Review on the Clinical Pharmacology of Hydroxychloroquine Sulfate for the Treatment of COVID-19

Author(s): Cheng Cui, Siqi Tu, Valerie Sia Jie En, Xiaobei Li, Xueting Yao, Haiyan Li*, Dongyang Liu*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 6 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: As the number of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infected people is greatly increasing worldwide, the international medical situation becomes very serious. Potential therapeutic drugs, vaccine and stem cell replacement methods are emerging, so it is urgent to find specific therapeutic drugs and the best treatment regimens. After the publications on hydroxychloroquine (HCQ) with anti- SARS-COV-2 activity in vitro, a small, non-randomized, open-label clinical trial showed that HCQ treatment was significantly associated with reduced viral load in patients with coronavirus disease-19 (COVID-19). Meanwhile, a large prophylaxis study of HCQ sulfate for COVID-19 has been initiated in the United States. HCQ offered a promising efficacy in the treatment of COVID-19, but the optimal administration is still being explored.

Methods: We used the keyword "hydroxychloroquine" to conduct a literature search in PubMed to collect relevant literature on the mechanism of action of HCQ, its clinical efficacy and safety, pharmacokinetic characteristics, precautions for clinical use and drug interactions to extract and organize information.

Results: This paper reviews the mechanism, clinical efficacy and safety, pharmacokinetic characteristics, exposureresponse relationship and precautions and drug interactions of HCQ, and summarizes dosage recommendations for HCQ sulfate.

Conclusion: It has been proved that HCQ, which has an established safety profile, is effective against SARS-CoV-2 with sufficient pre-clinical rationale and evidence. Data from high-quality clinical trials are urgently needed worldwide.

Keywords: COVID-19, SARS-CoV-2, hydroxychloroquine, clinical pharmacology, safety, drug interaction.

