186/s13195-015-0139-9] [PMID: 26286145]
[37]
Kumar A, Alvarez-Croda DM, Stoica BA, Faden AI. Loane dj. Microglial/macrophage polarization dynamics following traumatic brain injury. J Neurotrauma 2016; 33(19): 1732-50.
[http://dx.doi.org/10.1089/neu.2015.4268] [PMID: 26486881]
[38]
Wang G, Zhang J, Hu X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab 2013; 33(12): 1864-74.
[http://dx.doi.org/10.1038/jcbfm.2013.146] [PMID: 23942366]
[39]
Li F, Zhao H, Han Z, et al. Xuesaitong may protect against ischemic stroke by modulating microglial phenotypes and inhibiting neuronal cell apoptosis via the stat3 signaling pathway. CNS Neurol Disord Drug Targets 2019; 18(2): 115-23.
[http://dx.doi.org/10.2174/1871527317666181114140340] [PMID: 30426907]
[40]
Zhang B, Wei YZ, Wang GQ, Li DD, Shi JS, Zhang F. Targeting MAPK pathways by naringenin modulates microglia m1/m2 polarization in lipopolysaccharide-stimulated cultures. Front Cell Neurosci 2019; 12: 531.
[http://dx.doi.org/10.3389/fncel.2018.00531] [PMID: 30687017]
[41]
Rangarajan P, Karthikeyan A, Dheen ST. Role of dietary phenols in mitigating microglia-mediated neuroinflammation. Neuromolecular Med 2016; 18(3): 453-64.
[http://dx.doi.org/10.1007/s12017-016-8430-x] [PMID: 27465151]
[42]
Jang S, Kelley KW, Johnson RW. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 2008; 105(21): 7534-9.
[http://dx.doi.org/10.1073/pnas.0802865105] [PMID: 18490655]
[43]
Liu B, Liu YJ. Carvedilol promotes retinal ganglion cell survival following optic nerve injury via ASK1-p38 MAPK Pathway. CNS Neurol Disord Drug Targets 2019; 18(9): 695-704.
[http://dx.doi.org/10.2174/1871527318666191002095456] [PMID: 31577210]
[44]
Jung YS, Park JH, Kim H, et al. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice. Acta Pharmacol Sin 2016; 37(8): 1031-44.
[http://dx.doi.org/10.1038/aps.2016.51] [PMID: 27345627]
[45]
Ohnishi M, Monda A, Takemoto R, et al. Sesamin suppresses activation of microglia and p44/42 MAPK pathway, which confers neuroprotection in rat intracerebral hemorrhage. Neuroscience 2013; 232: 45-52.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.057] [PMID: 23228810]
[46]
Hu H, Li Z, Zhu X, Lin R, Chen L. Salidroside reduces cell mobility via NF-κ B and MAPK signaling in LPS-induced BV2 microglial cells. Evid Based Complement Alternat Med 2014; 2014: 383821.
[http://dx.doi.org/10.1155/2014/383821] [PMID: 24864151]
[47]
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7(1): a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[48]
Sun L, Zhang Y, Liu E, et al. The roles of astrocyte in the brain pathologies following ischemic stroke. Brain Inj 2019; 33(6): 712-6.
[http://dx.doi.org/10.1080/02699052.2018.1531311] [PMID: 30335519]
[49]
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2016; 144: 103-20.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.008] [PMID: 26455456]
[50]
Becerra-Calixto A, Cardona-Gómez GP. The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy. Front Mol Neurosci 2017; 10: 88.
[http://dx.doi.org/10.3389/fnmol.2017.00088] [PMID: 28420961]
[51]
Yi M, Dou F, Lu Q, Yu Z, Chen H. Activation of the KCa3.1 channel contributes to traumatic scratch injury-induced reactive astrogliosis through the JNK/c-Jun signaling pathway. Neurosci Lett 2016; 624: 62-71.
[http://dx.doi.org/10.1016/j.neulet.2016.05.004] [PMID: 27163196]
[52]
Yu Z, Yi M, Wei T, Gao X, Chen H. KCa3.1 inhibition switches the astrocyte phenotype during astrogliosis associated with ischemic stroke via endoplasmic reticulum stress and mapk signaling pathways. Front Cell Neurosci 2017; 11: 319.
[http://dx.doi.org/10.3389/fncel.2017.00319] [PMID: 29075181]
[53]
Zhao C, Hou W, Lei H, et al. Potassium 2-(l-hydroxypentyl)-benzoate attenuates neuroinflammatory responses and upregulates heme oxygenase-1 in systemic lipopolysaccharide-induced inflammation in mice. Acta Pharm Sin B 2017; 7(4): 470-8.
