Gold Nanoparticles; Potential Nanotheranostic Agent in Breast Cancer: A Comprehensive Review with Systematic Search Strategy

Author(s): Shahad Saif Khandker, Md. Salman Shakil*, Md. Sakib Hossen

Journal Name: Current Drug Metabolism

Volume 21 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Breast cancer is a heterogeneous disease typically prevalent among women and is the second-largest cause of death worldwide. Early diagnosis is the key to minimize the cancer-induced complication, however, the conventional diagnostic strategies have been sluggish, complex, and, to some extent, non-specific. Therapeutic tools are not so convenient and side effects of current therapies offer the development of novel theranostic tool to combat this deadly disease.

Objective: This article aims to summarize the advances in the diagnosis and treatment of breast cancer with gold nanoparticles (GNP or AuNP).

Methods: A systematic search was conducted in the three popular electronic online databases including PubMed, Google Scholar, and Web of Science, regarding GNP as breast cancer theranostics.

Results: Published literature demonstrated that GNPs tuned with photosensitive moieties, nanomaterials, drugs, peptides, nucleotide, peptides, antibodies, aptamer, and other biomolecules improve the conventional diagnostic and therapeutic strategies of breast cancer management with minimum cytotoxic effect. GNP derived diagnosis system assures reproducibility, reliability, and accuracy cost-effectively. Additionally, surface-modified GNP displayed theranostic potential even in the metastatic stage of breast cancer.

Conclusion: Divergent strategies have shown the theranostic potential of surface tuned GNPs against breast cancer even in the metastatic stage with minimum cytotoxic effects both in vitro and in vivo.

Keywords: Gold nanoparticles, breast cancer, metastasis, imaging, treatment, biodistribution, cytotoxicity.

[1]
Mittal, S.; Kaur, H.; Gautam, N.; Mantha, A.K. Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies. Biosens. Bioelectron., 2017, 88, 217-231.
[http://dx.doi.org/10.1016/j.bios.2016.08.028] [PMID: 27567264]
[2]
Sharma, S.; Zapatero-Rodríguez, J.; Saxena, R.; O’Kennedy, R.; Srivastava, S. Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens. Bioelectron., 2018, 106, 78-85.
[http://dx.doi.org/10.1016/j.bios.2018.01.056] [PMID: 29414093]
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[5]
Mishra, P.; Ambs, S. Metabolic signatures of human breast cancer. Mol. Cell. Oncol., 2015, 2(3)e992217
[http://dx.doi.org/10.4161/23723556.2014.992217] [PMID: 26005711]
[6]
Chapman, C.; Murray, A.; Chakrabarti, J.; Thorpe, A.; Woolston, C.; Sahin, U.; Barnes, A.; Robertson, J. Autoantibodies in breast cancer: their use as an aid to early diagnosis. Ann. Oncol., 2007, 18(5), 868-873.
[http://dx.doi.org/10.1093/annonc/mdm007] [PMID: 17347129]
[7]
Weigelt, B.; Peterse, J.L.; van’t Veer, L.J. Breast cancer metastasis: markers and models. Nat. Rev. Cancer, 2005, 5(8), 591-602.
[http://dx.doi.org/10.1038/nrc1670] [PMID: 16056258]
[8]
Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev., 2008, 60(15), 1627-1637.
[http://dx.doi.org/10.1016/j.addr.2008.08.003] [PMID: 18930086]
[9]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[10]
Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16), 9494-9530.
[http://dx.doi.org/10.1039/C4NR00708E] [PMID: 25030381]
[11]
Shapiro, C.L.; Recht, A. Side effects of adjuvant treatment of breast cancer. N. Engl. J. Med., 2001, 344(26), 1997-2008.
[http://dx.doi.org/10.1056/NEJM200106283442607] [PMID: 11430330]
[12]
Xiao, W.; Zheng, S.; Yang, A.; Zhang, X.; Zou, Y.; Tang, H.; Xie, X. Breast cancer subtypes and the risk of distant metastasis at initial diagnosis: a population-based study. Cancer Manag. Res., 2018, 10, 5329-5338.
[http://dx.doi.org/10.2147/CMAR.S176763] [PMID: 30464629]
[13]
Martínez-Aranda, A.; Hernández, V.; Moreno, F.; Baixeras, N.; Cuadras, D.; Urruticoechea, A.; Gil-Gil, M.; Vidal, N.; Andreu, X.; Seguí, M.A.; Ballester, R.; Castella, E.; Sierra, A. Predictive and prognostic brain metastases assessment in luminal breast cancer patients: FN14 and GRP94 from diagnosis to prophylaxis. Front. Oncol., 2017, 7, 283.
[http://dx.doi.org/10.3389/fonc.2017.00283] [PMID: 29250484]
[14]
Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer, 2011, 12(1), 39-50.
[http://dx.doi.org/10.1038/nrc3180] [PMID: 22193407]
[15]
Grobmyer, S.R.; Zhou, G.; Gutwein, L.G.; Iwakuma, N.; Sharma, P.; Hochwald, S.N. Nanoparticle delivery for metastatic breast cancer. Nanomedicine (Lond.), 2012, 8(Suppl. 1), S21-S30.
[http://dx.doi.org/10.1016/j.nano.2012.05.011] [PMID: 22640908]
[16]
Wu, Q.; Li, J.; Zhu, S.; Wu, J.; Chen, C.; Liu, Q.; Wei, W.; Zhang, Y.; Sun, S. Breast cancer subtypes predict the preferential site of distant metastases: a SEER based study. Oncotarget, 2017, 8(17), 27990-27996.
[http://dx.doi.org/10.18632/oncotarget.15856] [PMID: 28427196]
[17]
Choi, K.Y.; Liu, G.; Lee, S.; Chen, X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale, 2012, 4(2), 330-342.
[http://dx.doi.org/10.1039/C1NR11277E] [PMID: 22134683]
[18]
Ambrosi, A.; Airò, F.; Merkoçi, A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem., 2010, 82(3), 1151-1156.
[http://dx.doi.org/10.1021/ac902492c] [PMID: 20043655]
[19]
Guo, J.; Rahme, K.; He, Y.; Li, L-L.; Holmes, J.D.; O’Driscoll, C.M. Gold nanoparticles enlighten the future of cancer theranostics. Int. J. Nanomedicine, 2017, 12, 6131-6152.
[http://dx.doi.org/10.2147/IJN.S140772] [PMID: 28883725]
[20]
Xiao, W.; Ruan, S.; Yu, W.; Wang, R.; Hu, C.; Liu, R.; Gao, H. Normalizing tumor vessels to increase the enzyme-induced retention and targeting of gold nanoparticle for breast cancer imaging and treatment. Mol. Pharm., 2017, 14(10), 3489-3498.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00475] [PMID: 28845990]
[21]
Li, J.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Xie, N.; Wu, Y.; Ma, C.; Wang, K. Gold nanoparticle-based 2′-O-methyl modified DNA probes for breast cancerous theranostics. Talanta, 2018, 183, 11-17.