[1]
Yao, X.; Cui, C.; Liu, D.; Li, H. Clinical pharmacological review of chloroquine against new coronavirus pneumonia. Clin. Medica. J., 2020, 18, 30-33.
[2]
Xia, J. Efficacy of Chloroquine and Lopinavir/ Ritonavir in mild/general novel coronavirus (CoVID-19) infections: a prospective, open-label, multicenter randomized controlled clinical study., 2020 11.02. http://www.chictr.org.cn/showproj.aspx?proj=49263
[3]
Yao, X.; Ye, F.; Zhang, M. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis;. 2020. ciaa237. [Epub ahead of print]
[4]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6, 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[5]
Shanghai Expert Group on Clinical Treatment of New Coronavirus Diseases. Shanghai Expert consensus on comprehensive treatment of coronavirus disease in Shanghai 2019. Chinese J. Infect. Diseas., 2020, 38E016
[6]
Plantone, D.; Koudriavtseva, T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin. Drug Investig., 2018, 38(8), 653-671.
[http://dx.doi.org/10.1007/s40261-018-0656-y] [PMID: 29737455]
[7]
Kersh, G.J. Antimicrobial therapies for Q fever. Expert Rev. Anti Infect. Ther., 2013, 11(11), 1207-1214.
[http://dx.doi.org/10.1586/14787210.2013.840534] [PMID: 24073941]
[8]
Keshavarzi, F. Fungistatic effect of hydroxychloroquine, lessons from a case. Med. Mycol. Case Rep., 2016, 13, 17-18.
[http://dx.doi.org/10.1016/j.mmcr.2016.09.003] [PMID: 27709021]
[9]
Wang, L.F.; Lin, Y.S.; Huang, N.C.; Yu, C.Y.; Tsai, W.L.; Chen, J.J.; Kubota, T.; Matsuoka, M.; Chen, S.R.; Yang, C.S.; Lu, R.W.; Lin, Y.L.; Chang, T.H. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J. Interferon Cytokine Res., 2015, 35(3), 143-156.
[http://dx.doi.org/10.1089/jir.2014.0038] [PMID: 25321315]
[10]
Cao, B.; Parnell, L.A.; Diamond, M.S.; Mysorekar, I.U. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J. Exp. Med., 2017, 214(8), 2303-2313.
[http://dx.doi.org/10.1084/jem.20170957] [PMID: 28694387]
[11]
Paton, N.I.; Goodall, R.L.; Dunn, D.T.; Franzen, S.; Collaco-Moraes, Y.; Gazzard, B.G.; Williams, I.G.; Fisher, M.J.; Winston, A.; Fox, J.; Orkin, C.; Herieka, E.A.; Ainsworth, J.G.; Post, F.A.; Wansbrough-Jones, M.; Kelleher, P. Hydroxychloroquine Trial Team. Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA, 2012, 308(4), 353-361.
[http://dx.doi.org/10.1001/jama.2012.6936] [PMID: 22820788]
[12]
Piconi, S.; Parisotto, S.; Rizzardini, G.; Passerini, S.; Terzi, R.; Argenteri, B.; Meraviglia, P.; Capetti, A.; Biasin, M.; Trabattoni, D.; Clerici, M. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood, 2011, 118(12), 3263-3272.
[http://dx.doi.org/10.1182/blood-2011-01-329060] [PMID: 21576701]
[13]
te Velthuis, A.J.; van den Worm, S.H.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog., 2010, 6(11)e1001176
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[14]
Savarino, A.; Di Trani, L.; Donatelli, I.; Cauda, R.; Cassone, A. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis., 2006, 6(2), 67-69.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[15]
Dyall, J.; Gross, R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr; Hensley, L.E.; Frieman, M.B.; Jahrling, P.B. Middle East respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies. Drugs, 2017, 77(18), 1935-1966.
[http://dx.doi.org/10.1007/s40265-017-0830-1] [PMID: 29143192]
[16]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[17]
Wolstencroft, P.W.; Casciola-Rosen, L.; Fiorentino, D.F. association between autoantibody phenotype and cutaneous adverse reactions to hydroxychloroquine in dermatomyositis. JAMA Dermatol., 2018, 154(10), 1199-1203.
[http://dx.doi.org/10.1001/jamadermatol.2018.2549] [PMID: 30140893]
[18]
Casian, A.; Sangle, S.R.; D’Cruz, D.P. New use for an old treatment: hydroxychloroquine as a potential treatment for systemic vasculitis. Autoimmun. Rev., 2018, 17(7), 660-664.
