Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Molecular Insights into Zn2+ Inhibition of the Antibacterial Endopeptidase Lysostaphin from Staphylococcus simulans

Author(s): Ke Chen, Suvash Chandra Ojha, Chompounoot Imtong, Aung Khine Linn, Hui-Chun Li, Charoensri Thonabulsombat and Chanan Angsuthanasombat*

Volume 28, Issue 2, 2021

Published on: 13 June, 2020

Page: [140 - 148] Pages: 9

DOI: 10.2174/0929866527666200613221359

Price: $65

Abstract

Background: Mature lysostaphin (~28-kDa Lss) from Staphylococcus simulans proves effective in killing methicillin-resistant Staphylococcus aureus (MRSA) which is endemic in hospitals worldwide. Lss is Zn2+-dependent endopeptidase, but its bacteriolytic activity could be affected by exogenously added Zn2+.

Objective: To gain greater insights into structural and functional impacts of Zn2+and Ni2+on Lss-induced bioactivity.

Methods: Lss purified via immobilized metal ion-affinity chromatography was assessed for bioactivity using turbidity reduction assays. Conformational change of metal ion-treated Lss was examined by circular dichroism and intrinsic fluorescence spectroscopy. Co-sedimentation assay was performed to study interactions between Zn2+-treated Lss and S. aureus peptidoglycans. Metal ionbinding prediction and intermolecular docking were used to locate an extraneous Zn2+-binding site.

Results: A drastic decrease in Lss bioactivity against S. aureus and MRSA was revealed only when treated with Zn2+, but not Ni2+, albeit no negative effect of diethyldithiocarbamate—Zn2+-chelator on Lss-induced bioactivity. No severe conformational change was observed for Lss incubated with exogenous Zn2+ or Ni2+. Lss pre-treated with Zn2+ efficiently bound to S. aureus cell-wall peptidoglycans, suggesting non-interfering effect of exogenous metal ions on cell-wall targeting (CWT) activity. In silico analysis revealed that exogenous Zn2+, but not Ni2+, preferably interacted with a potential extraneous Zn2+-binding site (His253, Glu318 and His323) placed near the Zn2+-coordinating Lssactive site within the catalytic (CAT) domain.

Conclusion: Our present data signify the adverse influence of exogenous Zn2+ ions on Lss-induced staphylolytic activity through the exclusive presence within the CAT domain of an extraneous inhibitory Zn2+-binding site, without affecting the CWT activity.

Keywords: Inhibitory Zn2+-binding site, peptidoglycan binding, staphylolytic activity, Zn2+-chelation, metallopeptidase, methicillin- resistant Staphylococcus aureus.