[http://dx.doi.org/10.1016/j.apsb.2017.04.007] [PMID: 28752032]
[54]
Zhao P, Zhou R, Zhu XY, et al. Neuroprotective effects of lycium barbarum polysaccharide on focal cerebral ischemic injury in mice. Neurochem Res 2017; 42(10): 2798-813.
[http://dx.doi.org/10.1007/s11064-017-2293-x] [PMID: 28508173]
[55]
Yang CM, Yang SH, Lee TH, et al. Evaluation of antiinflammatory effects of Helminthostachys zeylanica extracts via inhibiting bradykinin-induced MMP-9 expression in brain astrocytes. Mol Neurobiol 2016; 53(9): 5995-6005.
[http://dx.doi.org/10.1007/s12035-016-9896-0] [PMID: 26526842]
[56]
Zhang H, Xiao J, Hu Z, Xie M, Wang W, He D. Blocking transient receptor potential vanilloid 2 channel in astrocytes enhances astrocyte-mediated neuroprotection after oxygen-glucose deprivation and reoxygenation. Eur J Neurosci 2016; 44(7): 2493-503.
[http://dx.doi.org/10.1111/ejn.13352] [PMID: 27468746]
[57]
Wei X, Ren X, Jiang R, et al. Phosphorylation of p38 MAPK mediates aquaporin 9 expression in rat brains during permanent focal cerebral ischaemia. J Mol Histol 2015; 46(3): 273-81.
[http://dx.doi.org/10.1007/s10735-015-9618-3] [PMID: 25903824]
[58]
Catalin B, Rogoveanu OC, Pirici I, et al. Cerebrolysin and aquaporin 4 inhibition improve pathological and motor recovery after ischemic stroke. CNS Neurol Disord Drug Targets 2018; 17(4): 299-308.
[http://dx.doi.org/10.2174/1871527317666180425124340] [PMID: 29692268]
[59]
Hayakawa K, Nakano T, Irie K, et al. Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2010; 30(4): 871-82.
[http://dx.doi.org/10.1038/jcbfm.2009.257] [PMID: 19997116]
[60]
Tian W, Sawyer A, Kocaoglu FB, Kyriakides TR. Astrocytederived thrombospondin-2 is critical for the repair of the bloodbrain barrier. Am J Pathol 2011; 179(2): 860-8.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.002] [PMID: 21704005]
[61]
Wang FW, Hao HB, Zhao SD, et al. Roles of activated astrocyte in neural stem cell proliferation and differentiation. Stem Cell Res (Amst) 2011; 7(1): 41-53.
[http://dx.doi.org/10.1016/j.scr.2011.03.004] [PMID: 21530437]
[62]
Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004; 101(52): 18117-22.
[http://dx.doi.org/10.1073/pnas.0408258102] [PMID: 15608062]
[63]
Tournell CE, Bergstrom RA, Ferreira A. Progesterone-induced agrin expression in astrocytes modulates glia-neuron interactions leading to synapse formation. Neuroscience 2006; 141(3): 1327-38.
[http://dx.doi.org/10.1016/j.neuroscience.2006.05.004] [PMID: 16777347]
[64]
Ding H, Gao S, Wang L, Wei Y, Zhang M. Overexpression of miR-582-5p inhibits the apoptosis of neuronal cells after cerebral ischemic stroke through regulating PAR-1/Rho/Rho axis. J Stroke Cerebrovasc Dis 2019; 28(1): 149-55.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.023] [PMID: 30327244]
[65]
Tower J. Programmed cell death in aging Ageing Res Rev 2015; 23(Pt A): 90-100.
[http://dx.doi.org/10.1016/j.arr.2015.04.002]
[66]
Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 1977; 8(1): 51-7.
[http://dx.doi.org/10.1161/01.STR.8.1.51] [PMID: 13521]
[67]
Armstead WM, Hekierski H, Pastor P, Yarovoi S, Higazi AA, Cines DB. Release of IL-6 after stroke contributes to impaired cerebral autoregulation and hippocampal neuronal necrosis through NMDA receptor activation and upregulation of ET-1 and JNK. Transl Stroke Res 2019; 10(1): 104-11.
[http://dx.doi.org/10.1007/s12975-018-0617-z] [PMID: 29476447]
[68]
Park HR, Lee H, Lee JJ, Yim NH, Gu MJ, Ma JY. Protective effects of Spatholobi caulis extract on neuronal damage and focal ischemic stroke/reperfusion injury. Mol Neurobiol 2018; 55(6): 4650-66.