[http://dx.doi.org/10.1016/j.autrev.2018.01.016] [PMID: 29729450]
[19]
Pareek, A.; Chandurkar, N.; Thomas, N.; Viswanathan, V.; Deshpande, A.; Gupta, O.P.; Shah, A.; Kakrani, A.; Bhandari, S.; Thulasidharan, N.K.; Saboo, B.; Devaramani, S.; Vijaykumar, N.B.; Sharma, S.; Agrawal, N.; Mahesh, M.; Kothari, K. Efficacy and safety of hydroxychloroquine in the treatment of type 2 diabetes mellitus: a double blind, randomized comparison with pioglitazone. Curr. Med. Res. Opin., 2014, 30(7), 1257-1266.
[http://dx.doi.org/10.1185/03007995.2014.909393] [PMID: 24669876]
[20]
Manic, G.; Obrist, F.; Kroemer, G.; Vitale, I.; Galluzzi, L. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol., 2014, 1(1)e29911
[http://dx.doi.org/10.4161/mco.29911] [PMID: 27308318]
[21]
U.S. Food and Drug Administration/Drugs. FDA-Approved Drugs/New Drug Application (NDA): 006002 plaquenil hydroxychloroquine sulfate tablets, usp.,. 2019.https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/009768Orig1s051lbl.pdf
[22]
Bai, Y.; Jiang, D.; Sheng, H. Anna Clinical investigation and analysis of adverse reactions of hydroxychloroquine sulfate. Beijing Med. J., 2011, 33, 575-577.
[23]
Bernstein, H.; Zvaifler, N.; Rubin, M.; Mansour, A.M. The ocular deposition of chloroquine. Invest. Ophthalmol., 1963, 2, 384-392.
[24]
Rubin, M.; Bernstein, H.N.; Zvaifler, N.J. Studies on the pharmacology of chloroquine. Recommendations for the treatment of chloroquine retinopathy. Arch. Ophthalmol., 1963, 70, 474-481.
[25]
McChesney, E.W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med., 1983, 75(1A), 11-18.
[http://dx.doi.org/10.1016/0002-9343(83)91265-2] [PMID: 6408923]
[26]
Petri, M.; Elkhalifa, M.; Li, J.; Magder, L.S.; Goldman, D.W. Hydroxychloroquine Blood Levels Predict Hydroxychloroquine Retinopathy. Arthritis Rheumatol., 2020, 72(3), 448-453.
[http://dx.doi.org/10.1002/art.41121] [PMID: 31532077]
[27]
Yogasundaram, H.; Putko, B.N.; Tien, J.; Paterson, D.I.; Cujec, B.; Ringrose, J.; Oudit, G.Y. Hydroxychloroquine-induced cardiomyopathy: case report, pathophysiology, diagnosis, and treatment. Can. J. Cardiol., 2014, 30(12), 1706-1715.
[http://dx.doi.org/10.1016/j.cjca.2014.08.016] [PMID: 25475472]
[28]
Haeusler, I.L.; Chan, X.H.S.; Guérin, P.J.; White, N.J. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Med., 2018, 16(1), 200.
[http://dx.doi.org/10.1186/s12916-018-1188-2] [PMID: 30400791]
[29]
Ursing, J.; Rombo, L.; Eksborg, S.; Larson, L.; Bruvoll, A.; Tarning, J.; Rodrigues, A.; Kofoed, P.E. High-dose chloroquine for uncomplicated Plasmodium falciparum malaria is well tolerated and causes similar qt interval prolongation as standard-dose chloroquine in children. Antimicrob. Agents Chemother., 2020, 64(3), 64.
[http://dx.doi.org/10.1128/AAC.01846-19] [PMID: 31907183]
[30]
Unübol, M.; Ayhan, M.; Guney, E. Hypoglycemia induced by hydroxychloroquine in a patient treated for rheumatoid arthritis. J. Clin. Rheumatol., 2011, 17(1), 46-47.
[http://dx.doi.org/10.1097/RHU.0b013e3182098e1f] [PMID: 21169846]
[31]
Chen, J.; Liu, D.; Liu, L.; Liu, P.; Xu, Q.; Xia, L.; Ling, Y.; Huang, D.; Song, S.; Zhang, D.; Qian, Z.; Li, T.; Shen, Y.; Lu, H. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus; JOURNAL OF ZHEJIANG UNIVERSITY, 2020.
[32]
Fan, H.W.; Ma, Z.X.; Chen, J.; Yang, X.Y.; Cheng, J.L.; Li, Y.B. Pharmacokinetics and Bioequivalence Study of Hydroxychloroquine Sulfate Tablets in Chinese Healthy Volunteers by LC-MS/MS. Rheumatol. Ther., 2015, 2(2), 183-195.
[http://dx.doi.org/10.1007/s40744-015-0012-0] [PMID: 27747530]
[33]
Furst, D.E. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus, 1996, 5(Suppl. 1), S11-S15.
[http://dx.doi.org/10.1177/0961203396005001041] [PMID: 8803904]
[34]
