Applications of Nanocarriers as Drug Delivery Vehicles for Active Phytoconstituents

Author(s): Phui Qi Ng, Laura Soon Cheau Ling, Jestin Chellian, Thiagarajan Madheswaran, Jithendra Panneerselvam, Anil Philip Kunnath, Gaurav Gupta, Saurabh Satija, Meenu Mehta, Philip Michael Hansbro, Trudi Collet, Kamal Dua*, Dinesh Kumar Chellappan*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 36 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Many plant-based bioactive compounds have been serving as the origin of drugs since long ago and many of them have been proven to have medicinal value against various chronic diseases, including, cancer, arthritis, hepatic diseases, type-2 diabetes and cardiovascular diseases. However, their clinical applications have been limited due to their poor water solubility, stability, low bioavailability and extensive transformation due to the first-pass metabolism. The applications of nanocarriers have been proven to be able to improve the delivery of bioactive phytoconstituents, resulting in the enhancement of various pharmacokinetic properties and thereby increasing the therapeutic value of phytoconstituents. These biocompatible nanocarriers also exert low toxicity to healthy cells. This review focuses on the uses and applications of different types of nanocarriers to enhance the delivery of phytoconstituents for the treatment of various chronic diseases, along with comparisons related to bioavailability and therapeutic efficacy of nano phytoconstituents with native phytoconstituents.

Keywords: Phytoconstituents, nanocarriers, bioavailability, chronic diseases, nanoparticles, nanomedicine.

[1]
Bawa G, Mahajan R, Mehta M, et al. Herbal drugs for the treatment of opioid withdrawal syndrome: A mini review. Plant Arch 2019; 19: 1055-1.
[2]
Khan RA, Aslam M, Ahmed S. Evaluation of toxicological profile of a polyherbal formulation. Pharmacol Pharm 2016; 7(01): 56-63.
[http://dx.doi.org/10.4236/pp.2016.71008]
[3]
Satija S, Mahajan S, Vyas M, et al. Pharmacognostic study of dioscorea villosa leaves. Int J Green Pharm 2018; 12(2): 428.
[4]
Kumar P, Mehta M, Satija S, et al. Enzymatic in vitro anti-diabetic activity of few traditional Indian medicinal plants. J Biol Sci 2013; 13: 540-4.
[http://dx.doi.org/10.3923/jbs.2013.540.544]
[5]
Mehta M, Kalsi V, Sharma N, et al. Pharmacognostic and pharmacological screening of Psidium guajava stem extract for its analgesic potential. Int J Green Pharm 2018; 12: 53-7.
[6]
Singh A, Mukhtar HM, Satija S, et al. Development of qualitative pharmacognostic and high-performance thin-layer chromatographic fingerprinting of morphological similar species of genus ficus. Asian J Pharm Clin Res 2018; 11(7): 444.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i7.25672]
[7]
Garg M, Lata K, Satija S. Cytotoxic potential of few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide assay on HepG2 cells. Indian J Pharmacol 2016; 48(1): 64-8.
[http://dx.doi.org/10.4103/0253-7613.174552 ] [PMID: 26997725]
[8]
Singh H, Satija S, Kaur H, et al. Novel drug delivery approaches for guggul. Plant Arch 2019; 19: 983-93.
[9]
Mehta M, Garg M. Proniosomal gel: A promising drug carrier for boswellic acids. J Med Sci 2015; 15: 130-4.
[http://dx.doi.org/10.3923/jms.2015.130.134]
[10]
Mehta M, Dureja H, Garg M. Development and optimization of boswellic acid-loaded proniosomal gel. Drug Deliv 2016; 23(8): 3072-81.
[http://dx.doi.org/10.3109/10717544.2016.1149744 ] [PMID: 26953869]
[11]
Wadhwa R, Pandey P, Gupta G, et al. Emerging complexity and the need for advanced drug delivery in targeting candida species. Curr Top Med Chem 2019; 19(28): 2593-609.
[http://dx.doi.org/10.2174/1568026619666191026105308 ] [PMID: 31746290]
[12]
Rajeshkumar S, Menon S, Venkat Kumar S, et al. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B 2019; 197111531
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111531 ] [PMID: 31212244]
[13]
Chellappan DK, Yee NJ, Kaur Ambar Jeet Singh BJ, et al. Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation. Ther Deliv 2019; 10(5): 281-93.