[http://dx.doi.org/10.1016/j.talanta.2018.02.036] [PMID: 29567152]
[22]
Lee, D.; Ko, W-K.; Hwang, D-S.; Heo, D.N.; Lee, S.J.; Heo, M.; Lee, K-S.; Ahn, J-Y.; Jo, J.; Kwon, I.K. Use of baicalin-conjugated gold nanoparticles for apoptotic induction of breast cancer cells. Nanoscale Res. Lett., 2016, 11(1), 381.
[http://dx.doi.org/10.1186/s11671-016-1586-3] [PMID: 27576521]
[23]
Barai, A.C.; Paul, K.; Dey, A.; Manna, S.; Roy, S.; Bag, B.G.; Mukhopadhyay, C. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg., 2018, 5(1), 10.
[http://dx.doi.org/10.1186/s40580-018-0142-5] [PMID: 29682442]
[24]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[25]
Lee, K.; Drachev, V.P.; Irudayaraj, J. DNA-gold nanoparticle reversible networks grown on cell surface marker sites: application in diagnostics. ACS Nano, 2011, 5(3), 2109-2117.
[http://dx.doi.org/10.1021/nn1030862] [PMID: 21314177]
[26]
Lee, H.; Dam, D.H.M.; Ha, J.W.; Yue, J.; Odom, T.W. Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs. ACS Nano, 2015, 9(10), 9859-9867.
[http://dx.doi.org/10.1021/acsnano.5b05138] [PMID: 26335372]
[27]
Obaid, G.; Chambrier, I.; Cook, M.J.; Russell, D.A. Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem. Photobiol. Sci., 2015, 14(4), 737-747.
[http://dx.doi.org/10.1039/C4PP00312H] [PMID: 25604735]
[28]
Bailly, A-L.; Correard, F.; Popov, A.; Tselikov, G.; Chaspoul, F.; Appay, R.; Al-Kattan, A.; Kabashin, A.V.; Braguer, D.; Esteve, M-A. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep., 2019, 9(1), 12890.
[http://dx.doi.org/10.1038/s41598-019-48748-3] [PMID: 31501470]
[29]
Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab. (Lond.), 2010, 7(1), 7.
[http://dx.doi.org/10.1186/1743-7075-7-7] [PMID: 20181022]
[30]
Miranda-Gonçalves, V.; Lameirinhas, A.; Henrique, R.; Jerónimo, C. Metabolism and epigenetic interplay in cancer: Regulation and putative therapeutic targets. Front. Genet., 2018, 9, 427.
[http://dx.doi.org/10.3389/fgene.2018.00427] [PMID: 30356832]
[31]
Privat, M.; Radosevic-Robin, N.; Aubel, C.; Cayre, A.; Penault-Llorca, F.; Marceau, G.; Sapin, V.; Bignon, Y-J.; Morvan, D. BRCA1 induces major energetic metabolism reprogramming in breast cancer cells. PLoS One, 2014, 9(7)e102438
[http://dx.doi.org/10.1371/journal.pone.0102438] [PMID: 25010005]
[32]
Abramson, H.N. The lipogenesis pathway as a cancer target. J. Med. Chem., 2011, 54(16), 5615-5638.
[http://dx.doi.org/10.1021/jm2005805] [PMID: 21726077]
[33]
Li, N.; Tan, W.; Li, J.; Li, P.; Lee, S.; Wang, Y.; Gong, Y. Glucose metabolism in breast cancer and its implication in cancer therapy. Int. J. Clin. Med., 2011, 2(2)
[http://dx.doi.org/10.4236/ijcm.2011.22022]
[34]
Schwartsburd, P. Cancer-induced reprogramming of host glucose metabolism: vicious cycle supporting cancer progression. Front. Oncol., 2019, 9, 218.
[http://dx.doi.org/10.3389/fonc.2019.00218] [PMID: 31019893]
[35]
Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med., 2020, 52(1), 15-30.
[http://dx.doi.org/10.1038/s12276-020-0375-3] [PMID: 31980738]
[36]
Geck, R.C.; Toker, A. Nonessential amino acid metabolism in breast cancer. Adv. Biol. Regul., 2016, 62, 11-17.
[http://dx.doi.org/10.1016/j.jbior.2016.01.001] [PMID: 26838061]
[37]
Gu, Y.; Chen, T.; Fu, S.; Sun, X.; Wang, L.; Wang, J.; Lu, Y.; Ding, S.; Ruan, G.; Teng, L.; Wang, M. Perioperative dynamics and significance of amino acid profiles in patients with cancer. J. Transl. Med., 2015, 13(1), 35.
[http://dx.doi.org/10.1186/s12967-015-0408-1] [PMID: 25622826]
[38]
Vettore, L.; Westbrook, R.L.; Tennant, D.A. New aspects of amino acid metabolism in cancer. Br. J. Cancer, 2020, 122, 150-156.
[PMID: 31819187]
[39]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A.J.C.S.R. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[40]
Khan, A.; Rashid, R.; Murtaza, G.; Zahra, A.J.T.R. Gold nanoparticles: synthesis and applications in drug delivery. Trop. J. Pharm. Res., 2014, 13(7), 1169-1177.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[41]
Yeh, Y-C.; Creran, B.; Rotello, V.M.J.N. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[42]
Dreaden, E.C.; Austin, L.A.; Mackey, M.A.; El-Sayed, M.A. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Deliv., 2012, 3(4), 457-478.
[http://dx.doi.org/10.4155/tde.12.21] [PMID: 22834077]
[43]
Kong, F-Y.; Zhang, J-W.; Li, R-F.; Wang, Z-X.; Wang, W-J.; Wang, W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 2017, 22(9), 1445.
[http://dx.doi.org/10.3390/molecules22091445] [PMID: 28858253]
[44]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[45]
Nunes, T.; Pons, T.; Hou, X.; Van Do, K.; Caron, B.; Rigal, M.; Di Benedetto, M.; Palpant, B.; Leboeuf, C.; Janin, A.; Bousquet, G. Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 306.
[http://dx.doi.org/10.1186/s13046-019-1305-x] [PMID: 31299997]
[46]
Wang, D.; Xu, Z.; Yu, H.; Chen, X.; Feng, B.; Cui, Z.; Lin, B.; Yin, Q.; Zhang, Z.; Chen, C.; Wang, J.; Zhang, W.; Li, Y. Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials, 2014, 35(29), 8374-8384.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.094] [PMID: 24996756]
[47]
Ruan, S.; Cao, X.; Cun, X.; Hu, G.; Zhou, Y.; Zhang, Y.; Lu, L.; He, Q.; Gao, H. Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials, 2015, 60, 100-110.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.006] [PMID: 25988725]
[48]
Ahmadi, R.; Jalali Sarvestani, M.R.; Sadeghi, B. Computational study of the fullerene effects on the properties of 16 different drugs: A review. Int. J. Nanodimens., 2018, 9(4), 325-335.
[49]
Mori, T.; Hegmann, T. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations. J. Nanopart. Res., 2016, 18(10), 295.
[http://dx.doi.org/10.1007/s11051-016-3587-7] [PMID: 27766020]
[50]
Gao, E.; Zhu, M.; Liu, L.; Huang, Y.; Wang, L.; Shi, C.; Zhang, W.; Sun, Y. Impact of the carbon chain length of novel palladium(II) complexes on interaction with DNA and cytotoxic activity. Inorg. Chem., 2010, 49(7), 3261-3270.