Tett, S.E.; Cutler, D.J.; Day, R.O.; Brown, K.F. A dose-ranging study of the pharmacokinetics of hydroxy-chloroquine following intravenous administration to healthy volunteers. Br. J. Clin. Pharmacol., 1988, 26(3), 303-313.
[http://dx.doi.org/10.1111/j.1365-2125.1988.tb05281.x] [PMID: 3179169]
[35]
Tett, S.E. Clinical pharmacokinetics of slow-acting antirheumatic drugs. Clin. Pharmacokinet., 1993, 25(5), 392-407.
[http://dx.doi.org/10.2165/00003088-199325050-00005] [PMID: 7904547]
[36]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[37]
Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[38]
Munster, T.; Gibbs, J.P.; Shen, D.; Baethge, B.A.; Botstein, G.R.; Caldwell, J.; Dietz, F.; Ettlinger, R.; Golden, H.E.; Lindsley, H.; McLaughlin, G.E.; Moreland, L.W.; Roberts, W.N.; Rooney, T.W.; Rothschild, B.; Sack, M.; Sebba, A.I.; Weisman, M.; Welch, K.E.; Yocum, D.; Furst, D.E. Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum., 2002, 46(6), 1460-1469.
[http://dx.doi.org/10.1002/art.10307] [PMID: 12115175]
[39]
Charlier, B.; Pingeon, M.; Dal Piaz, F.; Conti, V.; Valentini, G.; Filippelli, A.; Izzo, V. Development of a novel ion-pairing HPLC-FL method for the separation and quantification of hydroxychloroquine and its metabolites in whole blood. Biomed. Chromatogr., 2018, 32(8)e4258
[http://dx.doi.org/10.1002/bmc.4258] [PMID: 29669398]
[40]
Projean, D.; Baune, B.; Farinotti, R.; Flinois, J.P.; Beaune, P.; Taburet, A.M.; Ducharme, J. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab. Dispos., 2003, 31(6), 748-754.
[http://dx.doi.org/10.1124/dmd.31.6.748] [PMID: 12756207]
[41]
Browning, D.J. Hydroxychloroquine and chloroquine retinopathy: screening for drug toxicity. Am. J. Ophthalmol., 2002, 133(5), 649-656.
[42]
Peng, W.; Liu, R.; Zhang, L.; Fu, Q.; Mei, D.; Du, X. Breast milk concentration of hydroxychloroquine in Chinese lactating women with connective tissue diseases. Eur. J. Clin. Pharmacol., 2019, 75(11), 1547-1553.
[http://dx.doi.org/10.1007/s00228-019-02723-z] [PMID: 31375884]
[43]
Balevic, S.J.; Cohen-Wolkowiez, M.; Eudy, A.M.; Green, T.P.; Schanberg, L.E.; Clowse, M.E.B. Hydroxychloroquine levels throughout pregnancies complicated by rheumatic disease: implications for maternal and neonatal outcomes. J. Rheumatol., 2019, 46(1), 57-63.
[http://dx.doi.org/10.3899/jrheum.180158] [PMID: 30275257]
[44]
Leden, I. Digoxin-hydroxychloroquine interaction? Acta Med. Scand., 1982, 211(5), 411-412.
[http://dx.doi.org/10.1111/j.0954-6820.1982.tb01971.x] [PMID: 7113754]
[45]
Dahlqvist, R.; Ejvinsson, G.; Schenck-Gustafsson, K. Effect of quinidine on plasma concentration and renal clearance of digoxin. A clinically important drug interaction. Br. J. Clin. Pharmacol., 1980, 9(4), 413-418.
[http://dx.doi.org/10.1111/j.1365-2125.1980.tb01070.x] [PMID: 7378258]
[46]
Schultz, K.R.; Gilman, A.L. The lysosomotropic amines, chloroquine and hydroxychloroquine: a potentially novel therapy for graft-versus-host disease. Leuk. Lymphoma, 1997, 24(3-4), 201-210.
[http://dx.doi.org/10.3109/10428199709039008] [PMID: 9156650]
[47]
Nampoory, M.R.; Nessim, J.; Gupta, R.K.; Johny, K.V. Drug interaction of chloroquine with ciclosporin. Nephron, 1992, 62(1), 108-109.
[http://dx.doi.org/10.1159/000187007] [PMID: 1436274]
[48]
Ajani, E.O.; Salau, B.A.; Fagbohun, T.R.; Ogun, A.O. Combined effect of chloroquine and insulin administration on some biochemical parameters in rats placed on high fat and calcium diet. Afr. J. Med. Med. Sci., 2004, 33(4), 365-369.
[PMID: 15977446]
[49]
Goyal, V.; Bordia, A. The hypoglycemic effect of chloroquine. J. Assoc. Physicians India, 1995, 43(1), 17-18.
[PMID: 9282631]
[50]
Ochsendorf, F.R.; Runne, U. [Chloroquine and hydroxychloroquine: side effect profile of important therapeutic drugs ] Hautarzt, 1991, 42(3), 140-146.
[PMID: 2055762]