[http://dx.doi.org/10.1007/s12035-017-0652-x] [PMID: 28707073]
[69]
Li H, Zhou S, Wu L, et al. The role of p38MAPK signal pathway in the neuroprotective mechanism of limb postconditioning against rat cerebral ischemia/reperfusion injury. J Neurol Sci 2015; 357(1-2): 270-5.
[http://dx.doi.org/10.1016/j.jns.2015.08.004] [PMID: 26282496]
[70]
Fann DY, Lim YA, Cheng YL, et al. Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol 2018; 55(2): 1082-96.
[http://dx.doi.org/10.1007/s12035-017-0394-9] [PMID: 28092085]
[71]
Qian Y, Cao L, Guan T, et al. Protection by genistein on cortical neurons against oxidative stress injury via inhibition of NFkappaB, JNK and ERK signaling pathway. Pharm Biol 2015; 53(8): 1124-32.
[http://dx.doi.org/10.3109/13880209.2014.962057] [PMID: 25715966]
[72]
Xin L, Junhua W, Long L, Jun Y, Yang X. Exogenous hydrogen sulfide protects SH-SY5Y cells from OGD/R induced injury. Curr Mol Med 2017; 17(8): 563-7.
[http://dx.doi.org/10.2174/1566524018666180222121643] [PMID: 29473502]
[73]
Chiu BY, Chang CP, Lin JW, et al. Beneficial effect of astragalosides on stroke condition using PC12 cells under oxygen glucose deprivation and reperfusion. Cell Mol Neurobiol 2014; 34(6): 825-37.
[http://dx.doi.org/10.1007/s10571-014-0059-4] [PMID: 24807460]
[74]
Simons M, Nave KA. Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 2015; 8(1): a020479.
[http://dx.doi.org/10.1101/cshperspect.a020479] [PMID: 26101081]
[75]
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the central nervous system: structure, function, and pathology. Physiol Rev 2019; 99(3): 1381-431.
[http://dx.doi.org/10.1152/physrev.00031.2018] [PMID: 31066630]
[76]
Bankston AN, Mandler MD, Feng Y. Oligodendroglia and neurotrophic factors in neurodegeneration. Neurosci Bull 2013; 29(2): 216-28.
[http://dx.doi.org/10.1007/s12264-013-1321-3] [PMID: 23558590]
[77]
Prasad A, Teh DBL, Blasiak A, et al. Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Sci Rep 2017; 7(1): 6743.
[http://dx.doi.org/10.1038/s41598-017-06331-8] [PMID: 28751716]
[78]
Butt AM, Papanikolaou M, Rivera A. Physiology of oligodendroglia. Adv Exp Med Biol 2019; 1175: 117-28.
[http://dx.doi.org/10.1007/978-981-13-9913-8_5] [PMID: 31583586]
[79]
Philips T, Rothstein JD. Oligodendroglia: metabolic supporters of neurons. J Clin Invest 2017; 127(9): 3271-80.
[http://dx.doi.org/10.1172/JCI90610] [PMID: 28862639]
[80]
Goldstein EZ, Church JS, Pukos N, et al. Intraspinal TLR4 activation promotes iron storage but does not protect neurons or oligodendrocytes from progressive iron-mediated damage Exp Neurol 2017; 298(Pt A): 42-56.
[http://dx.doi.org/10.1016/j.expneurol.2017.08.015]
[81]
Monin A, Baumann PS, Griffa A, et al. Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Mol Psychiatry 2015; 20(7): 827-38.
[http://dx.doi.org/10.1038/mp.2014.88] [PMID: 25155877]
[82]
Barradas PC, Savignon T, Manhães AC, et al. Prenatal systemic hypoxia-ischemia and oligodendroglia loss in cerebellum. Adv Exp Med Biol 2016; 949: 333-45.
[http://dx.doi.org/10.1007/978-3-319-40764-7_16] [PMID: 27714697]
[83]
Melani A, Cipriani S, Vannucchi MG, et al. Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. Brain 2009; 132(Pt 6): 1480-95.
[http://dx.doi.org/10.1093/brain/awp076] [PMID: 19359287]
[84]
Sun J, Fang Y, Chen T, et al. WIN55, 212-2 promotes differentiation of oligodendrocyte precursor cells and improve remyelination through regulation of the phosphorylation level of the ERK 1/2 via cannabinoid receptor 1 after stroke-induced demyelination. Brain Res 2013; 1491: 225-35.
