Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels

Author(s): Neslihan Üstündağ Okur*, Ayşe Pınar Yağcılar, Panoraia I. Siafaka

Journal Name: Current Drug Delivery

Volume 17 , Issue 8 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy.

Objective: in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases.

Methods: This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route.

Results: Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable.

Conclusion: To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.

Keywords: in situ gels, polymers, drug delivery, pharmaceutical applications, local delivery, chitosan.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [675 - 693]
Pages: 19
DOI: 10.2174/1567201817666200608145748
Price: $65

Article Metrics

PDF: 8