[http://dx.doi.org/10.4155/tde-2019-0019 ] [PMID: 31094299]
[14]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315 ] [PMID: 29042776]
[15]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004 ] [PMID: 19186176]
[16]
Ng ZY, Wong JY, Panneerselvam J, et al. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces 2018; 172: 51-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.027 ] [PMID: 30134219]
[17]
Sharma P, Mehta M, Dhanjal DS, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact 2019; 309108720
[http://dx.doi.org/10.1016/j.cbi.2019.06.033 ] [PMID: 31226287]
[18]
Dua K, Rapalli VK, Shukla SD, et al. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed Pharmacother 2018; 107: 1218-29.
[http://dx.doi.org/10.1016/j.biopha.2018.08.101 ] [PMID: 30257336]
[19]
Mehta M, Deeksha , Sharma N, et al. Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact 2019; 304: 10-9.
[http://dx.doi.org/10.1016/j.cbi.2019.02.021 ] [PMID: 30849336]
[20]
Mehta M, Deeksha , Tewari D, et al. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact 2019; 308: 206-15.
[http://dx.doi.org/10.1016/j.cbi.2019.05.028 ] [PMID: 31136735]
[21]
Oyarzun-Ampuero F, Vidal A, Concha M, Morales J, Orellana S, Moreno-Villoslada I. Nanoparticles for the treatment of wounds. Curr Pharm Des 2015; 21(29): 4329-41.
[http://dx.doi.org/10.2174/1381612821666150901104601 ] [PMID: 26323420]
[22]
Nam G, Rangasamy S, Purushothaman B, et al. The application of bactericidal silver nanoparticles in wound treatment. Nanomater Nanotecho 2015; 5: 23.
[http://dx.doi.org/10.5772/60918]
[23]
Bragg PD, Rainnie DJ. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 1974; 20(6): 883-9.
[http://dx.doi.org/10.1139/m74-135 ] [PMID: 4151872]
[24]
Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One 2013; 8(5): e64060.
[http://dx.doi.org/10.1371/journal.pone.0064060 ] [PMID: 23737965]
[25]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282 ] [PMID: 20502539]
[26]
Madan JR, Khude PA, Dua K. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int J Pharm Investig 2014; 4(2): 60-4.
[http://dx.doi.org/10.4103/2230-973X.133047 ] [PMID: 25006550]
[27]
Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomedicine 2015; 10: 4797-813.
[PMID: 26251598]
[28]
Dua K, Malyla V, Singhvi G, et al. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem Biol Interact 2019; 299: 168-78.
[http://dx.doi.org/10.1016/j.cbi.2018.12.009 ] [PMID: 30553721]
[29]
Madan JR, Ghuge NP, Dua K. Formulation and evaluation of proniosomes containing lornoxicam. Drug Deliv Transl Res 2016; 6(5): 511-8.
[http://dx.doi.org/10.1007/s13346-016-0296-9 ] [PMID: 27255375]
[30]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8 ] [PMID: 30231877]
[31]
Mehta M, Satija S, Nanda A, et al. Nanotechnologies for Boswellic Acids. Amer J Drug Dis Dev 2014; 4: 1-11.
[32]
Chellappan DK, Ng ZY, Wong JY, et al. Immunological axis of curcumin-loaded vesicular drug delivery systems. Future Med Chem 2018; 10(8): 839-44.
[http://dx.doi.org/10.4155/fmc-2017-0245 ] [PMID: 29620416]
[33]
Aljabali AAA, Bakshi HA, Hakkim FL, et al. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers (Basel) 2020; 12(1)E113
[http://dx.doi.org/10.3390/cancers12010113 ] [PMID: 31906321]
[34]
Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 2005; 172(12): 1487-90.
[http://dx.doi.org/10.1164/rccm.200504-613PP ] [PMID: 16151040]
[35]
Hinge N, Pandey MM, Singhvi G, et al. Nanomedicine advances in cancer therapy Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering Woodhead Publishing Series in Biomaterials. Elsevier 2020; pp. 219-53.
[http://dx.doi.org/10.1016/B978-0-12-818471-4.00008-X]
[36]
De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596 ] [PMID: 18686775]
[38]
Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: Opportunities and obstacles. Curr Drug Targets 2018; 19(14): 1696-709.
[http://dx.doi.org/10.2174/1389450119666180326122831 ] [PMID: 29577855]
[39]
Jeevanandam J, Chan YS, Danquah MK. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016; 128-129: 99-112.
[http://dx.doi.org/10.1016/j.biochi.2016.07.008 ] [PMID: 27436182]
[40]
Brohi RD, Wang L, Talpur HS, et al. Toxicity of nanoparticles on the reproductive system in animal models: A review. Front Pharmacol 2017; 8: 606.
[http://dx.doi.org/10.3389/fphar.2017.00606 ] [PMID: 28928662]
[41]
Khalili Fard J, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 2015; 5(4): 447-54.
[http://dx.doi.org/10.15171/apb.2015.061 ] [PMID: 26819915]
[42]
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20(1): 1-11.
[PMID: 26286636]
[43]
Gupta P, Gupta A, Agarwal K, Tomar P, Satija S. Antioxidant and cytotoxic potential of a new thienyl derivative from Tagetes erecta roots. Pharm Biol 2012; 50(8): 1013-8.
[http://dx.doi.org/10.3109/13880209.2012.655378 ] [PMID: 22775418]
[44]
Roy NK, Parama D, Banik K, et al. An update on pharmacological potential of boswellic acids against chronic diseases. Int J Mol Sci 2019; 20(17)E4101
[http://dx.doi.org/10.3390/ijms20174101 ] [PMID: 31443458]
[45]
Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 2003; 23(1A): 363-98.
[PMID: 12680238]
[46]
Smith GA. Current status of vinorelbine for breast cancer. Oncology (Williston Park) 1995; 9(8): 767-73.
[PMID: 7577376]
[47]
Singh S, Sharma B, Kanwar SS, Kumar A. Lead phytochemicals for anticancer drug development. Front Plant Sci 2016; 7: 1667.
[http://dx.doi.org/10.3389/fpls.2016.01667 ] [PMID: 27877185]
[48]
Kaur R, Satija S, Kalsi V, et al. Comparative study of analgesic and antipyretic activity of curcuma caesia and curcuma amada roxb. rhizomes. Inventi Imp Ethnopharmacol 2011; 3: 441-3.
[49]
Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 2007; 67(8): 3853-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4257 ] [PMID: 17440100]
[50]
Collett GP, Campbell FC. Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 2004; 25(11): 2183-9.
[http://dx.doi.org/10.1093/carcin/bgh233 ] [PMID: 15256484]
[51]
Rahmani AH, Al Zohairy MA, Aly SM, Khan MA. Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. BioMed Res Int 2014; 2014761608
[http://dx.doi.org/10.1155/2014/761608 ] [PMID: 25295272]
[52]
Kamat AM, Sethi G, Aggarwal BB. Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor-kappaB and nuclear factor-kappaB-regulated gene products in IFN-α-sensitive and IFN-α-resistant human bladder cancer cells. Mol Cancer Ther 2007; 6(3): 1022-30.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0545 ] [PMID: 17363495]
[53]
Zaman MS, Chauhan N, Yallapu MM, et al. Curcumin nanoformulation for cervical cancer treatment. Sci Rep 2016; 6: 20051.
[http://dx.doi.org/10.1038/srep20051 ] [PMID: 26837852]
[54]
Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 2010; 351(1): 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022 ] [PMID: 20627257]
[55]
Ndong Ntoutoume GMA, Granet R, Mbakidi JP, et al. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg Med Chem Lett 2016; 26(3): 941-5.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.060 ] [PMID: 26739777]
[56]
Ahmadi Nasab N, Hassani Kumleh H, Beygzadeh M, Teimourian S, Kazemzad M. Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artif Cells Nanomed Biotechnol 2018; 46(1): 75-81.
[http://dx.doi.org/10.1080/21691401.2017.1290648 ] [PMID: 28278578]
[57]
Landen JW, Lang R, McMahon SJ, et al. Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma. Cancer Res 2002; 62(14): 4109-14.
[PMID: 12124349]
[58]
Madan J, Pandey RS, Jain V, Katare OP, Chandra R, Katyal A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine (Lond) 2013; 9(4): 492-503.
[http://dx.doi.org/10.1016/j.nano.2012.10.003 ] [PMID: 23117045]
[59]
Zhou J, Gupta K, Aggarwal S, et al. Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation. Mol Pharmacol 2003; 63(4): 799-807.