[http://dx.doi.org/10.1021/ic902176e] [PMID: 20199051]
[51]
Rossi, G.; Monticelli, L. Gold nanoparticles in model biological membranes: a computational perspective. Biochim. Biophys. Acta, 2016, 1858(10), 2380-2389.
[http://dx.doi.org/10.1016/j.bbamem.2016.04.001] [PMID: 27060434]
[52]
Wang, P.; Wang, X.; Wang, L.; Hou, X.; Liu, W.; Chen, C. Interaction of gold nanoparticles with proteins and cells. Sci. Technol. Adv. Mater., 2015, 16(3)034610
[http://dx.doi.org/10.1088/1468-6996/16/3/034610] [PMID: 27877797]
[53]
Van Lehn, R.C.; Ricci, M.; Silva, P.H.; Andreozzi, P.; Reguera, J.; Voïtchovsky, K.; Stellacci, F.; Alexander-Katz, A. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nat. Commun., 2014, 5, 4482.
[http://dx.doi.org/10.1038/ncomms5482] [PMID: 25042518]
[54]
Van Lehn, R.C.; Alexander-Katz, A. Ligand-mediated short-range attraction drives aggregation of charged monolayer-protected gold nanoparticles. Langmuir, 2013, 29(28), 8788-8798.
[http://dx.doi.org/10.1021/la400756z] [PMID: 23782293]
[55]
Marrink, S.J.; de Vries, A.H.; Tieleman, D.P. Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim. Biophys. Acta, 2009, 1788(1), 149-168.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.006] [PMID: 19013128]
[56]
Lee, K.H.; Ytreberg, F.M. Effect of gold nanoparticle conjugation on peptide dynamics and structure. Entropy (Basel), 2012, 14(4), 630-641.
[http://dx.doi.org/10.3390/e14040630]
[57]
Wang, W.; Sedykh, A.; Sun, H.; Zhao, L.; Russo, D.P.; Zhou, H.; Yan, B.; Zhu, H. Predicting nano-bio interactions by integrating nanoparticle libraries and quantitative nanostructure activity relationship modeling. ACS Nano, 2017, 11(12), 12641-12649.
[http://dx.doi.org/10.1021/acsnano.7b07093] [PMID: 29149552]
[58]
Rüegg, C.; Reis, C.; Rafiee, S.; Rodriguez-Lorenzo, L.; List, J.; Rothen-Rutishauser, B.; Mayer, M.; Petri-Fink, A. A bio-inspired amplification cascade for the detection of rare cancer cells. Chimia (Aarau), 2019, 73(1), 63-68.
[http://dx.doi.org/10.2533/chimia.2019.63] [PMID: 30814001]
[59]
Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697.
[http://dx.doi.org/10.1111/cpr.12296] [PMID: 27641938]
[60]
Rugo, H. S.; O'Shaughnessy, J. A.; Perez, E. A. Current treatment options for metastatic breast cancer: what now? Clinical advances in hematology oncology : H O, 2011, 9(11), 25, 1-16.
[61]
Gong, Y.; Liu, Y-R.; Ji, P.; Hu, X.; Shao, Z-M. Impact of molecular subtypes on metastatic breast cancer patients: a SEER population-based study. Sci. Rep., 2017, 7, 45411.
[http://dx.doi.org/10.1038/srep45411] [PMID: 28345619]
[62]
Kunikullaya, S.U.; Poddar, J.; Sharma, A.D.; Patel, S. Pattern of distant metastasis in molecular subtypes of carcinoma breast: an institutional study. Indian J. Cancer, 2017, 54(1), 327-332.
[http://dx.doi.org/10.4103/ijc.IJC_177_17] [PMID: 29199716]
[63]
Hu, C.; Niestroj, M.; Yuan, D.; Chang, S.; Chen, J. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int. J. Nanomedicine, 2015, 10, 2065-2077.
[PMID: 25844037]
[64]
Shakil, M.S.; Hasan, M.A.; Sarker, S.R. Iron oxide nanoparticles for breast cancer theranostics. Curr. Drug Metab., 2019, 20(6), 446-456.
[http://dx.doi.org/10.2174/1389200220666181122105043] [PMID: 30465497]
[65]
Eliyatkın, N.; Yalçın, E.; Zengel, B.; Aktaş, S.; Vardar, E. Molecular classification of breast carcinoma: from traditional, old-fashioned way to a new age, and a new way. J. Breast Health, 2015, 11(2), 59-66.
[http://dx.doi.org/10.5152/tjbh.2015.1669] [PMID: 28331693]
[66]
Kennecke, H.; Yerushalmi, R.; Woods, R.; Cheang, M.C.U.; Voduc, D.; Speers, C.H.; Nielsen, T.O.; Gelmon, K. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol., 2010, 28(20), 3271-3277.
[http://dx.doi.org/10.1200/JCO.2009.25.9820] [PMID: 20498394]
[67]
Fang, F.; Turcan, S.; Rimner, A.; Kaufman, A.; Giri, D.; Morris, L. G.; Shen, R.; Seshan, V.; Mo, Q.; Heguy, A. Breast cancer methylomes establish an epigenomic foundation for metastasis Sci. Transl. Med., 2011, 3(75), 75ra25-75ra25.
[http://dx.doi.org/10.1126/scitranslmed.3001875]
[68]
Bhowmik, T.; Gomes, A. Down-regulation of cyclin-dependent kinase-4 and MAPK through estrogen receptor mediated cell cycle arrest in human breast cancer induced by gold nanoparticle tagged toxin protein NKCT1. Chem. Biol. Interact., 2017, 268, 119-128.
[http://dx.doi.org/10.1016/j.cbi.2017.03.009] [PMID: 28322778]
[69]
Liu, R.; Xiao, W.; Hu, C.; Xie, R.; Gao, H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J. Control. Release, 2018, 278, 127-139.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.005] [PMID: 29630985]
[70]
Peiris, P.M.; Deb, P.; Doolittle, E.; Doron, G.; Goldberg, A.; Govender, P.; Shah, S.; Rao, S.; Carbone, S.; Cotey, T.; Sylvestre, M.; Singh, S.; Schiemann, W.P.; Lee, Z.; Karathanasis, E. Vascular targeting of a gold nanoparticle to breast cancer metastasis. J. Pharm. Sci., 2015, 104(8), 2600-2610.
[http://dx.doi.org/10.1002/jps.24518] [PMID: 26036431]
[71]
Weissleder, R. Molecular imaging in cancer. Science, 2006, 312(5777), 1168-1171.
[http://dx.doi.org/10.1126/science.1125949] [PMID: 16728630]
[72]
Olsen, D.; Jørgensen, J.T. Companion diagnostics for targeted cancer drugs - clinical and regulatory aspects. Front. Oncol., 2014, 4, 105.
[http://dx.doi.org/10.3389/fonc.2014.00105] [PMID: 24904822]
[73]
Papila, C.; Uzun, H.; Balci, H.; Zerdali, H.; Sezgin, C.; Can, G.; Yanardag, H. Clinical significance and prognostic value of serum sHER-2/neu levels in patients with solid tumors. Med. Oncol., 2009, 26(2), 151-156.