Graphical Abstract
[1]
Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009; 7(9): 629-41.
[http://dx.doi.org/10.1038/nrmicro2200] [PMID: 19680247]
[2]
Mediavilla JR, Chen L, Mathema B, Kreiswirth BN. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol 2012; 15(5): 588-95.
[http://dx.doi.org/10.1016/j.mib.2012.08.003] [PMID: 23044073]
[3]
Hooper NM. Families of zinc metalloproteases. FEBS Lett 1994; 354(1): 1-6.
[http://dx.doi.org/10.1016/0014-5793(94)01079-X] [PMID: 7957888]
[4]
Szweda P, Schielmann M, Kotlowski R, Gorczyca G, Zalewska M, Milewski S. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol 2012; 96(5): 1157-74.
[http://dx.doi.org/10.1007/s00253-012-4484-3] [PMID: 23076591]
[5]
Sloan GL, Smith EC, Lancaster JH. Lysostaphin endopeptidase-catalysed transpeptidation reactions of the imino-transfer type. Biochem J 1977; 167(1): 293-6.
[http://dx.doi.org/10.1042/bj1670293] [PMID: 588262]
[6]
Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 2003; 47(11): 3407-14.
[http://dx.doi.org/10.1128/AAC.47.11.3407-3414.2003] [PMID: 14576095]
[7]
Johnson CT, Wroe JA, Agarwal R, et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc Natl Acad Sci USA 2018; 115(22): E4960-9.
[http://dx.doi.org/10.1073/pnas.1801013115] [PMID: 29760099]
[8]
Johnson CT, Sok MCP, Martin KE, et al. Lysostaphin and BMP-2 co-delivery reduces S. aureus infection and regenerates critical-sized segmental bone defects. Sci Adv 2019; 5(5): eaaw1228.
[http://dx.doi.org/10.1126/sciadv.aaw1228] [PMID: 31114804]
[9]
Kline SA, de la Harpe J, Blackburn P. A colorimetric microtiter plate assay for lysostaphin using a hexaglycine substrate. Anal Biochem 1994; 217(2): 329-31.
[http://dx.doi.org/10.1006/abio.1994.1127] [PMID: 8203764]
[10]
Baba T, Schneewind O. Target cell specificity of a bacteriocin molecule: a C-terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. EMBO J 1996; 15(18): 4789-97.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00859.x] [PMID: 8890152]
[11]
Sabala I, Jagielska E, Bardelang PT, et al. Crystal structure of the antimicrobial peptidase lysostaphin from Staphylococcus simulans. FEBS J 2014; 281(18): 4112-22.
[http://dx.doi.org/10.1111/febs.12929] [PMID: 25039253]
[12]
Grabowska M, Jagielska E, Czapinska H, Bochtler M, Sabala I. High resolution structure of an M23 peptidase with a substrate analogue. Sci Rep 2015; 5: 14833-40.
[http://dx.doi.org/10.1038/srep14833] [PMID: 26437833]
[13]
Mitkowski P, Jagielska E, Nowak E, et al. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep 2019; 9(1): 5965-78.
[http://dx.doi.org/10.1038/s41598-019-42435-z] [PMID: 30979923]
[14]
Chandra Ojha S, Imtong C, Meetum K, Sakdee S, Katzenmeier G, Angsuthanasombat C. Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans: Adverse influence of Zn2+ on bacteriolytic activity. Protein Expr Purif 2018; 151: 106-12.
[http://dx.doi.org/10.1016/j.pep.2018.06.013] [PMID: 29944958]
[15]
Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 2000; 287(2): 252-60.
[http://dx.doi.org/10.1006/abio.2000.4880] [PMID: 11112271]
[16]
Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23(21): 2947-8.
[http://dx.doi.org/10.1093/bioinformatics/btm404] [PMID: 17846036]
[17]
Lin Y-F, Cheng C-W, Shih C-S, Hwang J-K, Yu C-S, Lu C-H. MIB: metal ion-binding site prediction and docking server. J Chem Inf Model 2016; 56(12): 2287-91.
[http://dx.doi.org/10.1021/acs.jcim.6b00407] [PMID: 27976886]
[18]
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[19]
DeLano WL. An open source molecular graphics tool. CCP4 Newslett. Prot Crystallogr 2002; 40: 82-92.
[20]
Trayer HR, Buckley CE III. Molecular properties of lysostaphin, a bacteriolytic agent specific for Staphylococcus aureus. J Biol Chem 1970; 245(18): 4842-6.
[PMID: 5456157]
[21]
Woody RW. Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins. Eur Biophys J 1994; 23(4): 253-62.
[http://dx.doi.org/10.1007/BF00213575] [PMID: 7805627]
[22]
Borén K, Freskgård P-O, Carlsson U. A comparative CD study of carbonic anhydrase isoenzymes with different number of tryptophans: impact on calculation of secondary structure content. Protein Sci 1996; 5(12): 2479-84.
[http://dx.doi.org/10.1002/pro.5560051210] [PMID: 8976556]
[23]
Andersson D, Carlsson U, Freskgård P-O. Contribution of tryptophan residues to the CD spectrum of the extracellular domain of human tissue factor: application in folding studies and prediction of secondary structure. Eur J Biochem 2001; 268(4): 1118-28.
[http://dx.doi.org/10.1046/j.1432-1327.2001.01981.x] [PMID: 11179978]
[24]
Price NC. Circular dichroism in protein analysis. Molecular Biology and Biotechnology: A Comprehensive Desk Reference 1995; 179-84.
[25]
Harding MM. Geometry of metal-ligand interactions in proteins. Acta Crystallogr D Biol Crystallogr 2001; 57(Pt 3): 401-11.
[http://dx.doi.org/10.1107/S0907444900019168] [PMID: 11223517]
[26]
Ahlstrand E, Spångberg D, Hermansson K, Frie R. Interaction energies between metal ions (Zn2+and Cd2+) and biologically relevant ligands. Int J Quantum Chem 2003; 113: 2554-62.
[http://dx.doi.org/10.1002/qua.24506]
[27]
Sugai M, Fujiwara T, Akiyama T, et al. Purification and molecular characterization of glycylglycine endopeptidase produced by Staphylococcus capitis EPK1. J Bacteriol 1997; 179(4): 1193-202.
[http://dx.doi.org/10.1128/JB.179.4.1193-1202.1997] [PMID: 9023202]
[28]
Firczuk M, Mucha A, Bochtler M. Crystal structures of active LytM. J Mol Biol 2005; 354(3): 578-90.
[http://dx.doi.org/10.1016/j.jmb.2005.09.082] [PMID: 16269153]
[29]
Raulinaitis V, Tossavainen H, Aitio O, et al. Identification and structural characterization of LytU, a unique peptidoglycan endopeptidase from the lysostaphin family. Sci Rep 2017; 7(1): 6020-33.
[http://dx.doi.org/10.1038/s41598-017-06135-w] [PMID: 28729697]
[30]
Holland DR, Hausrath AC, Juers D, Matthews BW. Structural analysis of zinc substitutions in the active site of thermolysin. Protein Sci 1995; 4(10): 1955-65.
[http://dx.doi.org/10.1002/pro.5560041001] [PMID: 8535232]
[31]
Gomez-Ortiz M, Gomis-Rüth FX, Huber R, Avilés FX. Inhibition of carboxypeptidase A by excess zinc: analysis of the structural determinants by X-ray crystallography. FEBS Lett 1997; 400(3): 336-40.
[http://dx.doi.org/10.1016/S0014-5793(96)01412-3] [PMID: 9009226]
[32]
Larsen KS, Auld DS. Carboxypeptidase A: mechanism of zinc inhibition. Biochemistry 1989; 28(25): 9620-5.
[http://dx.doi.org/10.1021/bi00451a012] [PMID: 2611251]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy