Construction and Functional Analysis of the Recombinant Bacteriocins Weissellicin-MBF from Weissella confusa MBF8-1

Author(s): Amarila Malik*, Elita Yuliantie, Nisa Yulianti Suprahman, Theresa Linardi, Angelina Wening Widiyanti, Jeanita Haldy, Catherine Tjia, Hiroshi Takagi*

Journal Name: Current Pharmaceutical Biotechnology

Volume 22 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Bacteriocins (Bac1, Bac2, and Bac3) from Weissella confusa MBF8-1, weissellicin- MBF, have been reported as potential alternative substances as well as complements to the existing antibiotics against many antimicrobial-resistant pathogens. Previously, the genes encoded in the large plasmid, pWcMBF8-1, and the spermicidal activity of their synthetic peptides, originally discovered Indonesia, have been studied. Three synthetic bacteriocins peptides of this weissellicin-MBF have been reported for their potential activities, i.e. antibacterial and spermicidal.

Objective: The aim of this study was to construct the recombinant Bacteriocin (r-Bac) genes, as well as to investigate the gene expressions and their functional analysis.

Methods: Here, the recombinant Bacteriocin (r-Bac) genes were constructed and the recombinant peptides (r-Bac1, r-Bac2, and r-Bac3) in B. subtilis DB403 cells were produced on a large scale. After purification, using the His-tag affinity column, their potential bioactivities were measured as well as their antibacterial minimum inhibitory concentrations against Leuconostoc mesenteroides and Micrococcus luteus, were determined.

Results: Pure His-tag-recombinant Bac1, Bac2, and Bac3 were obtained and they could inhibit the growth of L. mesenteroides and M. luteus.

Conclusion: The recombinant bacteriocin could be obtained although with weak activity in inhibiting gram-positive bacterial growth.

Keywords: Bacillus subtilis, bacteriocin, recombinant peptide, synthetic peptide, Weissella confusa, weissellicin.