[51]
Chatre, C.; Roubille, F.; Vernhet, H.; Jorgensen, C.; Pers, Y.M. Cardiac complications attributed to chloroquine and hydroxychloroquine: a systematic review of the literature. Drug Saf., 2018, 41(10), 919-931.
[http://dx.doi.org/10.1007/s40264-018-0689-4] [PMID: 29858838]
[52]
Hassanipour, M.; Shirzadian, A.; Boojar, M.M.; Abkhoo, A.; Abkhoo, A.; Delazar, S.; Amiri, S.; Rahimi, N.; Ostadhadi, S.; Dehpour, A.R. Possible involvement of nitrergic and opioidergic systems in the modulatory effect of acute chloroquine treatment on pentylenetetrazol induced convulsions in mice. Brain Res. Bull., 2016, 121, 124-130.
[http://dx.doi.org/10.1016/j.brainresbull.2015.11.020] [PMID: 26655695]
[53]
Choudhry, V.P.; Madan, N.; Sood, S.K.; Ghai, O.P. Chloroquine induced haemolysis and acute renal failure in subjects with G-6-PD deficiency. Trop. Geogr. Med., 1978, 30(3), 331-335.
[PMID: 734759]
[54]
Sang, W.H.; Zeng, M.C.; Chen, S.; Chen, R.; Fan, X.F.; Gong, Y.S.; Zhang, H.L.; Zhang, H.Y.; Kong, X.X. [Effect of autophagy inhibitor chloroquine on acute alcoholinduced liver disease]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2018, 34(2), 102-105.
[PMID: 29926670]
[55]
D’Arcy, P.F.; McElnay, J.C. Drug-antacid interactions: assessment of clinical importance. Drug Intell. Clin. Pharm., 1987, 21(7-8), 607-617.
[http://dx.doi.org/10.1177/1060028087021007-806] [PMID: 2886325]
[56]
McElnay, J.C.; Mukhtar, H.A.; D’Arcy, P.F.; Temple, D.J.; Collier, P.S. The effect of magnesium trisilicate and kaolin on the in vivo absorption of chloroquine. J. Trop. Med. Hyg., 1982, 85(4), 159-163.
[PMID: 6292443]
[57]
Ette, E.I.; Brown-Awala, E.A.; Essien, E.E. Chloroquine elimination in humans: effect of low-dose cimetidine. J. Clin. Pharmacol., 1987, 27(10), 813-816.
[http://dx.doi.org/10.1002/j.1552-4604.1987.tb03002.x] [PMID: 3323258]
[58]
Ali, H.M. Reduced ampicillin bioavailability following oral coadministration with chloroquine. J. Antimicrob. Chemother., 1985, 15(6), 781-784.
[http://dx.doi.org/10.1093/jac/15.6.781] [PMID: 4030540]
[59]
Masimirembwa, C.M.; Naik, Y.S.; Hasler, J.A. The effect of chloroquine on the pharmacokinetics and metabolism of praziquantel in rats and in humans. Biopharm. Drug Dispos., 1994, 15(1), 33-43.
[http://dx.doi.org/10.1002/bdd.2510150103] [PMID: 8161714]
[60]
Nguyen, A.L.; Tan, A.N.; Lavrijsen, A.P.M. [Chloroquine retinopathy]. Ned. Tijdschr. Geneeskd., 2018, 163, 163..
[PMID: 30570930]
[61]
Finielz, P.; Gendoo, Z.; Chuet, C.; Guiserix, J. Interaction between cyclosporin and chloroquine. Nephron, 1993, 65(2), 333.
[http://dx.doi.org/10.1159/000187506] [PMID: 8247209]
[62]
Qiao, X.; Zhou, Z.C.; Niu, R.; Su, Y.T.; Sun, Y.; Liu, H.L.; Teng, J.L.; Ye, J.N.; Shi, H.; Yang, C.D.; Cheng, X.B. Hydroxychloroquine Improves Obesity-Associated Insulin Resistance and Hepatic Steatosis by Regulating Lipid Metabolism. Front. Pharmacol., 2019, 10, 855.
[http://dx.doi.org/10.3389/fphar.2019.00855] [PMID: 31427967]
[63]
N’Gouemo, P.; Ben Attia, M.; Belaidi, M. Effects of chloroquine on pentylenetetrazol-induced convulsions in mice. Pharmacol. Res., 1994, 30(2), 99-103.
[http://dx.doi.org/10.1016/1043-6618(94)80001-4] [PMID: 7816747]
[64]
Chen, Z.; Hu, J.; Zhang, Z.; Jiang, S.; Han, S.; Yan, D.; Zhuang, R.; Hu, B.; Zhang, Z. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. MedRxiv, 2020, 22(3)20040758
[65]
Department of Health Research Ministry of Health & Family Welfare Government of India. Recommendation for empiric use of hydroxychloroquine for prophylaxis of SARS-CoV-2 infection, 2020.https://t.co/5jfUnvpRPN


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 6
Year: 2020
Published on: 25 September, 2020
Page: [427 - 435]
Pages: 9
DOI: 10.2174/1389200221666200610172929
Price: $65

Article Metrics

PDF: 39
HTML: 1