[http://dx.doi.org/10.1007/s12032-008-9098-3] [PMID: 18855148]
[74]
Lu, W.; Arumugam, S.R.; Senapati, D.; Singh, A.K.; Arbneshi, T.; Khan, S.A.; Yu, H.; Ray, P.C. Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay. ACS Nano, 2010, 4(3), 1739-1749.
[http://dx.doi.org/10.1021/nn901742q] [PMID: 20155973]
[75]
Zhang, C.; Xu, Y.; Hao, Q.; Wang, S.; Li, H.; Li, J.; Gao, Y.; Li, M.; Li, W.; Xue, X.; Wu, S.; Zhang, Y.; Zhang, W. FOXP3 suppresses breast cancer metastasis through downregulation of CD44. Int. J. Cancer, 2015, 137(6), 1279-1290.
[http://dx.doi.org/10.1002/ijc.29482] [PMID: 25683728]
[76]
Yang, Z.; Chen, D.; Nie, J.; Zhou, S.; Wang, J.; Tang, Q.; Yang, X. MicroRNA143 targets CD44 to inhibit breast cancer progression and stem cell-like properties. Mol. Med. Rep., 2016, 13(6), 5193-5199.
[http://dx.doi.org/10.3892/mmr.2016.5194] [PMID: 27121210]
[77]
Liu, Y.; Yu, C.; Wu, Y.; Sun, X.; Su, Q.; You, C.; Xin, H. CD44+ fibroblasts increases breast cancer cell survival and drug resistance via IGF2BP3-CD44-IGF2 signalling. J. Cell. Mol. Med., 2017, 21(9), 1979-1988.
[http://dx.doi.org/10.1111/jcmm.13118] [PMID: 28523716]
[78]
Pan, B.; Guo, J.; Liao, Q.; Zhao, Y. β1 and β3 integrins in breast, prostate and pancreatic cancer: A novel implication. Oncol. Lett., 2018, 15(4), 5412-5416.
[http://dx.doi.org/10.3892/ol.2018.8076] [PMID: 29556293]
[79]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[80]
Zhou, B.; Xiao, X.; Xu, L.; Zhu, L.; Tan, L.; Tang, H.; Zhang, Y.; Xie, Q.; Yao, S. Electrochemical immunoassay on expression of integrin β1 on tumor cells and drug-resistant tumor cells. Biosens. Bioelectron., 2012, 38(1), 389-395.
[http://dx.doi.org/10.1016/j.bios.2012.06.040] [PMID: 22776180]
[81]
Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. Signalling probe displacement electrochemical aptasensor for malignant cell surface nucleolin as a breast cancer biomarker based on gold nanoparticle decorated hydroxyapatite nanorods and silver nanoparticle labels. Mikrochim. Acta, 2018, 185(2), 154.
[http://dx.doi.org/10.1007/s00604-018-2700-2] [PMID: 29594749]
[82]
Yu, L.; Wang, L.; Mao, C.; Duraki, D.; Kim, J.E.; Huang, R.; Helferich, W.G.; Nelson, E.R.; Park, B.H.; Shapiro, D.J. Estrogen-independent Myc overexpression confers endocrine therapy resistance on breast cancer cells expressing ERαY537S and ERαD538G mutations. Cancer Lett., 2019, 442, 373-382.
[http://dx.doi.org/10.1016/j.canlet.2018.10.041] [PMID: 30419347]
[83]
Holst, F.; Stahl, P.R.; Ruiz, C.; Hellwinkel, O.; Jehan, Z.; Wendland, M.; Lebeau, A.; Terracciano, L.; Al-Kuraya, K.; Jänicke, F.; Sauter, G.; Simon, R. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat. Genet., 2007, 39(5), 655-660.
[http://dx.doi.org/10.1038/ng2006] [PMID: 17417639]
[84]
Farokhzad, O.C.; Cheng, J.; Teply, B.A.; Sherifi, I.; Jon, S.; Kantoff, P.W.; Richie, J.P.; Langer, R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103(16), 6315-6320.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[85]
Ahirwar, R.; Nahar, P. Development of a label-free gold nanoparticle-based colorimetric aptasensor for detection of human estrogen receptor alpha. Anal. Bioanal. Chem., 2016, 408(1), 327-332.
[http://dx.doi.org/10.1007/s00216-015-9090-7] [PMID: 26476919]
[86]
Ebeling, F.G.; Stieber, P.; Untch, M.; Nagel, D.; Konecny, G.E.; Schmitt, U.M.; Fateh-Moghadam, A.; Seidel, D. Serum CEA and CA 15-3 as prognostic factors in primary breast cancer. Br. J. Cancer, 2002, 86(8), 1217-1222.
[http://dx.doi.org/10.1038/sj.bjc.6600248] [PMID: 11953875]
[87]
Wang, W.; Xu, X.; Tian, B.; Wang, Y.; Du, L.; Sun, T.; Shi, Y.; Zhao, X.; Jing, J. The diagnostic value of serum tumor markers CEA, CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer. Clin. Chim. Acta, 2017, 470, 51-55.
[http://dx.doi.org/10.1016/j.cca.2017.04.023] [PMID: 28457854]
[88]
Hasanzadeh, M.; Tagi, S.; Solhi, E.; Shadjou, N.; Jouyban, A.; Mokhtarzadeh, A. Label free immunoassay of a prognostic marker in breast cancer in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate. Int. J. Biol. Macromol., 2018.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.091]
[89]
Peng, J.; Lai, Y.; Chen, Y.; Xu, J.; Sun, L.; Weng, J. Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small, 2017, 13(15)1603589
[http://dx.doi.org/10.1002/smll.201603589] [PMID: 28112857]
[90]
Dunning, A.M.; Healey, C.S.; Pharoah, P.D.; Teare, M.D.; Ponder, B.A.; Easton, D.F. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol. Biomarkers Prev., 1999, 8(10), 843-854.
[PMID: 10548311]
[91]
Kriege, M.; Brekelmans, C.T.; Boetes, C.; Besnard, P.E.; Zonderland, H.M.; Obdeijn, I.M.; Manoliu, R.A.; Kok, T.; Peterse, H.; Tilanus-Linthorst, M.M.; Muller, S.H.; Meijer, S.; Oosterwijk, J.C.; Beex, L.V.; Tollenaar, R.A.; de Koning, H.J.; Rutgers, E.J.; Klijn, J.G. Magnetic Resonance Imaging Screening Study Group. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N. Engl. J. Med., 2004, 351(5), 427-437.
[http://dx.doi.org/10.1056/NEJMoa031759] [PMID: 15282350]
[92]
Iorio, M.V.; Ferracin, M.; Liu, C-G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; Ménard, S.; Palazzo, J.P.; Rosenberg, A.; Musiani, P.; Volinia, S.; Nenci, I.; Calin, G.A.; Querzoli, P.; Negrini, M.; Croce, C.M. MicroRNA gene expression deregulation in human breast cancer. Cancer Res., 2005, 65(16), 7065-7070.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1783] [PMID: 16103053]
[93]
Du, D.; Guo, S.; Tang, L.; Ning, Y.; Yao, Q.; Zhang, G-J. Graphene-modified electrode for DNA detection via PNA-DNA hybridization. Sens. Actuators B Chem., 2013, 186, 563-570.
