New Trends in Drug Delivery Systems for Veterinary Applications

Author(s): Classius Ferreira da Silva, Taline Almeida, Raquel de Melo Barbosa, Juliana Cordeiro Cardoso, Margaretha Morsink, Eliana Barbosa Souto*, Patrícia Severino*

Journal Name: Pharmaceutical Nanotechnology

Volume 9 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The veterinary pharmaceutical industry has shown significant growth in recent decades. Several factors contribute to this increase as the demand for the improvement of the quality of life of both domestic and wild animals, together with the need to improve the quality, productivity, and safety of foodstuffs of animal origin.

Methods: The goal of this work was to identify the most suitable medicines for animals that focus on drug delivery routes as those for humans, although they may have different devices, such as collars and ear tags.

Results: Recent advances in drug delivery systems for veterinary use are discussed, both from academic research and the global market. The administration routes commonly used for veterinary medicines are also explored, while special attention is given to the latest technological trends to improve the drug performance, reducing the number of doses, animal stress, and side effects.

Conclusion: Drug delivery system in veterinary decreased the number of doses, side effects, and animal stress that are a small fraction of the benefits of veterinary drug delivery systems and represent a significant increase in profit for the industry; also, it demands investments in research regarding the quality, safety, and efficacy of the drug and the drug delivery systems.

Keywords: Animals and technology, drug delivery, innovation, medicine, route of administration, veterinary.