[http://dx.doi.org/10.1124/mol.63.4.799 ] [PMID: 12644580]
[60]
Jyoti K, Kaur K, Pandey RS, Jain UK, Chandra R, Madan J. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: in vitro and in vivo studies. J Colloid Interface Sci 2015; 445: 219-30.
[http://dx.doi.org/10.1016/j.jcis.2014.12.092 ] [PMID: 25622047]
[61]
Kuo HP, Hsu SC, Ou CC, et al. Ganoderma tsugae extract inhibits growth of her2-overexpressing cancer cells via modulation of HER2/PI3K/Akt signaling pathway. Evid Based Complement Alternat Med 2013; 2013219472
[http://dx.doi.org/10.1155/2013/219472 ] [PMID: 23662119]
[62]
Maurya H, Dhiman S, Dua K, Gupta G. Pharmacological effect of berberine chloride in propyl thiouracil induced thyroidal dysfunction - a time bound study in female rats. Recent Pat Drug Deliv Formul 2016; 10(2): 165-73.
[http://dx.doi.org/10.2174/1872211310666160321123610 ] [PMID: 26996367]
[63]
Singh H, Mehta M, Khurana N, et al. Recent patent technologies of tinospora cordifolia for anti-diabetic potential: A review. Plant Arch 2019; 19: 994-9.
[64]
Tew XN, Xin Lau NJ, Chellappan DK, et al. Immunological axis of berberine in managing inflammation underlying chronic respiratory inflammatory diseases. Chem Biol Interact 2020; 317108947
[http://dx.doi.org/10.1016/j.cbi.2020.108947 ] [PMID: 31968208]
[65]
Bhanumathi R, Vimala K, Shanthi K, et al. Bioformulation of silver nanoparticles as berberine carrier cum anticancer agent against breast cancer. New J Chem 2017; 41(23): 14466-77.
[http://dx.doi.org/10.1039/C7NJ02531A]
[66]
Wang L, Li H, Wang S, et al. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech 2014; 15(4): 834-44.
[http://dx.doi.org/10.1208/s12249-014-0112-0 ] [PMID: 24696391]
[67]
Gupta L, Sharma AK, Gothwal A, et al. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int J Pharm 2017; 528(1-2): 88-99.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.073 ] [PMID: 28533175]
[68]
Li L, Li X, Huang X, et al. Synergistic anticancer effects of nanocarrier loaded with berberine and miR-122. Biosci Rep 2018; 38(3)BSR20180311
[http://dx.doi.org/10.1042/BSR20180311 ] [PMID: 29769413]
[69]
Mancarella S, Greco V, Baldassarre F, Vergara D, Maffia M, Leporatti S. Polymer-coated magnetic nanoparticles for curcumin delivery to cancer cells. Macromol Biosci 2015; 15(10): 1365-74.
[http://dx.doi.org/10.1002/mabi.201500142 ] [PMID: 26085082]
[70]
Hughes SD, Ketheesan N, Haleagrahara N. The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit Rev Food Sci Nutr 2017; 57(17): 3601-13.
[http://dx.doi.org/10.1080/10408398.2016.1246413 ] [PMID: 27874281]
[71]
Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 2001; 56(9): 683-7.
[http://dx.doi.org/10.1016/S0014-827X(01)01111-9 ] [PMID: 11680812]
[72]
Ji JJ, Lin Y, Huang SS, Zhang HL, Diao YP, Li K. Quercetin: a potential natural drug for adjuvant treatment of rheumatoid arthritis. Afr J Tradit Complement Altern Med 2013; 10(3): 418-21.
[PMID: 24146468]
[73]
Jeyadevi R, Sivasudha T, Rameshkumar A, et al. Enhancement of anti arthritic effect of quercetin using thioglycolic acid-capped cadmium telluride quantum dots as nanocarrier in adjuvant induced arthritic Wistar rats. Colloids Surf B Biointerfaces 2013; 112: 255-63.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.065 ] [PMID: 23994749]
[74]
Sarwa KK, Mazumder B, Rudrapal M, Verma VK. Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv 2015; 22(5): 638-46.
[http://dx.doi.org/10.3109/10717544.2013.871601 ] [PMID: 24471764]
[75]
Kumar Sarwa K, Rudrapal M, Mazumder B. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats. Drug Deliv 2015; 22(8): 1043-52.