[http://dx.doi.org/10.1016/j.brainres.2012.11.006] [PMID: 23148948]
[85]
Suo N, Guo YE, He B, Gu H, Xie X. Inhibition of MAPK/ERK pathway promotes oligodendrocytes generation and recovery of demyelinating diseases. Glia 2019; 67(7): 1320-32.
[http://dx.doi.org/10.1002/glia.23606] [PMID: 30815939]
[86]
Hayashi K, Takahashi M, Nishida W, et al. Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 2001; 89(3): 251-8.
[http://dx.doi.org/10.1161/hh1501.094265] [PMID: 11485975]
[87]
Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84(3): 767-801.
[http://dx.doi.org/10.1152/physrev.00041.2003] [PMID: 15269336]
[88]
Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones 2007; 39(2): 86-93.
[PMID: 17933075]
[89]
Yang GY, Yao JS, Huey M, Hashimoto T, Young WL. Participation of PI3K and ERK1/2 pathways are required for human brain vascular smooth muscle cell migration. Neurochem Int 2004; 44(6): 441-6.
[http://dx.doi.org/10.1016/j.neuint.2003.07.002] [PMID: 14687609]
[90]
Balint B, Yin H, Nong Z, et al. Seno-destructive smooth muscle cells in the ascending aorta of patients with bicuspid aortic valve disease. EBioMedicine 2019; 43: 54-66.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.060] [PMID: 31078518]
[91]
Park SH, Koo HJ, Sung YY, Kim HK. The protective effect of Prunella vulgaris ethanol extract against vascular inflammation in TNF-α-stimulated human aortic smooth muscle cells. BMB Rep 2013; 46(7): 352-7.
[http://dx.doi.org/10.5483/BMBRep.2013.46.7.214] [PMID: 23884101]
[92]
Maddahi A, Edvinsson L. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway. BMC Neurosci 2008; 9: 85.
[http://dx.doi.org/10.1186/1471-2202-9-85] [PMID: 18793415]
[93]
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19(12): 1584-96.
[http://dx.doi.org/10.1038/nm.3407] [PMID: 24309662]
[94]
Zhang H, Tang W, Wang S, Zhang J, Fan X. Tetramethylpyrazine inhibits platelet adhesion and inflammatory response in vascular endothelial cells by inhibiting P38 MAPK and NF-kappaB signaling pathways. Inflammation 2019; 43(1): 286-97.
[PMID: 31720990]
[95]
Yong YX, Yang H, Lian J, et al. Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis. Cell Cycle 2019; 18(16): 1868-81.
[http://dx.doi.org/10.1080/15384101.2019.1632133] [PMID: 31204565]
[96]
Cao G, Jiang N, Hu Y, et al. Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol Sci 2016; 17(9): E1418.
[http://dx.doi.org/10.3390/ijms17091418] [PMID: 27589720]
[97]
Zhang T, Fang S, Wan C, et al. Excess salt exacerbates blood-brain barrier disruption via a p38/MAPK/SGK1-dependent pathway in permanent cerebral ischemia. Sci Rep 2015; 5: 16548.
[http://dx.doi.org/10.1038/srep16548] [PMID: 26549644]
[98]
Dong HJ, Shang CZ, Peng DW, et al. Curcumin attenuates ischemia-like injury induced IL-1β elevation in brain microvascular endothelial cells via inhibiting MAPK pathways and nuclear factor-κB activation. Neurol Sci 2014; 35(9): 1387-92.
[http://dx.doi.org/10.1007/s10072-014-1718-4] [PMID: 24651933]
[99]
Liang Z, Chi YJ, Lin GQ, Luo SH, Jiang QY, Chen YK. MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. Eur Rev Med Pharmacol Sci 2018; 22(11): 3485-92.
[PMID: 29917203]
[100]
Mavria G, Vercoulen Y, Yeo M, et al. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell 2006; 9(1): 33-44.
[http://dx.doi.org/10.1016/j.ccr.2005.12.021] [PMID: 16413470]
[101]
Yen TL, Chen RJ, Jayakumar T, et al. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats. Transl Res 2016; 170: 57-72.
[http://dx.doi.org/10.1016/j.trsl.2015.12.002] [PMID: 26746802]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 4
Year: 2020
Page: [248 - 256]
Pages: 9
DOI: 10.2174/1871527319666200613223018
Price: $65

Article Metrics

PDF: 36
HTML: 3