[1]
Rathbone MJ, Martinez MN. Modified release drug delivery in veterinary medicine. Drug Discov Today 2002; 7(15): 823-9.
[http://dx.doi.org/10.1016/S1359-6446(02)02362-0 ] [PMID: 12546970]
[2]
McDowell A, Rathbone MJ. Veterinary drug delivery. J Pharm Bioallied Sci 2014; 6(1): 1.
[http://dx.doi.org/10.4103/0975-7406.124299 ] [PMID: 24459396]
[3]
Company BR. Veterinary Services Global Market Report 2018: EUA 2018. Available at: https://www.reportlinker.com/ p05309005/Veterinary-Services-Global-Market-Report.html
[4]
Sindan. Mercado NACIONAL de Produtos para Saúde animal. 2019. Available at: http://www.sindan.org.br/2019
[5]
Abinpet. Mercado pet Brazil. 2019. Available at: http://abinpet.org.br/mercado/2019
[6]
Jones RS, West E. Environmental sustainability in veterinary anaesthesia. Vet Anaesth Analg 2019; 46(4): 409-20.
[http://dx.doi.org/10.1016/j.vaa.2018.12.008 ] [PMID: 31202620]
[7]
Horise Y, Maeda M, Konishi Y, et al. Sonodynamic Therapy With Anticancer Micelles and High-Intensity Focused Ultrasound in Treatment of Canine Cancer. Front Pharmacol 2019; 10: 545.
[http://dx.doi.org/10.3389/fphar.2019.00545 ] [PMID: 31164823]
[8]
Kuehl PJ, Barrett EG, McDonald JD, et al. Formulation development and in vivo evaluation of a new dry powder formulation of albuterol sulphate in beagle dogs. Pharm Res 2010; 27(5): 894-904.
[http://dx.doi.org/10.1007/s11095-010-0084-z ] [PMID: 20232119]
[9]
Murrough JW, Yaqubi S, Sayed S, Charney DS. Emerging drugs for the treatment of anxiety. Expert Opin Emerg Drugs 2015; 20(3): 393-406.
[http://dx.doi.org/10.1517/14728214.2015.1049996 ] [PMID: 26012843]
[10]
Kongara K, Chambers JP. Robenacoxib in the treatment of pain in cats and dogs: safety, efficacy, and place in therapy. Vet Med (Auckl) 2018; 9: 53-61.
[http://dx.doi.org/10.2147/VMRR.S170893 ] [PMID: 30148083]
[11]
Glaus TM, Elliott J, Herberich E, Zimmering T, Albrecht B. Efficacy of long-term oral telmisartan treatment in cats with hypertension: Results of a prospective European clinical trial. J Vet Intern Med 2019; 33(2): 413-22.
[http://dx.doi.org/10.1111/jvim.15394 ] [PMID: 30561059]
[12]
Wilmotte R, Lorenzo F, Chretien DO. Preventive and curative peroxometallate based composition, notably pharmaceutical composition. US Patent 10,857,179 2020.
[13]
Bonnet-Gonnet C, Chognot D, Soula O, Constancis A. Pharmaceutical formulations for the prolonged release of active principle (s), and their applications, especially therapeutic applications US Patent 15/081,058 2018.
[14]
Zortéa T, Segat JC, Maccari AP, Sousa JP, Da Silva AS, Baretta D. Toxicity of four veterinary pharmaceuticals on the survival and reproduction of Folsomia candida in tropical soils. Chemosphere 2017; 173: 460-5.
[http://dx.doi.org/10.1016/j.chemosphere.2017.01.069 ] [PMID: 28131090]
[15]
Cardinal JR, Witchey-Lakshmanan LC. Drug delivery in veterinary medicine Treatise on Controlled Drug Delivery . Oxfordshire: Routledge 2017; pp. 465-89.
[http://dx.doi.org/10.1201/9780203735022-10]
[16]
Gök MK, Özgümüş S, Demir K, et al. Development of starch based mucoadhesive vaginal drug delivery systems for application in veterinary medicine. Carbohydr Polym 2016; 136: 63-70.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.079 ] [PMID: 26572329]
[17]
Saridomichelakis MN, Dip E. Prevention strategies for canine leishmaniosis. Adv Vet Prof East Eur 2019 2019; 1: 26
[18]
Modric S, Martinez M. Patient variation in veterinary medicine--part II--influence of physiological variables. J Vet Pharmacol Ther 2011; 34(3): 209-23.
[http://dx.doi.org/10.1111/j.1365-2885.2010.01249.x ] [PMID: 21083665]
[19]
Ahmed I, Kasraian K. Pharmaceutical challenges in veterinary product development. Adv Drug Deliv Rev 2002; 54(6): 871-82.
[http://dx.doi.org/10.1016/S0169-409X(02)00074-1 ] [PMID: 12363436]
[20]
Morein B, Hu K-F, Abusugra I. Current status and potential application of ISCOMs in veterinary medicine. Adv Drug Deliv Rev 2004; 56(10): 1367-82.