[http://dx.doi.org/10.1016/j.snb.2013.06.045]
[94]
Shi, H-y.; Yang, L.; Zhou, X-y.; Bai, J.; Gao, J.; Jia, H-x.; Li, Q-g. A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA. Mikrochim. Acta, 2017, 184(2), 525-531.
[http://dx.doi.org/10.1007/s00604-016-2030-1]
[95]
Rasheed, P.A.; Radhakrishnan, T.; Shihabudeen, P.K.; Sandhyarani, N. Reduced graphene oxide-yttria nanocomposite modified electrode for enhancing the sensitivity of electrochemical genosensor. Biosens. Bioelectron., 2016, 83, 361-367.
[http://dx.doi.org/10.1016/j.bios.2016.04.057] [PMID: 27153526]
[96]
Wang, W.; Fan, X.; Xu, S.; Davis, J.J.; Luo, X. Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosens. Bioelectron., 2015, 71, 51-56.
[http://dx.doi.org/10.1016/j.bios.2015.04.018] [PMID: 25884734]
[97]
Girigoswami, A.; Li, T.; Jung, C.; Mun, H.Y.; Park, H.G. Gold nanoparticle-based label-free detection of BRCA1 mutations utilizing DNA ligation on DNA microarray. J. Nanosci. Nanotechnol., 2009, 9(2), 1019-1024.
[http://dx.doi.org/10.1166/jnn.2009.C077] [PMID: 19441445]
[98]
Oh, J-H.; Lee, J-S. Designed hybridization properties of DNA-gold nanoparticle conjugates for the ultraselective detection of a single-base mutation in the breast cancer gene BRCA1. Anal. Chem., 2011, 83(19), 7364-7370.
[http://dx.doi.org/10.1021/ac201291y] [PMID: 21882850]
[99]
Wang, Y.; Gao, J.; Meng, X.; Wang, Z. DNA microarray-based resonance light scattering assay for multiplexed detection of DNA mutation in papillary thyroid cancer. Analyst (Lond.), 2018, 143(4), 914-919.
[http://dx.doi.org/10.1039/C7AN01773A] [PMID: 29362729]
[100]
Jiang, X.Y.; Chen, X.Q.; Dong, Z.; Xu, M. The application of resonance light scattering technique for the determination of tinidazole in drugs. J. Anal. Methods Chem., 2007.
[http://dx.doi.org/10.1155/2007/86857]
[101]
Gao, J.; Ma, L.; Lei, Z.; Wang, Z. Multiple detection of single nucleotide polymorphism by microarray-based resonance light scattering assay with enlarged gold nanoparticle probes. Analyst (Lond.), 2016, 141(5), 1772-1778.
[http://dx.doi.org/10.1039/C5AN02510A] [PMID: 26899365]
[102]
Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15524-15529.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[103]
Geng, Y.; Lin, D.; Shao, L.; Yan, F.; Ju, H. Cellular delivery of quantum dot-bound hybridization probe for detection of intracellular pre-microRNA using chitosan/poly(γ-glutamic acid) complex as a carrier. PLoS One, 2013, 8(6)e65540
[http://dx.doi.org/10.1371/journal.pone.0065540] [PMID: 23762388]
[104]
Qiao, G.; Gao, Y.; Li, N.; Yu, Z.; Zhuo, L.; Tang, B. Simultaneous detection of intracellular tumor mRNA with bi-color imaging based on a gold nanoparticle/molecular beacon. Chemistry, 2011, 17(40), 11210-11215.
[http://dx.doi.org/10.1002/chem.201100658] [PMID: 21850725]
[105]
Dutta, G.; Rainbow, J.; Zupancic, U.; Papamatthaiou, S.; Estrela, P.; Moschou, D. Microfluidic devices for Label-Free DNA Detection. Chemosensors (Basel), 2018, 6(4), 43.
[http://dx.doi.org/10.3390/chemosensors6040043]
[106]
Kavita, V. DNA biosensors - a review. J. Bioeng. Biomed. Sci., 2017, 7, 222.
[107]
Ryu, S-W.; Kim, C-H.; Han, J-W.; Kim, C-J.; Jung, C.; Park, H.G.; Choi, Y-K. Gold nanoparticle embedded silicon nanowire biosensor for applications of label-free DNA detection. Biosens. Bioelectron., 2010, 25(9), 2182-2185.
[http://dx.doi.org/10.1016/j.bios.2010.02.010] [PMID: 20227871]
[108]
Chauhan, R.; El-Baz, N.; Keynton, R.S.; James, K.T.; Malik, D.A.; Zhu, M.; El-Baz, A.; Ng, C.K.; Bates, P.J.; Malik, M.T.; O’Toole, M.G. Targeted gold nanoparticleoligonucleotide contrast agents in combination with a new local voxel-wise mri analysis algorithm for in vitro imaging of triple-negative breast cancer. Nanomaterials (Basel), 2019, 9(5), 709.
[http://dx.doi.org/10.3390/nano9050709] [PMID: 31067749]
[109]
Hasanzadeh, M.; Razmi, N.; Mokhtarzadeh, A.; Shadjou, N.; Mahboob, S. Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. Int. J. Biol. Macromol., 2018, 108, 69-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.149] [PMID: 29180051]
[110]
Huang, L.; Xu, C.; Xu, P.; Qin, Y.; Chen, M.; Feng, Q.; Pan, J.; Cheng, Q.; Liang, F.; Wen, X.; Wang, Y.; Shi, Y.; Cheng, Y. Intelligent photosensitive mesenchymal stem cells and cell-derived microvesicles for photothermal therapy of prostate cancer. Nanotheranostics, 2018, 3(1), 41-53.
[http://dx.doi.org/10.7150/ntno.28450] [PMID: 30662822]
[111]
Näkki, S.; Martinez, J.O.; Evangelopoulos, M.; Xu, W.; Lehto, V-P.; Tasciotti, E. Chlorin e6 functionalized theranostic multistage nanovectors transported by stem cells for effective photodynamic therapy. ACS Appl. Mater. Interfaces, 2017, 9(28), 23441-23449.
[http://dx.doi.org/10.1021/acsami.7b05766] [PMID: 28640590]
[112]
Yu, W.; He, X.; Yang, Z.; Yang, X.; Xiao, W.; Liu, R.; Xie, R.; Qin, L.; Gao, H. Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials, 2019.217119309
[http://dx.doi.org/10.1016/j.biomaterials.2019.119309] [PMID: 31271855]
[113]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[114]
Group, E.B.C.T.C. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 2005, 365(9472), 1687-1717.
[http://dx.doi.org/10.1016/S0140-6736(05)66544-0] [PMID: 15894097]
[115]
Wheate, N.J.; Collins, J.G. Multi-nuclear platinum complexes as anti-cancer drugs. Coord. Chem. Rev., 2003, 241(1-2), 133-145.