[http://dx.doi.org/10.3109/10717544.2013.861041 ] [PMID: 24506573]
[76]
Garg C, Thakur S, Satija SM, et al. Stability indicating HPTLC studies of piperine through method development and analysis. Int J Pharm Sci Res 2016; 1(7): 24-9.
[77]
Bhalekar MR, Madgulkar AR, Desale PS, Marium G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev Ind Pharm 2017; 43(6): 1003-10.
[http://dx.doi.org/10.1080/03639045.2017.1291666 ] [PMID: 28161984]
[78]
Bhalekar MR, Madgulkar AR, Aswar M, et al. A comparative study of oral and topical administration of hesperidin lipid nanoparticles in rheumatoid arthritis. Austin Arthritis 2016; 1(2): 1010.
[79]
Rao K, Aziz S, Roome T, et al. Gum acacia stabilized silver nanoparticles based nano-cargo for enhanced anti-arthritic potentials of hesperidin in adjuvant induced arthritic rats. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 597-607.
[http://dx.doi.org/10.1080/21691401.2018.1431653]
[80]
McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011; 365(23): 2205-19.
[http://dx.doi.org/10.1056/NEJMra1004965 ] [PMID: 22150039]
[81]
Zheng Z, Sun Y, Liu Z, Zhang M, Li C, Cai H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des Devel Ther 2015; 9: 4931-42.
[PMID: 26345159]
[82]
Zhang Z, Leong DJ, Xu L, et al. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res Ther 2016; 18(1): 128.
[http://dx.doi.org/10.1186/s13075-016-1025-y ] [PMID: 27260322]
[83]
Niazvand F, Khorsandi L, Abbaspour M, et al. Curcumin-loaded poly lactic-co-glycolic acid nanoparticles effects on mono-iodoacetate -induced osteoarthritis in rats. Vet Res Forum 2017; 8(2): 155-61.
[PMID: 28785392]
[84]
Gupta G, Wadhwa R, Pandey P, et al. Obesity and diabetes: pathophysiology of obesity-induced hyperglycemia and insulin resistance. In: Pathophysiology of Obesity-Induced Health ComplicationsSpringer International Publishing 2020; 81-97.
[85]
Ganesan P, Arulselvan P, Choi DK. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status. Int J Nanomedicine 2017; 12: 1097-111.
[http://dx.doi.org/10.2147/IJN.S124601 ] [PMID: 28223801]
[86]
Usman B, Sharma N, Satija S, et al. Recent developments in alpha-glucosidase inhibitors for management of type-2 diabetes: an update. Curr Pharm Des 2019; 25(23): 2510-25.
[http://dx.doi.org/10.2174/1381612825666190717104547 ] [PMID: 31333110]
[87]
Zhang M, Chen L. Berberine in type 2 diabetes therapy: a new perspective for an old antidiarrheal drug? Acta Pharm Sin B 2012; 2(4): 379-86.
[http://dx.doi.org/10.1016/j.apsb.2012.06.004 ] [PMID: 23710432]
[88]
Xue M, Yang MX, Zhang W, et al. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomedicine 2013; 8: 4677-87.
[http://dx.doi.org/10.2147/IJN.S51262 ] [PMID: 24353417]
[89]
Xue M, Zhang L, Yang MX, et al. Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int J Nanomedicine 2015; 10: 5049-57.
[http://dx.doi.org/10.2147/IJN.S84565 ] [PMID: 26346310]
[90]
Wang Z, Wu J, Zhou Q, Wang Y, Chen T. Berberine nanosuspension enhances hypoglycemic efficacy on streptozotocin induced diabetic C57BL/6 mice. Evid Based Complement Alternat Med 2015; 2015239749
[http://dx.doi.org/10.1155/2015/239749 ] [PMID: 25866534]
[91]
Andrade LM, de Fátima Reis C, Maione-Silva L, et al. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm 2014; 88(1): 40-7.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.015 ] [PMID: 24816130]
[92]
Yin J, Hou Y, Yin Y, Song X. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect. Int J Nanomedicine 2017; 12: 8671-80.
[http://dx.doi.org/10.2147/IJN.S144615 ] [PMID: 29263662]
[93]
Li B, Wen M, Li W, He M, Yang X, Li S. Preparation and characterization of baicalin-poly -vinylpyrrolidone coprecipitate. Int J Pharm 2011; 408(1-2): 91-6.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.055 ] [PMID: 21291971]
[94]
Zhao L, Wei Y, Huang Y, He B, Zhou Y, Fu J. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomedicine 2013; 8: 3769-79.