[http://dx.doi.org/10.1016/j.addr.2004.02.004 ] [PMID: 15191787]
[21]
Kumar AR, Aeila ASS. Sustained release matrix type drug delivery system: an overreview. World J Pharm Pharm Sci 2020; 9(1): 470-80.
[22]
Belani K. Oral Drug Delivery Systems in Ruminant Animals. Bombay Technologist 2011; 61: 1-14.
[23]
Nature Technology The dose makes the poison. Nat Nanotechnol 2011; 6(6): 329.
[http://dx.doi.org/10.1038/nnano.2011.87 ] [PMID: 21654642]
[24]
Everaerts M, Van den Mooter G. Complex amorphous solid dispersions based on poly(2-hydroxyethyl methacrylate): Study of drug release from a hydrophilic insoluble polymeric carrier in the presence and absence of a porosity increasing agent. Int J Pharm 2019; 566: 77-88.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.040 ] [PMID: 31103819]
[25]
Rothen-Weinhold A, Gurny R, Dahn M. Formulation and technology aspects of conrolled drug delivery in animals. Pharm Sci Technol Today 2000; 3(7): 222-31.
[http://dx.doi.org/10.1016/S1461-5347(00)00276-5 ] [PMID: 10884678]
[26]
Coutant T, Laniesse D, Sykes JM IV. Advances in Therapeutics and Delayed Drug Release. Vet Clin North Am Exot Anim Pract 2019; 22(3): 501-20.
[http://dx.doi.org/10.1016/j.cvex.2019.05.006 ] [PMID: 31395328]
[27]
Verma RK, Krishna DM, Garg S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release 2002; 79(1-3): 7-27.
[http://dx.doi.org/10.1016/S0168-3659(01)00550-8 ] [PMID: 11853915]
[28]
Vandamme TF, Ellis K. Issues and challenges in developing ruminal drug delivery systems. J Adv Drug Deliv Rev 2004; 56(10): 1415-36.
[http://dx.doi.org/10.1016/j.addr.2004.02.011]
[29]
Beugnet F, Liebenberg J, Halos L. Comparative efficacy of two oral treatments for dogs containing either afoxolaner or fluralaner against Rhipicephalus sanguineus sensu lato and Dermacentor reticulatus. Vet Parasitol 2015; 209(1-2): 142-5.
[http://dx.doi.org/10.1016/j.vetpar.2015.02.002 ] [PMID: 25716658]
[30]
Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan AJSPJ. Orally disintegrating films: A modern expansion in drug delivery system 2016; 24(4): 537-46.
[http://dx.doi.org/10.1016/j.jsps.2015.02.024]
[31]
Keshari A, Sharma PK. Nayyar Parvez MJIJoPS, Research. Fast dissolving oral film: a novel and innovative drug delivery system 2014; 5(3): 92-5.
[32]
Banks KC, Ericsson AC, Reinero CR, Giuliano EA. Veterinary ocular microbiome: Lessons learned beyond the culture. Vet Ophthalmol 2019; 22(5): 716-25.
[http://dx.doi.org/10.1111/vop.12676 ] [PMID: 31070001]
[33]
Komáromy AM, Bras D, Esson DW, et al. The future of canine glaucoma therapy. Vet Ophthalmol 2019; 22(5): 726-40.
[http://dx.doi.org/10.1111/vop.12678 ] [PMID: 31106969]
[34]
Gurny R, Kaltsatos V, Deshpande AA, Zignani M, Percicot C, Baeyens V. Ocular drug delivery in veterinary medicine. Adv Drug Deliv Rev 1997; 28(3): 335-61.
[http://dx.doi.org/10.1016/S0169-409X(97)00088-4 ] [PMID: 10837574]
[35]
Pescina S, Macaluso C, Gioia GA, Padula C, Santi P, Nicoli S. Mydriatics release from solid and semi-solid ophthalmic formulations using different in vitro methods. Drug Dev Ind Pharm 2017; 43(9): 1472-9.
[http://dx.doi.org/10.1080/03639045.2017.1318910 ] [PMID: 28426341]
[36]
Bao Q, Burgess DJ. Perspectives on Physicochemical and In Vitro Profiling of Ophthalmic Ointments. Pharm Res 2018; 35(12): 234.
[http://dx.doi.org/10.1007/s11095-018-2513-3 ] [PMID: 30324424]
[37]
Ledbetter EC, Nicklin AM, Spertus CB, Pennington MR, Van de Walle GR, Mohammed HO. Evaluation of topical ophthalmic ganciclovir gel for the treatment of dogs with experimentally induced ocular canine herpesvirus-1 infection. Am J Vet Res 2018; 79(7): 762-9.
[http://dx.doi.org/10.2460/ajvr.79.7.762 ] [PMID: 29943639]
[38]
Regnier A, Berton I, Concordet D, Douet J-Y. Effect of topical application of 2% lidocaine gel on corneal sensitivity of clinically normal equine eyes. Vet Anaesth Analg 2018; 45(2): 158-64.
[http://dx.doi.org/10.1016/j.vaa.2017.08.008 ] [PMID: 29452891]
[39]