[http://dx.doi.org/10.1016/S0010-8545(03)00050-X]
[116]
Kanapathipillai, M.; Brock, A.; Ingber, D.E. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv. Drug Deliv. Rev., 2014, 79-80, 107-118.
[http://dx.doi.org/10.1016/j.addr.2014.05.005] [PMID: 24819216]
[117]
Hussein, E.A.; Zagho, M.M.; Rizeq, B.R.; Younes, N.N.; Pintus, G.; Mahmoud, K.A.; Nasrallah, G.K.; Elzatahry, A.A. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int. J. Nanomedicine, 2019, 14, 4529-4539.
[http://dx.doi.org/10.2147/IJN.S202208] [PMID: 31417256]
[118]
Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[119]
Ong, Z.Y.; Chen, S.; Nabavi, E.; Regoutz, A.; Payne, D.J.; Elson, D.S.; Dexter, D.T.; Dunlop, I.E.; Porter, A.E. Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl. Mater. Interfaces, 2017, 9(45), 39259-39270.
[http://dx.doi.org/10.1021/acsami.7b14851] [PMID: 29058874]
[120]
Saw, W.S.; Ujihara, M.; Chong, W.Y.; Voon, S.H.; Imae, T.; Kiew, L.V.; Lee, H.B.; Sim, K.S.; Chung, L.Y. Size-dependent effect of cystine/citric acid-capped confeito-like gold nanoparticles on cellular uptake and photothermal cancer therapy. Colloids Surf. B Biointerfaces, 2018, 161, 365-374.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.064] [PMID: 29101882]
[121]
Bardhan, R.; Mukherjee, S.; Mirin, N.A.; Levit, S.D.; Nordlander, P.; Halas, N.J. Nanosphere-in-a-nanoshell: a simple nanomatryushka. J. Phys. Chem. C, 2009, 114(16), 7378-7383.
[http://dx.doi.org/10.1021/jp9095387]
[122]
Ayala-Orozco, C.; Urban, C.; Bishnoi, S.; Urban, A.; Charron, H.; Mitchell, T.; Shea, M.; Nanda, S.; Schiff, R.; Halas, N.; Joshi, A. Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. J. Control. Release, 2014, 191, 90-97.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.038] [PMID: 25051221]
[123]
Liu, R.; Hu, C.; Yang, Y.; Zhang, J.; Gao, H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm. Sin. B, 2019, 9(2), 410-420.
[http://dx.doi.org/10.1016/j.apsb.2018.09.001] [PMID: 30976492]
[124]
García Calavia, P.; Marín, M.J.; Chambrier, I.; Cook, M.J.; Russell, D.A. Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle-photosensitiser conjugates. Photochem. Photobiol. Sci., 2018, 17(3), 281-289.
[http://dx.doi.org/10.1039/C7PP00225D] [PMID: 29266162]
[125]
Stuchinskaya, T.; Moreno, M.; Cook, M.J.; Edwards, D.R.; Russell, D.A. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem. Photobiol. Sci., 2011, 10(5), 822-831.
[http://dx.doi.org/10.1039/c1pp05014a] [PMID: 21455532]
[126]
Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer, 2012, 12(4), 265-277.
[http://dx.doi.org/10.1038/nrc3258] [PMID: 22437871]
[127]
Almeida, J.P.M.; Figueroa, E.R.; Drezek, R.A. Gold nanoparticle mediated cancer immunotherapy. Nanomedicine (Lond.), 2014, 10(3), 503-514.
[http://dx.doi.org/10.1016/j.nano.2013.09.011] [PMID: 24103304]
[128]
Dreaden, E.C.; Mwakwari, S.C.; Austin, L.A.; Kieffer, M.J.; Oyelere, A.K.; El-Sayed, M.A. Small molecule-gold nanorod conjugates selectively target and induce macrophage cytotoxicity towards breast cancer cells. Small, 2012, 8(18), 2819-2822.
[http://dx.doi.org/10.1002/smll.201200333] [PMID: 22777707]
[129]
Her, S.; Cui, L.; Bristow, R.G.; Allen, C. Dual action enhancement of gold nanoparticle radiosensitization by pentamidine in triple negative breast cancer. Radiat. Res., 2016, 185(5), 549-562.
[http://dx.doi.org/10.1667/RR14315.1] [PMID: 27135970]
[130]
Bromma, K.; Rieck, K.; Kulkarni, J.; O’Sullivan, C.; Sung, W.; Cullis, P.; Schuemann, J.; Chithrani, D.B. Use of a lipid nanoparticle system as a Trojan horse in delivery of gold nanoparticles to human breast cancer cells for improved outcomes in radiation therapy. Cancer Nanotechnol., 2019, 10(1), 1.
[http://dx.doi.org/10.1186/s12645-019-0046-z]
[131]
McKeage, K.; Perry, C.M. Trastuzumab: a review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs, 2002, 62(1), 209-243.
[http://dx.doi.org/10.2165/00003495-200262010-00008] [PMID: 11790161]
[132]
Chattopadhyay, N.; Cai, Z.; Pignol, J-P.; Keller, B.; Lechtman, E.; Bendayan, R.; Reilly, R.M. Design and characterization of HER-2-targeted gold nanoparticles for enhanced X-radiation treatment of locally advanced breast cancer. Mol. Pharm., 2010, 7(6), 2194-2206.
[http://dx.doi.org/10.1021/mp100207t] [PMID: 20973534]
[133]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[134]
Hu, C.; Cun, X.; Ruan, S.; Liu, R.; Xiao, W.; Yang, X.; Yang, Y.; Yang, C.; Gao, H. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 2018, 168, 64-75.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.046] [PMID: 29626787]
[135]
Joensuu, H.; Kellokumpu-Lehtinen, P-L.; Bono, P.; Alanko, T.; Kataja, V.; Asola, R.; Utriainen, T.; Kokko, R.; Hemminki, A.; Tarkkanen, M.; Turpeenniemi-Hujanen, T.; Jyrkkiö, S.; Flander, M.; Helle, L.; Ingalsuo, S.; Johansson, K.; Jääskeläinen, A.S.; Pajunen, M.; Rauhala, M.; Kaleva-Kerola, J.; Salminen, T.; Leinonen, M.; Elomaa, I.; Isola, J. FinHer Study Investigators. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med., 2006, 354(8), 809-820.
[http://dx.doi.org/10.1056/NEJMoa053028] [PMID: 16495393]
[136]
Kang, J.H.; Ko, Y.T. Lipid-coated gold nanocomposites for enhanced cancer therapy. Int. J. Nanomedicine, 2015, 10(Spec Iss), 33-45.
[PMID: 26345327]
[137]
Li-Weber, M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev., 2009, 35(1), 57-68.
[http://dx.doi.org/10.1016/j.ctrv.2008.09.005] [PMID: 19004559]
[138]
Ijaz, M.; Matuszczak, B.; Rahmat, D.; Mahmood, A.; Bonengel, S.; Hussain, S.; Huck, C.W.; Bernkop-Schnürch, A. Synthesis and characterization of thiolated β-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery. Carbohydr. Polym., 2015, 132, 187-195.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.073] [PMID: 26256340]
[139]
Morshed, R.A.; Muroski, M.E.; Dai, Q.; Wegscheid, M.L.; Auffinger, B.; Yu, D.; Han, Y.; Zhang, L.; Wu, M.; Cheng, Y.; Lesniak, M.S. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol. Pharm., 2016, 13(6), 1843-1854.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00004] [PMID: 27169484]
[140]
Dreaden, E.C.; Mwakwari, S.C.; Sodji, Q.H.; Oyelere, A.K.; El-Sayed, M.A. Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug. Chem., 2009, 20(12), 2247-2253.