[http://dx.doi.org/10.2147/IJN.S51578 ] [PMID: 24124365]
[95]
Shi F, Wei Z, Zhao Y, Xu X. Nanostructured lipid carriers loaded with Baicalin: An efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag 2016; 12(47): 198-202.
[http://dx.doi.org/10.4103/0973-1296.186347 ] [PMID: 27601850]
[96]
Wei Y, Guo J, Zheng X, et al. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int J Nanomedicine 2014; 9: 3623-30.
[PMID: 25120360]
[97]
Song P, Kim JH, Ghim J, et al. Emodin regulates glucose utilization by activating AMP-activated protein kinase. J Biol Chem 2013; 288(8): 5732-42.
[http://dx.doi.org/10.1074/jbc.M112.441477 ] [PMID: 23303186]
[98]
Song Y, Fan X, Guo Z, et al. Therapeutic effects of emodin in type 2 diabetes mellitus in KKAy mouse model. Int J Clin Exp Med 2017; 10(10): 14408-13.
[99]
Ren H, Zhu C, Li Z, Yang W, Song E. Emodin-loaded magnesium silicate hollow nanocarriers for anti-angiogenesis treatment through inhibiting VEGF. Int J Mol Sci 2014; 15(9): 16936-48.
[http://dx.doi.org/10.3390/ijms150916936 ] [PMID: 25250911]
[100]
Rajan R, Jose S, Mukund VP, Vasudevan DT. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res 2011; 2(3): 138-43.
[http://dx.doi.org/10.4103/2231-4040.85524 ] [PMID: 22171309]
[101]
Lu K, Xie S, Han S, et al. Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats. J Transl Med 2014; 12: 72.
[http://dx.doi.org/10.1186/1479-5876-12-72 ] [PMID: 24641917]
[102]
Pagliaro B, Santolamazza C, Simonelli F, Rubattu S. Phytochemical compounds and protection from cardiovascular diseases: a state of the art. BioMed Res Int 2015; 2015918069
[http://dx.doi.org/10.1155/2015/918069 ] [PMID: 26504846]
[103]
Nwokocha CR, Ozolua RI, Owu DU, Nwokocha MI, Ugwu AC. Antihypertensive properties of Allium sativum (garlic) on normotensive and two kidney one clip hypertensive rats. Niger J Physiol Sci 2011; 26(2): 213-8.
[PMID: 22547193]
[104]
Phadatare AG, Viswanathan V, Mukne A. Novel strategies for optimized delivery of select components of Allium sativum. Pharmacognosy Res 2014; 6(4): 334-40.
[http://dx.doi.org/10.4103/0974-8490.138288 ] [PMID: 25276072]
[105]
Ragavan G, Muralidaran Y, Sridharan B, Nachiappa Ganesh R, Viswanathan P. Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in high-fat diet induced dyslipidemia in Wistar rats. Food Chem Toxicol 2017; 105: 203-13.
[http://dx.doi.org/10.1016/j.fct.2017.04.019 ] [PMID: 28428086]
[106]
Onakpoya I, O’Sullivan J, Heneghan C, Thompson M. The effect of grapefruits (Citrus paradisi) on body weight and cardiovascular risk factors: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr 2017; 57(3): 602-12.
[http://dx.doi.org/10.1080/10408398.2014.901292 ] [PMID: 25880021]
[107]
Riaz A, Khan RA. Anticoagulant, antiplatelet and antianemic effects of Punica granatum (pomegranate) juice in rabbits. Blood Coagul Fibrinolysis 2016; 27(3): 287-93.
[http://dx.doi.org/10.1097/MBC.0000000000000415 ] [PMID: 26881853]
[108]
Kumar B, Smita K, Cumbal L, Debut A. Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg Chem Appl 2014; 2014523869
[http://dx.doi.org/10.1155/2014/523869 ] [PMID: 25374484]
[109]
Hamilton KL. Antioxidants and cardioprotection. Med Sci Sports Exerc 2007; 39(9): 1544-53.
[http://dx.doi.org/10.1249/mss.0b013e3180d099e8 ] [PMID: 17805087]
[110]
Miriyala S, Panchatcharam M, Rengarajulu P. Cardioprotective effects of curcumin. Adv Exp Med Biol 2007; 595: 359-77.