Simeone CA, Colitz CMH, Colegrove KM, et al. Subconjunctival antimicrobial poloxamer gel for treatment of corneal ulceration in stranded California sea lions (Zalophus californianus). Vet Ophthalmol 2017; 20(5): 441-9.
[http://dx.doi.org/10.1111/vop.12447 ] [PMID: 27905668]
[40]
Gurtler F, Kaltsatos V, Boisramé B, Gurny R. Long-acting soluble bioadhesive ophthalmic drug insert (BODI) containing gentamicin for veterinary use: optimization and clinical investigation. J Control Release 1995; 33(2): 231-6.
[http://dx.doi.org/10.1016/0168-3659(94)00096-D]
[41]
Baeyens V, Percicot C, Zignani M, Deshpande AA, Kaltsatos V, Gurny RJAddr. . Ocular drug delivery in veterinary medicine. Adv Drug Deliv Rev 1997; 28(3): 355-61.
[42]
Williams DL, Wirostko BM, Gum G, Mann BK. Topical cross-linked HA-based hydrogel accelerates closure of corneal epithelial defects and repair of stromal ulceration in companion animals. Invest Ophthalmol Vis Sci 2017; 58(11): 4616-22.
[http://dx.doi.org/10.1167/iovs.16-20848 ] [PMID: 28898355]
[43]
Williams DL, Mann BK. A crosslinked HA-based hydrogel ameliorates dry eye symptoms in dogs. Int J Biomater 2013; 2013(460437)460437
[http://dx.doi.org/10.1155/2013/460437] [PMID: 23840213]
[44]
Noreen S, Ghumman SA, Batool F, Ijaz B, Basharat M, Noureen S, et al. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol 2019; 152: 1056-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.193 ] [PMID: 31751751]
[45]
Maeda M, Kojima S, Sugiyama T, et al. Effects of Gelatin Hydrogel Containing Anti-Transforming Growth Factor-β Antibody in a Canine Filtration Surgery Model. Int J Mol Sci 2017; 18(5)E985
[http://dx.doi.org/10.3390/ijms18050985] [PMID: 28475118]
[46]
Kojima S, Sugiyama T, Takai S, et al. Effects of Gelatin Hydrogel Loading Mitomycin C on Conjunctival Scarring in a Canine Filtration Surgery Model. Invest Ophthalmol Vis Sci 2015; 56(4): 2601-5.
[http://dx.doi.org/10.1167/iovs.15-16486 ] [PMID: 25813997]
[47]
Han Y, Li C, Cai Q, Bao X, Tang L, Ao H, et al. Studies on bacterial cellulose/poly vinyl alcohol (BC/PVA) hydrogel composites as tissue-engineered corneal stroma. Biomed Mater 2020; 15(3)035022
[48]
Shi H, Wang Y, Bao Z, et al. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. Int J Pharm 2019; 570118688
[http://dx.doi.org/10.1016/j.ijpharm.2019.118688] [PMID: 31513870]
[49]
Pijls R, Lindemann S, Nuijts R, Daube G, Koole L. Pradofloxacin release from the OphthaCoil: a new device for sustained delivery of drugs to the eye. J Drug Deliv Sci Technol 2007; 17(1): 87-91.
[http://dx.doi.org/10.1016/S1773-2247(07)50012-2]
[50]
Barachetti L, Rampazzo A, Mortellaro CM, Scevola S, Gilger BC. Use of episcleral cyclosporine implants in dogs with keratoconjunctivitis sicca: pilot study. Vet Ophthalmol 2015; 18(3): 234-41.
[http://dx.doi.org/10.1111/vop.12173 ] [PMID: 24799029]
[51]
Baeyens V, Kaltsatos V, Boisrame B, Fathi M, Gurny R. Evaluation of soluble Bioadhesive Ophthalmic Drug Inserts (BODI) for prolonged release of gentamicin: lachrymal pharmacokinetics and ocular tolerance. J Ocul Pharmacol Ther 1998; 14(3): 263-72.
[http://dx.doi.org/10.1089/jop.1998.14.263 ] [PMID: 9671434]
[52]
Gurtler F, Kaltsatos V, Boisramé B, et al. Ocular availability of gentamicin in small animals after topical administration of a conventional eye drop solution and a novel long acting bioadhesive ophthalmic drug insert. Pharm Res 1995; 12(11): 1791-5.
[http://dx.doi.org/10.1023/A:1016242528222 ] [PMID: 8592688]
[53]
Alvinerie M, Escudero E, Sutra J-F, Eeckhoutte C, Galtier P. The pharmacokinetics of moxidectin after oral and subcutaneous administration to sheep. Vet Res 1998; 29(2): 113-8.
[PMID: 9601143]
[54]
Avni-Magen N, Eshar D, Friedman M, et al. Retrospective evaluation of a novel sustained-release ivermectin varnish for treatment of wound myiasis in zoo-housed animals. J Zoo Wildl Med 2018; 49(1): 201-5.
[http://dx.doi.org/10.1638/2016-0299R2.1 ] [PMID: 29517452]
[55]