[http://dx.doi.org/10.1021/bc9002212] [PMID: 19919059]
[141]
Tannock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I.; Rosenthal, M.A.; Eisenberger, M.A. TAX 327 Investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med., 2004, 351(15), 1502-1512.
[http://dx.doi.org/10.1056/NEJMoa040720] [PMID: 15470213]
[142]
Jafarizad, A.; Aghanejad, A.; Sevim, M.; Metin, Ö.; Barar, J.; Omidi, Y.; Ekinci, D. Gold nanoparticles and reduced graphene oxide‐gold nanoparticle composite materials as covalent drug delivery systems for breast cancer treatment. ChemistrySelect, 2017, 2(23), 6663-6672.
[http://dx.doi.org/10.1002/slct.201701178]
[143]
Haynes, B.; Zhang, Y.; Liu, F.; Li, J.; Petit, S.; Kothayer, H.; Bao, X.; Westwell, A.D.; Mao, G.; Shekhar, M.P.V. Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization. Nanomedicine (Lond.), 2016, 12(3), 745-757.
[http://dx.doi.org/10.1016/j.nano.2015.10.010] [PMID: 26563438]
[144]
Chan, M.; Liaw, C.S.; Ji, S.M.; Tan, H.H.; Wong, C.Y.; Thike, A.A.; Tan, P.H.; Ho, G.H.; Lee, A.S-G. Identification of circulating microRNA signatures for breast cancer detection. Clin. Cancer Res., 2013, 19(16), 4477-4487.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3401] [PMID: 23797906]
[145]
Madhavan, D.; Zucknick, M.; Wallwiener, M.; Cuk, K.; Modugno, C.; Scharpff, M.; Schott, S.; Heil, J.; Turchinovich, A.; Yang, R.; Benner, A.; Riethdorf, S.; Trumpp, A.; Sohn, C.; Pantel, K.; Schneeweiss, A.; Burwinkel, B. Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin. Cancer Res., 2012, 18(21), 5972-5982.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1407] [PMID: 22952344]
[146]
Raghavan, B.S.; Kondath, S.; Anantanarayanan, R.; Rajaram, R. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochem., 2015, 50(11), 1966-1976.
[http://dx.doi.org/10.1016/j.procbio.2015.08.003]
[147]
Mahendran, G.; Ponnuchamy, K. Coumarin-gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells. Appl. Nanosci., 2018, 8(3), 447-453.
[http://dx.doi.org/10.1007/s13204-018-0816-7]
[148]
Bakar, F.; Caglayan, G.; Onur, F.; Nebioglu, S.; Palabiyik, I. 743: Gold nanoparticle conjugated lignan derivatives inhibited the proliferation of MCF-7 human breast cancer cells. Eur. J. Cancer, 2014, 50, S178-S179.
[http://dx.doi.org/10.1016/S0959-8049(14)50653-3]
[149]
Kong, T.; Zeng, J.; Wang, X.; Yang, X.; Yang, J.; McQuarrie, S.; McEwan, A.; Roa, W.; Chen, J.; Xing, J.Z. Enhancement of radiation cytotoxicity in breast‐cancer cells by localized attachment of gold nanoparticles. Small, 2008, 4(9)
[150]
Botha, T.L.; Brand, S.J.; Ikenaka, Y.; Nakayama, S.M.M.; Ishizuka, M.; Wepener, V. How toxic is a non-toxic nanomaterial: behaviour as an indicator of effect in Danio rerio exposed to nanogold. Aquat. Toxicol., 2019.215105287
[http://dx.doi.org/10.1016/j.aquatox.2019.105287] [PMID: 31491706]
[151]
Lee, J.; Chatterjee, D.K.; Lee, M.H.; Krishnan, S. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett., 2014, 347(1), 46-53.
[http://dx.doi.org/10.1016/j.canlet.2014.02.006] [PMID: 24556077]
[152]
Mokoena, R.D.; P., George B.; Abrahamse, H. J. I. J. o. M. S. Enhancing breast cancer treatment using a combination of cannabidiol and gold nanoparticles for photodynamic therapy. Int. J. Mol. Sci., 2019, 20(19), 4771.
[http://dx.doi.org/10.3390/ijms20194771]
[153]
Yang, C.; Uertz, J.; Chithrani, D.B. Colloidal gold-mediated delivery of bleomycin for improved outcome in chemotherapy. Nanomaterials (Basel), 2016, 6(3), 48.
[http://dx.doi.org/10.3390/nano6030048] [PMID: 28344305]
[154]
Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front Chem., 2019, 7, 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[155]
Goodman, C.M.; McCusker, C.D.; Yilmaz, T.; Rotello, V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem., 2004, 15(4), 897-900.
[http://dx.doi.org/10.1021/bc049951i] [PMID: 15264879]
[156]
Patra, H.K.; Banerjee, S.; Chaudhuri, U.; Lahiri, P.; Dasgupta, A.K. Cell selective response to gold nanoparticles. Nanomedicine (Lond.), 2007, 3(2), 111-119.
[http://dx.doi.org/10.1016/j.nano.2007.03.005] [PMID: 17572353]
[157]
Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3), 325-327.
[http://dx.doi.org/10.1002/smll.200400093] [PMID: 17193451]
[158]
Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 2005, 21(23), 10644-10654.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[159]
Villiers, C.; Freitas, H.; Couderc, R.; Villiers, M-B.; Marche, P. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J. Nanopart. Res., 2010, 12(1), 55-60.
[http://dx.doi.org/10.1007/s11051-009-9692-0] [PMID: 21841911]
[160]
Gu, Y-J.; Cheng, J.; Lin, C-C.; Lam, Y.W.; Cheng, S.H.; Wong, W-T. Nuclear penetration of surface functionalized gold nanoparticles. Toxicol. Appl. Pharmacol., 2009, 237(2), 196-204.
[http://dx.doi.org/10.1016/j.taap.2009.03.009] [PMID: 19328820]
[161]
Takahashi, H.; Niidome, Y.; Niidome, T.; Kaneko, K.; Kawasaki, H.; Yamada, S. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir, 2006, 22(1), 2-5.
[http://dx.doi.org/10.1021/la0520029] [PMID: 16378388]
[162]
Hauck, T.S.; Ghazani, A.A.; Chan, W.C. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small, 2008, 4(1), 153-159.
[http://dx.doi.org/10.1002/smll.200700217] [PMID: 18081130]
[163]
Yen, H.J.; Hsu, S.H.; Tsai, C.L. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small, 2009, 5(13), 1553-1561.
[http://dx.doi.org/10.1002/smll.200900126] [PMID: 19326357]
[164]
Jia, H.Y.; Liu, Y.; Zhang, X.J.; Han, L.; Du, L.B.; Tian, Q.; Xu, Y.C. Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. J. Am. Chem. Soc., 2009, 131(1), 40-41.