[http://dx.doi.org/10.1007/978-0-387-46401-5_16 ] [PMID: 17569220]
[111]
Wang YJ, Lin HY, Wu CH, Liu DM. Forming of demethoxycurcumin nanocrystallite-chitosan nanocarrier for controlled low dose cellular release for inhibition of the migration of vascular smooth muscle cells. Mol Pharm 2012; 9(8): 2268-79.
[http://dx.doi.org/10.1021/mp300150q ] [PMID: 22788791]
[112]
Nehra S, Bhardwaj V, Ganju L, Saraswat D. Nanocurcumin prevents hypoxia induced stress in primary human ventricular cardiomyocytes by maintaining mitochondrial homeostasis. PLoS One 2015; 10(9)e0139121
[http://dx.doi.org/10.1371/journal.pone.0139121 ] [PMID: 26406246]
[113]
Nehra S, Bhardwaj V, Bansal A, Chattopadhyay P, Saraswat D. Nanocurcumin-pyrroloquinoline formulation prevents hypertrophy-induced pathological damage by relieving mitochondrial stress in cardiomyocytes under hypoxic conditions. Exp Mol Med 2017; 49(12)e404
[http://dx.doi.org/10.1038/emm.2017.199 ] [PMID: 29611541]
[114]
Namdari M, Eatemadi A. Cardioprotective effects of curcumin-loaded magnetic hydrogel nanocomposite (nanocurcumin) against doxorubicin-induced cardiac toxicity in rat cardiomyocyte cell lines. Artif Cells Nanomed Biotechnol 2017; 45(4): 731-9.
[http://dx.doi.org/10.1080/21691401.2016.1261033 ] [PMID: 27924631]
[115]
Quagliariello V, Vecchione R, Coppola C, et al. Cardioprotective effects of nanoemulsions loaded with anti-inflammatory nutraceuticals against doxorubicin-induced cardiotoxicity. Nutrients 2018; 10(9)E1304
[http://dx.doi.org/10.3390/nu10091304 ] [PMID: 30223482]
[116]
Kalaskar MG, Surana SJ. Free radical scavenging and hepatoprotective potential of Ficus microcarpa L. fil. bark extracts. J Nat Med 2011; 65(3-4): 633-40.
[http://dx.doi.org/10.1007/s11418-011-0532-z ] [PMID: 21625948]
[117]
Sharma AK, Kumar A, Kumar S, et al. Preparation and therapeutic evolution of Ficus benjamina solid lipid nanoparticles against alcohol abuse/antabuse induced hepatotoxicity and cardio-renal injury. RSC Advances 2017; 7: 35938-49.
[http://dx.doi.org/10.1039/C7RA04866A]
[118]
Ateeq M, Shah MR, Ali H, et al. Hepatoprotective and urease inhibitory activities of garlic conjugated gold nanoparticles. New J Chem 2015; 39: 5003-7.
[http://dx.doi.org/10.1039/C5NJ00030K]
[119]
Yang KY, Hwang H, Yousaf AM, et al. Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation. Int J Nanomedicine 2013; 8: 3333-43.
[PMID: 24039417]
[120]
Ahmad U, Akhtar J, Singh SP, Ahmad FJ, Siddiqui S. Silymarin nanoemulsion against human hepatocellular carcinoma: development and optimization. Artif Cells Nanomed Biotechnol 2018; 46(2): 231-41.
[http://dx.doi.org/10.1080/21691401.2017.1324465 ] [PMID: 28503949]
[121]
Mohsen AM, Asfour MH, Salama AAA. Improved hepatoprotective activity of silymarin via encapsulation in the novel vesicular nanosystem bilosomes. Drug Dev Ind Pharm 2017; 43(12): 2043-54.
[http://dx.doi.org/10.1080/03639045.2017.1361968 ] [PMID: 28756693]
[122]
Mikov M, Fawcett JP, Kuhajda K, Kevresan S. Pharmacology of bile acids and their derivatives: absorption promoters and therapeutic agents. Eur J Drug Metab Pharmacokinet 2006; 31(3): 237-51.
[http://dx.doi.org/10.1007/BF03190714 ] [PMID: 17136862]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 36
Year: 2020
Published on: 22 October, 2020
Page: [4580 - 4590]
Pages: 11
DOI: 10.2174/1381612826666200610111013
Price: $65

Article Metrics

PDF: 16
HTML: 5