Cola DF, Pasquoto T, Guilger M. Lima Rd, Silva CMGd, Fraceto LF. Sistemas carreadores lipídicos nanoestruturados para ivermectina e metopreno visando controle de parasitas. Quim Nova 2016; 39(9): 1034-43.
[56]
Dahlizar S, Futaki M, Okada A, Yatomi C, Todo H, Sugibayashi K. Combined use of N-Palmitoyl-Glycine-Histidine gel and several penetration enhancers on the skin permeation and concentration of metronidazole. Pharmaceutics 2018; 10(4): 163.
[http://dx.doi.org/10.3390/pharmaceutics10040163 ] [PMID: 30241371]
[57]
Lu M, Cai Y, Yang S, Wan Q, Pan B. A single subcutaneous administration of a sustained-release ivermectin suspension eliminates Psoroptes cuniculi infection in a rabbit farm. Drug Dev Ind Pharm 2018; 44(12): 2000-4.
[http://dx.doi.org/10.1080/03639045.2018.1506474 ] [PMID: 30058406]
[58]
Xu FR, Pan BL, Wang YW, et al. Pharmacokinetics of injectable long-acting ivermectin aqueous suspension following subcutaneous administration in sheep. J Vet Pharmacol Ther 2007; 30(5): 486-8.
[http://dx.doi.org/10.1111/j.1365-2885.2007.00881.x ] [PMID: 17803744]
[59]
Bassissi F, Lespine A, Alvinerie M. Assessment of a liposomal formulation of ivermectin in rabbit after a single subcutaneous administration. Parasitol Res 2006; 98(3): 244-9.
[http://dx.doi.org/10.1007/s00436-005-0073-z ] [PMID: 16341879]
[60]
Maeda H, Brandon M, Sano A. Design of controlled-release formulation for ivermectin using silicone. Int J Pharm 2003; 261(1-2): 9-19.
[http://dx.doi.org/10.1016/S0378-5173(03)00293-X ] [PMID: 12878391]
[61]
Dorati R, Conti B, Colzani B, Dondi D, Lazzaroni S, Modena T, et al. Ivermectin controlled release implants based on poly-D, l-lactide and poly-ε-caprolactone. J Drug Deliv Sci Technol 2018; 46: 101-10.
[http://dx.doi.org/10.1016/j.jddst.2018.04.014]
[62]
Gamboa GV, Palma SD, Lifschitz A, et al. Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications. Parasitol Res 2016; 115(5): 1945-53.
[http://dx.doi.org/10.1007/s00436-016-4937-1 ] [PMID: 26852126]
[63]
Clark SL, Crowley AJ, Schmidt PG, Donoghue AR, Piché CA. Long-term delivery of ivermectin by use of poly(D,L-lactic-co-glycolic)acid microparticles in dogs. Am J Vet Res 2004; 65(6): 752-7.
[http://dx.doi.org/10.2460/ajvr.2004.65.752 ] [PMID: 15198214]
[64]
Von Bittera M, Sieveking HU, Stendel W, Voege H. Polyurethanes having ectoparasiticidal activity. US patent 4,189,467 1980.
[65]
Witchey-Lakshmanan LC. Long-acting control of ectoparasites: a review of collar technologies for companion animals. Adv Drug Deliv Rev 1999; 38(2): 113-22.
[http://dx.doi.org/10.1016/S0169-409X(99)00011-3 ] [PMID: 10837751]
[66]
Reichard MV, Thomas JE, Arther RG, et al. Efficacy of an imidacloprid 10%/flumethrin 4.5% collar (Seresto®, Bayer) for preventing the transmission of Cytauxzoon felis to domestic cats by Amblyomma americanum. Parasitol Res 2013; 112(1)(Suppl. 1): 11-20.
[http://dx.doi.org/10.1007/s00436-013-3277-7 ] [PMID: 23760871]
[67]
Brandjes JW. Tick and flea collar of solid solution plasticized vinylic resin-carbamate insecticide. US patent 3,852,416 1974.
[68]
Walther FM, Fisara P, Allan MJ, Roepke RK, Nuernberger MC. Safety of the concurrent treatment of dogs with Bravecto (fluralaner) and Scalibor protectorband (deltamethrin). Parasit Vectors 2014; 7(1): 105.
[http://dx.doi.org/10.1186/1756-3305-7-105 ] [PMID: 24646450]
[69]
Rathbone MJ. Delivering drugs to farmed animals using controlled release science and technology. Curr Drug Deliv 2012; 6(Suppl. 1): S118-28.
[70]
Cushing AC, Ramsay EC, Steeil J, Cox S. Pharmacokinetic parameters of cefovecin sodium (Convenia) in captive tigers (Panthera tigris). J Zoo Wildl Med 2017; 48(4): 1188-92.
[http://dx.doi.org/10.1638/2017-0083.1 ] [PMID: 29297795]
[71]
Vasseur MV, Lacroix MZ, Toutain P-L, Bousquet-Melou A, Ferran AA. Infection-stage adjusted dose of beta-lactams for parsimonious and efficient antibiotic treatments: A Pasteurella multocida experimental pneumonia in mice. PLoS One 2017; 12(8)e0182863
[http://dx.doi.org/10.1371/journal.pone.0182863] [PMID: 28777819]
[72]