[http://dx.doi.org/10.1021/ja808033w] [PMID: 19072650]
[165]
Chompoosor, A.; Saha, K.; Ghosh, P.S.; Macarthy, D.J.; Miranda, O.R.; Zhu, Z.J.; Arcaro, K.F.; Rotello, V.M. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small, 2010, 6(20), 2246-2249.
[http://dx.doi.org/10.1002/smll.201000463] [PMID: 20818619]
[166]
Iswarya, V.; Manivannan, J.; De, A.; Paul, S.; Roy, R.; Johnson, J.B.; Kundu, R.; Chandrasekaran, N.; Mukherjee, A.; Mukherjee, A. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ. Sci. Pollut. Res. Int., 2016, 23(5), 4844-4858.
[http://dx.doi.org/10.1007/s11356-015-5683-0] [PMID: 26545887]
[167]
Li, J.J.; Hartono, D.; Ong, C-N.; Bay, B-H.; Yung, L-Y.L. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials, 2010, 31(23), 5996-6003.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.014] [PMID: 20466420]
[168]
Liu, Z.; Li, W.; Wang, F.; Sun, C.; Wang, L.; Wang, J.; Sun, F. Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells. Nanoscale, 2012, 4(22), 7135-7142.
[http://dx.doi.org/10.1039/c2nr31355c] [PMID: 23070238]
[169]
Brandenberger, C.; Rothen-Rutishauser, B.; Mühlfeld, C.; Schmid, O.; Ferron, G.A.; Maier, K.L.; Gehr, P.; Lenz, A-G. Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol. Appl. Pharmacol., 2010, 242(1), 56-65.
[http://dx.doi.org/10.1016/j.taap.2009.09.014] [PMID: 19796648]
[170]
Wang, Y.; Black, K.C.; Luehmann, H.; Li, W.; Zhang, Y.; Cai, X.; Wan, D.; Liu, S-Y.; Li, M.; Kim, P.; Li, Z.Y.; Wang, L.V.; Liu, Y.; Xia, Y. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano, 2013, 7(3), 2068-2077.
[http://dx.doi.org/10.1021/nn304332s] [PMID: 23383982]
[171]
Balogh, L.; Nigavekar, S.S.; Nair, B.M.; Lesniak, W.; Zhang, C.; Sung, L.Y.; Kariapper, M.S.; El-Jawahri, A.; Llanes, M.; Bolton, B.; Mamou, F.; Tan, W.; Hutson, A.; Minc, L.; Khan, M.K. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine (Lond.), 2007, 3(4), 281-296.
[http://dx.doi.org/10.1016/j.nano.2007.09.001] [PMID: 17962085]
[172]
Hillyer, J.F.; Albrecht, R.M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci., 2001, 90(12), 1927-1936.
[http://dx.doi.org/10.1002/jps.1143] [PMID: 11745751]
[173]
Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine (Lond.), 2018, 14(1), 1-12.
[http://dx.doi.org/10.1016/j.nano.2017.08.011] [PMID: 30548078]
[174]
Zhang, X-D.; Wu, D.; Shen, X.; Liu, P-X.; Yang, N.; Zhao, B.; Zhang, H.; Sun, Y-M.; Zhang, L-A.; Fan, F-Y. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int. J. Nanomedicine, 2011, 6, 2071-2081.
[http://dx.doi.org/10.2147/IJN.S21657] [PMID: 21976982]
[175]
Balasubramanian, S.K.; Jittiwat, J.; Manikandan, J.; Ong, C-N.; Yu, L.E.; Ong, W-Y. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials, 2010, 31(8), 2034-2042.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.079] [PMID: 20044133]
[176]
Bar-Ilan, O.; Albrecht, R.M.; Fako, V.E.; Furgeson, D.Y. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small, 2009, 5(16), 1897-1910.
[http://dx.doi.org/10.1002/smll.200801716] [PMID: 19437466]
[177]
Rambanapasi, C.; Zeevaart, J.R.; Buntting, H.; Bester, C.; Kotze, D.; Hayeshi, R.; Grobler, A. Bioaccumulation and subchronic toxicity of 14 nm gold nanoparticles in rats. Molecules, 2016, 21(6), 763.
[http://dx.doi.org/10.3390/molecules21060763] [PMID: 27294904]
[178]
Zhang, X-D.; Wu, H-Y.; Wu, D.; Wang, Y-Y.; Chang, J-H.; Zhai, Z-B.; Meng, A-M.; Liu, P-X.; Zhang, L-A.; Fan, F-Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine, 2010, 5, 771-781.
[http://dx.doi.org/10.2147/IJN.S8428] [PMID: 21042423]
[179]
Cheung, K.L.; Chen, H.; Chen, Q.; Wang, J.; Ho, H.P.; Wong, C.K.; Kong, S.K. CTAB-coated gold nanorods elicit allergic response through degranulation and cell death in human basophils. Nanoscale, 2012, 4(15), 4447-4449.
[http://dx.doi.org/10.1039/c2nr30435j] [PMID: 22699707]
[180]
Lara-Cruz, C.; Jiménez-Salazar, J.E.; Arteaga, M.; Arredondo, M.; Ramón-Gallegos, E.; Batina, N.; Damián-Matsumura, P. Gold nanoparticle uptake is enhanced by estradiol in MCF-7 breast cancer cells. Int. J. Nanomedicine, 2019, 14, 2705-2718.
[http://dx.doi.org/10.2147/IJN.S196683] [PMID: 31118607]
[181]
Abdulsattar, S.A. biological impact of gold nanoparticle on estradaiol and testosterone levels in sera of human males. J. Fac. Med. Baghdad, 2015, 57(4), 333-337.
[http://dx.doi.org/10.32007/med.1936/jfacmedbagdad.v57i4.17]
[182]
Larson, J.K.; Carvan, M.J., III; Teeguarden, J.G.; Watanabe, G.; Taya, K.; Krystofiak, E.; Hutz, R.J. Low-dose gold nanoparticles exert subtle endocrine-modulating effects on the ovarian steroidogenic pathway ex vivo independent of oxidative stress. Nanotoxicology, 2014, 8(8), 856-866.
[http://dx.doi.org/10.3109/17435390.2013.837208] [PMID: 23992423]
[183]
Peng, F.; Setyawati, M.I.; Tee, J.K.; Ding, X.; Wang, J.; Nga, M.E.; Ho, H.K.; Leong, D.T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol., 2019, 14(3), 279-286.
[http://dx.doi.org/10.1038/s41565-018-0356-z] [PMID: 30692675]
[184]
Paris, J.L.; Baeza, A.; Vallet-Regí, M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin. Drug Deliv., 2019, 16(10), 1095-1112.
[http://dx.doi.org/10.1080/17425247.2019.1662786] [PMID: 31469003]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 8
Year: 2020
Published on: 10 June, 2020
Page: [579 - 598]
Pages: 20
DOI: 10.2174/1389200221666200610173724
Price: $65

Article Metrics

PDF: 23
HTML: 1
EPUB: 1