Unique nCoV-2019 (Covid-19) Spike Glycoprotein Processing by Host Protease: Analysis and Implication on Infection

Author(s): Ajoy Basak*, Sarmistha Basak

Journal Name: Current Proteomics

Volume 18 , Issue 2 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


The current global pandemic outbreak of a novel type of coronavirus termed by the World Health Organization as COVID-19 became a grave concern and worry to human health and the world economy. Intense research efforts are now underway worldwide to combat and prevent the spread of this deadly disease. This zoonotic virus, a native to bat population, is most likely transmitted to a human via a host reservoir. Due to its close similarity to previously known SARS CoV (Severe Acute Respiratory Syndrome Corona Virus) of 2002 and related MERS CoV (Middle East Respiratory Syndrome Corona Virus) of 2012, it is also known as SARS CoV2. But unlike them, it is far too infectious, virulent and lethal. Among its various proteins, the surface spike glycoprotein “S” has drawn significant attention because of its implication in viral recognition and host-virus fusion process. A detailed comparative analysis of “S” proteins of SARS CoV (now called SARS CoV1), SARS CoV2 (COVID-19) and MERS CoV based on structure, sequence alignment, host cleavage sites, receptor binding domains, potential glycosylation and Cys-disulphide bridge locations has been performed. It revealed some key features and variations that may elucidate the high infection and virulence character of COVID-19. Moreover, this crucial information may become useful in our quest for COVID-19 therapeutics and vaccines.

Keywords: nCoV-2019, covid-19, sars cov1, sars cov2, mers cov, spike glycoprotein, processing, host protease, furin, receptor, cleavage site, glycosylation sites, disulfide bonds.

Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
She, J.; Jiang, J.; Ye, L.; Hu, L.; Bai, C.; Song, Y. 2019 novel coronavirus of pneumonia in Wuhan, China: emerging attack and management strategies. Clin. Transl. Med., 2020, 9(1), 19.
[http://dx.doi.org/10.1186/s40169-020-00271-z] [PMID: 32078069]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China novel coronavirus investigating and research team. a novel coronavirus from patients with Pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
Coronavirus likely jumped from bats to an ‘intermediate host’ before infecting humans, WHO says. Available from:https://www.cnbc.com/2020/02/11/coronavirus-likely-jumped-from-bats-to-another-host-before-infecting-humans-who.html
Roosa, K.; Lee, Y.; Luo, R.; Kirpich, A.; Rothenberg, R.; Hyman, J.M.; Yan, P.; Chowell, G. Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infect. Dis. Model., 2020, 5, 256-263.
[http://dx.doi.org/10.1016/j.idm.2020.02.002] [PMID: 32110742]
Zhang, C.; Zheng, W.; Huang, X.; Bell, E.W.; Zhou, X.; Zhang, Y. Protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. J. Proteome Res., 2020, 19(4), 1351-1360.
[http://dx.doi.org/10.1021/acs.jproteome.0c00129] [PMID: 32200634]
World Health Organization (WHO) website. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
Centers for Disease Control and Prevention (CDC) website. Available from:https://www.cdc.gov/coronavirus/2019-ncov/about/index.html
European Centre for Disease Prevention and Control: An agency of the European Union. Available from:https://www.ecdc.europa.eu/en/factsheet-health-professionals-coronaviruses
Cheng, V.C.; Lau, S.K.; Woo, P.C.; Yuen, K.Y.; Woo, C.Y.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev., 2007, 20(4), 660-694.
[http://dx.doi.org/10.1128/CMR.00023-07] [PMID: 17934078]
Mohd, H.A.; Al-Tawfiq, J.A.; Memish, Z.A. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir. Virol. J., 2016, 13(87), 87.
[http://dx.doi.org/10.1186/s12985-016-0544-0] [PMID: 27255185]
Stephen, N.J.; Korsman, M.; van Zyl, G.U.; Nutt, L.; Anderson, M.I.; Preiser, W. Human coronaviruses. Virology; Elsevier Ltd, 2012.
Wu, F.; Zhao, S.; Yu, B.; Chen, Y-M.; Wang, W.; Hu, Y.; Song, Z-G.; Tao, Z-W.; Tian, J-H.; Pei, Y-Y.; Yuan, M.; Dai, F-H.; Liu., ; Wang, Q-M.; Zheng, J-J.; Xu, L.; Holmes, E.; Zhan, Z. A novel coronavirus associated with a respiratory disease in Wuhan of Hubei province, China. Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1, complete genome. (Accession number MN908947). Nature, 2020, 579, 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
Bermingham, A.; Chand, M.A.; Brown, C.S.; Aarons, E.; Tong, C.; Langrish, C.; Hoschler, K.; Brown, K.; Galiano, M.; Myers, R.; Pebody, R.G.; Green, H.K.; Boddington, N.L.; Gopal, R.; Price, N.; Newsholme, W.; Drosten, C.; Fouchier, R.A.; Zambon, M. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro Surveill., 2012, 17(40), 20290.
[PMID: 23078800]
Coutard, B.; Valle, C.; de Lamballerie, X.; de Lamballerie, X.C; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res., 2020, 104742, 1-5.
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-Converting Enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
Rota, P.A.; Oberste, M.S.; Monroe, S.S.; Nix, W.A.; Campagnoli, R.; Icenogle, J.P.; Peñaranda, S.; Bankamp, B.; Maher, K.; Chen, M.H.; Tong, S.; Tamin, A.; Lowe, L.; Frace, M.; DeRisi, J.L.; Chen, Q.; Wang, D.; Erdman, D.D.; Peret, T.C.; Burns, C.; Ksiazek, T.G.; Rollin, P.E.; Sanchez, A.; Liffick, S.; Holloway, B.; Limor, J.; McCaustland, K.; Olsen-Rasmussen, M.; Fouchier, R.; Günther, S.; Osterhaus, A.D.; Drosten, C.; Pallansch, M.A.; Anderson, L.J.; Bellini, W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003, 300(5624), 1394-1399.
[http://dx.doi.org/10.1126/science.1085952] [PMID: 12730500]
Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol., 2011, 85(2), 873-882.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
Shin, W.J.; Seong, B.L. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery. Expert Opin. Drug Discov., 2017, 12(11), 1139-1152.
[http://dx.doi.org/10.1080/17460441.2017.1372417] [PMID: 28870104]
Zmora, P.; Hoffmann, M.; Kollmus, H.; Moldenhauer, A-S.; Danov, O.; Braun, A.; Winkler, M.; Schughart, K.; Pöhlmann, S. TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1. J. Biol. Chem., 2018, 293(36), 13863-13873.
[http://dx.doi.org/10.1074/jbc.RA118.001273] [PMID: 29976755]
Bertram, S.; Dijkman, R.; Habjan, M.; Heurich, A.; Gierer, S.; Glowacka, I.; Welsch, K.; Winkler, M.; Schneider, H.; Hofmann-Winkler, H.; Thiel, V.; Pöhlmann, S. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virol., 2013, 87(11), 6150-6160.
[http://dx.doi.org/10.1128/JVI.03372-12] [PMID: 23536651]
Shirato, K.; Kawase, M.; Matsuyama, S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol., 2013, 87(23), 12552-12561.
[http://dx.doi.org/10.1128/JVI.01890-13] [PMID: 24027332]
Gierer, S.; Bertram, S.; Kaup, F.; Wrensch, F.; Heurich, A.; Krämer-Kühl, A.; Welsch, K.; Winkler, M.; Meyer, B.; Drosten, C.; Dittmer, U.; von Hahn, T.; Simmons, G.; Hofmann, H.; Pöhlmann, S. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J. Virol., 2013, 87(10), 5502-5511.
[http://dx.doi.org/10.1128/JVI.00128-13] [PMID: 23468491]
Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; Niemeyer, D.; Schneider, H.; Drosten, C.; Pöhlmann, S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol., 2011, 85(9), 4122-4134.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
Lu, G.; Wang, Q.; Gao, G.F. Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol., 2015, 23(8), 468-478.
[http://dx.doi.org/10.1016/j.tim.2015.06.003] [PMID: 26206723]
Xu, J.; Zhao, S.; Teng, T.; Abdalla, A.E.; Zhu, W.; Xie, L.; Wang, Y.; Guo, X. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 2020, 12(2), 1-18.
[http://dx.doi.org/10.3390/v12020244] [PMID: 32098422]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 03 May, 2021
Page: [98 - 105]
Pages: 8
DOI: 10.2174/1570164617999200612115218
Price: $25

Article Metrics

PDF: 88