O’Connor AM, Yuan C, Cullen JN, Coetzee JF, da Silva N, Wang C. A mixed treatment meta-analysis of antibiotic treatment options for bovine respiratory disease - An update. Prev Vet Med 2016; 132: 130-9.
[http://dx.doi.org/10.1016/j.prevetmed.2016.07.003 ] [PMID: 27612392]
[73]
Junquera P, Hosking B, Gameiro M, Macdonald A. Benzoylphenyl ureas as veterinary antiparasitics An overview and outlook with emphasis on efficacy, usage and resistance. J Parasite 2019; p. p. 26.
[74]
Eppleston J, Watt B, van de Ven R. Post-weaning growth of beef heifers drenched with long- or short-acting anthelmintics. Aust Vet J 2016; 94(9): 341-6.
[http://dx.doi.org/10.1111/avj.12477 ] [PMID: 27569839]
[75]
da Silva SM, Amorim IF, Ribeiro RR, et al. Efficacy of combined therapy with liposome-encapsulated meglumine antimoniate and allopurinol in treatment of canine visceral leishmaniasis. Antimicrob Agents Chemother 2012; 56(6): 2858-67.
[http://dx.doi.org/10.1128/AAC.00208-12 ] [PMID: 22411610]
[76]
Azevedo EG, Ribeiro RR, da Silva SM, Ferreira CS, de Souza LE, Ferreira AA, et al. Mixed formulation of conventional and pegylated liposomes as a novel drug delivery strategy for improved treatment of visceral leishmaniasis. Expert opinion on drug delivery Antimicrobial agents 2014; 11(10): 1551-60.
[http://dx.doi.org/10.1517/17425247.2014.932347]
[77]
Bilhalva AF, Finger IS, Pereira RA, Corrêa MN, Burkert Del Pino FA. Utilization of biodegradable polymers in veterinary science and routes of administration: a literature review. J Appl Anim Res 2018; 46(1): 643-9.
[http://dx.doi.org/10.1080/09712119.2017.1378104]
[78]
Ferguson LM, Rohan LC. The importance of the vaginal delivery route for antiretrovirals in HIV prevention. Ther Deliv 2011; 2(12): 1535-50.
[http://dx.doi.org/10.4155/tde.11.126 ] [PMID: 22468220]
[79]
Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release 2005; 103(2): 301-13.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.034 ] [PMID: 15763615]
[80]
Pickard AR, Abáigar T, Green DI, Holt WV, Cano M. Hormonal characterization of the reproductive cycle and pregnancy in the female Mohor gazelle (Gazella dama mhorr). Reproduction 2001; 122(4): 571-80.
[http://dx.doi.org/10.1530/rep.0.1220571 ] [PMID: 11570964]
[81]
Wojtusik, Jessye, Janine L. Brown, and Budhan S. Pukazhenthi. "Non-invasive hormonal characterization of the ovarian cycle, pregnancy, and seasonal anestrus of the female addra gazelle (Nanger dama ruficollis)." Theriogenology 95 (2001): 96-104.
[82]
Leitman NR, Busch DC, Wilson DJ, et al. Comparison of controlled internal drug release insert-based protocols to synchronize estrus in prepubertal and estrous-cycling beef heifers. J Anim Sci 2009; 87(12): 3976-82.
[http://dx.doi.org/10.2527/jas.2009-2250 ] [PMID: 19717780]
[83]
Rathbone MJ, Bunt CR, Ogle CR, et al. Reengineering of a commercially available bovine intravaginal insert (CIDR insert) containing progesterone. J Control Release 2002; 85(1-3): 105-15.
[http://dx.doi.org/10.1016/S0168-3659(02)00288-2 ] [PMID: 12480316]
[84]
Cross PS, Künnemeyer R, Bunt CR, Carnegie DA, Rathbone MJ. Control, communication and monitoring of intravaginal drug delivery in dairy cows. Int J Pharm 2004; 282(1-2): 35-44.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.023 ] [PMID: 15336380]
[85]
Gavini E, Sanna V, Juliano C, Bonferoni MC, Giunchedi P. Mucoadhesive vaginal tablets as veterinary delivery system for the controlled release of an antimicrobial drug, acriflavine. AAPS PharmSciTech 2002; 3(3)E20
[http://dx.doi.org/10.1208/pt030320] [PMID: 12916935]
[86]
Araújo RS, Garcia GM, Vilela JMC, Andrade MS, Oliveira LAM, Kano EK, et al. Cloxacillin benzathine-loaded polymeric nanocapsules: Physicochemical characterization, cell uptake, and intramammary antimicrobial effect 2019; 104110006


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 1
Year: 2021
Published on: 13 June, 2020
Page: [15 - 25]
Pages: 11
DOI: 10.2174/2211738508666200613214548

Article Metrics

PDF: 31
HTML: 1