[1]
Sugden, R.; Kelly, R.; Davies, S. Combatting antimicrobial resistance globally. Nat. Microbiol., 2016, 1(10), 16187.
[http://dx.doi.org/10.1038/nmicrobiol.2016.187] [PMID: 27670123]
[2]
Sosa, A.J.; Amábile-Cuevas, C.F.; Byarugaba, D.K.; Hsueh, P-R.; Kariuki, S.; Okeke, I.N. Antimicrobial resistance in developing countries; Springer-Verlag: New York, 2010.
[http://dx.doi.org/10.1007/978-0-387-89370-9]
[3]
Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol., 2014, 5, 241.
[PMID: 24904554]
[4]
Parada, J.L.; Caron, C.R.; Medeiros, A.B.P.; Soccol, C.R. Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Braz. Arch. Biol. Technol., 2007, 50, 521-542.
[http://dx.doi.org/10.1590/S1516-89132007000300018]
[5]
Jiménez, J.J.; Diep, D.B.; Borrero, J.; Gútiez, L.; Arbulu, S.; Nes, I.F.; Herranz, C.; Cintas, L.M.; Hernández, P.E. Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microb. Cell Fact., 2015, 14, 166.
[http://dx.doi.org/10.1186/s12934-015-0346-x] [PMID: 26471395]
[6]
Zacharof, M.P.; Lovitt, R.W. Bacteriocins produced by lactic acid bacteria a review article. Proceedings of the 3rd International Conference on Biotechnology and Food Science, Bangkok, Thailand2012, pp. 50-6.
[http://dx.doi.org/10.1016/j.apcbee.2012.06.010]
[7]
Trivedi, D.; Jena, P.K.; Patel, J.K.; Seshadri, S. Partial purification and characterization of a bacteriocin DT24 produced by probiotic vaginal Lactobacillus brevis DT24 and determination of its anti-uropathogenic Escherichia coli potential. Probiotics Antimicrob. Proteins, 2013, 5(2), 142-151.
[http://dx.doi.org/10.1007/s12602-013-9132-4] [PMID: 26782739]
[8]
Brumfitt, W.; Salton, M.R.; Hamilton-Miller, J.M. Nisin, alone and combined with peptidoglycan-modulating antibiotics: Activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J. Antimicrob. Chemother., 2002, 50(5), 731-734.
[http://dx.doi.org/10.1093/jac/dkf190] [PMID: 12407132]
[9]
Ingham, A.B.; Moore, R.J. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol. Appl. Biochem., 2007, 47(Pt 1), 1-9.
[http://dx.doi.org/10.1042/BA20060207] [PMID: 17432953]
[10]
Li, Y. Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expr. Purif., 2011, 80(2), 260-267.
[http://dx.doi.org/10.1016/j.pep.2011.08.001] [PMID: 21843642]
[11]
Mesa-Pereira, B.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Heterologous expression of biopreservative bacteriocins with a view to low cost production. Front. Microbiol., 2018, 9, 1654.
[http://dx.doi.org/10.3389/fmicb.2018.01654] [PMID: 30093889]
[12]
Csutak, O.; Sarbu, I. Genetically modified microorganisms: Harmful or helpful? genetically engineered foods; Holban, A.M; Grumezescu, A.M., Ed.; Academic Press, 2018, pp. 143-175.
[http://dx.doi.org/10.1016/B978-0-12-811519-0.00006-6]
[13]
Ivanova, S.A.; Astakhova, L.A.; Piskaeva, A.I.; Dyshlyuk, L.S.; Mercè, P.L. Molecular design and synthesis of antimicrobial peptides of wide range. Sci. Evol., 2017, 2, 7.
[http://dx.doi.org/10.21603/2500-1418-2017-2-1-60-67]
[14]
Malik, A.; Radji, M.; Kralj, S.; Dijkhuizen, L. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. FEMS Microbiol. Lett., 2009, 300(1), 131-138.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01772.x] [PMID: 19758326]
[15]
Sari, R.; Anita, C.; Radji, M.; Malik, A. Bacteriocin screening of lactic acid bacteria strains from local isolates of genus Streptococcus and Weissella. Indonesian J. Pharm. Sci., 2011, 9, 116-122.
[16]
Malik, A.; Sumayyah, S.; Yeh, C.W.; Heng, N.C. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol. Lett., 2016, 363(8), 8.
[http://dx.doi.org/10.1093/femsle/fnw059] [PMID: 26976853]
[17]
Sartono, G.; Rizqiyah, I.; Asmarinah, A.; Heng, C.K.N.; Malik, A. Three bacteriocin peptides from a lactic acid bacterium Weissella confusa MBF8-1 with spermicidal activity. Curr. Pharm. Biotechnol., 2019, 20(9), 766-771.https://www.eurekaselect.com/172654/article
[PMID: 31244418]
[18]
O’sullivan, D.J.; Klaenhammer, T.R. Rapid Mini-Prep Isolation of High-Quality Plasmid DNA from Lactococcus and Lactobacillus spp. Appl. Environ. Microbiol., 1993, 59(8), 2730-2733.
[http://dx.doi.org/10.1128/AEM.59.8.2730-2733.1993] [PMID: 16349028]
[19]
Sambrook, J. Molecular cloning: a laboratory manual Cold Spring Hharbor: New York, laboratory press, 1989.
[20]
Sahlan, M.; Desiandini, Y.; Iqbal, M.; Widhyastuti, N.; Malik, A.; Setyahadi, S. Cultivation process optimization of recombinant Bacillus subtilis harbouring apoptin gene. Microbiol. Indones., 2013, 7, 152-158.
[http://dx.doi.org/10.5454/mi.7.4.3]
[21]
Kim, L.; Mogk, A.; Schumann, W. A xylose-inducible Bacillus subtilis integration vector and its application. Gene, 1996, 181(1-2), 71-76.
[http://dx.doi.org/10.1016/S0378-1119(96)00466-0] [PMID: 8973310]
[22]
Malik, A.; Hapsari, M.T.; Ohtsu, I.; Ishikawa, S.; Takagi, H. Cloning and heterologous expression of the ftfCNC-2(1) gene from Weissella confusa MBFCNC-2(1) as an extracellular active fructansucrase in Bacillus subtilis. J. Biosci. Bioeng., 2015, 119(5), 515-520.
[http://dx.doi.org/10.1016/j.jbiosc.2014.09.024] [PMID: 25454699]
[23]
Chen, Y.Q.; Zhang, S.Q.; Li, B.C.; Qiu, W.; Jiao, B.; Zhang, J.; Diao, Z.Y. Expression of a cytotoxic cationic antibacterial peptide in Escherichia coli using two fusion partners. Protein Expr. Purif., 2008, 57(2), 303-311.
[http://dx.doi.org/10.1016/j.pep.2007.09.012] [PMID: 17977015]
[24]
Kim, H-K.; Chun, D-S.; Kim, J-S.; Yun, C-H.; Lee, J-H.; Hong, S-K.; Kang, D-K. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli. Appl. Microbiol. Biotechnol., 2006, 72(2), 330-338.
[http://dx.doi.org/10.1007/s00253-005-0266-5] [PMID: 16421719]
[25]
Grela, E.; Kozłowska, J.; Grabowiecka, A. Current methodology of MTT assay in bacteria - A review. Acta Histochem., 2018, 120(4), 303-311.
[http://dx.doi.org/10.1016/j.acthis.2018.03.007] [PMID: 29606555]
[26]
Jacobus, A.P.; Gross, J. Optimal cloning of PCR fragments by homologous recombination in Escherichia coli. PLoS One, 2015, 10(3)e0119221
[http://dx.doi.org/10.1371/journal.pone.0119221] [PMID: 25774528]
[27]
Heng, N.C.K.; Ragland, N.L.; Swe, P.M.; Baird, H.J.; Inglis, M.A.; Tagg, J.R.; Jack, R.W. Dysgalacticin: A novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis. Microbiology, 2006, 152(Pt 7), 1991-2001.
[http://dx.doi.org/10.1099/mic.0.28823-0] [PMID: 16804174]
[28]
Panek, A.; Pietrow, O.; Filipkowski, P.; Synowiecki, J. Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deinococcus geothermalis. Acta Biochim. Pol., 2013, 60(2), 163-166.
[http://dx.doi.org/10.18388/abp.2013_1966] [PMID: 23745178]
[29]
Costa, F.; Carvalho, I.F.; Montelaro, R.C.; Gomes, P.; Martins, M.C. Covalent immobilization of Antimicrobial Peptides (AMPs) onto biomaterial surfaces. Acta Biomater., 2011, 7(4), 1431-1440.
[http://dx.doi.org/10.1016/j.actbio.2010.11.005] [PMID: 21056701]
[30]
Wade, J.D.; Lin, F.; Hossain, M.A.; Dawson, R.M. Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal growth inhibitor. Amino Acids, 2012, 43(6), 2279-2283.
[http://dx.doi.org/10.1007/s00726-012-1305-z] [PMID: 22555649]
[31]
Piers, K.L.; Brown, M.H.; Hancock, R.E. Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria. Gene, 1993, 134(1), 7-13.
[http://dx.doi.org/10.1016/0378-1119(93)90168-3] [PMID: 8244033]
[32]
Ramos, R.; Moreira, S.; Rodrigues, A.; Gama, M.; Domingues, L. Recombinant expression and purification of the antimicrobial peptide magainin-2. Biotechnol. Prog., 2013, 29(1), 17-22.
[http://dx.doi.org/10.1002/btpr.1650] [PMID: 23125137]
[33]
Papo, N.; Oren, Z.; Pag, U.; Sahl, H.G.; Shai, Y. The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. J. Biol. Chem., 2002, 277(37), 33913-33921.
[http://dx.doi.org/10.1074/jbc.M204928200] [PMID: 12110678]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 1
Year: 2021
Published on: 11 June, 2020
Page: [115 - 122]
Pages: 8
DOI: 10.2174/1389201021666200611111040
Price: $65

Article Metrics

PDF: 26
HTML: 2