Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Ionic Liquids in Agrochemistry

Author(s): Assel Ten, Alexey Zazybin*, Darya Zolotareva, Anuar Dauletbakov, Khadichahan Rafikova, Valentina Yu and Beatriz Giner

Volume 24, Issue 11, 2020

Page: [1181 - 1195] Pages: 15

DOI: 10.2174/1385272824999200608135522

Price: $65

Abstract

In this review article, we present the latest research in the field of ionic liquids containing biologically active anions and cations, their potential application in the field of agrochemistry and agriculture. The article describes examples of the use of ionic liquids as herbicides, fungicides, antimicrobial agents, deterrents and plant growth stimulants. It also indicates the advantages and disadvantages of using ionic liquids, such as their multitasking, toxicity, thermal stability and solubility in water in comparison with commercial chemicals. Readers will find in the article the prospects for the use of ionic liquids in agriculture, as well as the high value of using ILs as multifunctional biologically active substances.

Keywords: Ionic liquids, herbicide, fungicide, antimicrobial agent, deterrent, plant growth regulator.

Graphical Abstract
[1]
World Population Clock :7.7 Billion People 2020 - Worldometer www.worldometers.info(2020).
[2]
World Population – Total Midyear Population for the World: 1950–2050. www.census.gov
[3]
Randall, C. Pest management. In: National Pesticide Applicator Certification Core Manual, 2nd ed; National Association of State Departments of Agriculture Research Foundation: Washington, 2014.
[4]
Zajac, A.; Kukawka, R.; Zygarowicz, A.P.; Stolarska, O.; Smiglak, M. Ionic liquids as bioactive chemical tools for use in agriculture and the preservation of agricultural products. Green Chem., 2018, 20, 4764-4789.
[http://dx.doi.org/10.1039/C8GC01424H]
[5]
Kellogg, R.L.; Nehring, R.F.; Grube, A.; Goss, D.W.; Plotkin, S. Environmental indicators of pesticide leaching and runoff from farm fields. In: Agricultural Productivity. Studies in Productivity and Efficiency; Ball, V.E.; Norton, G.W., Eds.; Springer: Boston, 2002; pp. 213-256.
[http://dx.doi.org/10.1007/978-1-4615-0851-9_9]
[6]
Saitoh, K.; Kuroda, T.; Kumano, S. Effects of organic fertilization and pesticide application on growth and yield of field-grown rice for 10 years. Jpn. J. Crop. Sci., 2001, 70(4), 530-540.
[http://dx.doi.org/10.1626/jcs.70.530]
[7]
Cooper, J.; Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot., 2007, 26, 1337-1348.
[http://dx.doi.org/10.1016/j.cropro.2007.03.022]
[8]
National assessment of the worker protection workshop #3. Pesticides: health and safety. U.S. Environmental Protection Agency. https://www.epa.gov (Accessed August 30, 2007).
[9]
Human health issues related to pesticides. U.S. Environmental Protection Agency. www.epa.gov
[10]
Bassil, K.L.; Vakil, C.; Sanborn, M.; Cole, D.C.; Kaur, J.S.; Kerr, K.J. Cancer health effects of pesticides: systematic review. Can. Fam. Physician, 2007, 53(10), 1704-1711.
[PMID: 17934034]
[11]
Miller, G.T. Biodiversity In: Sustaining the Earth, ; 6th ed.; Pacific Grove, C.A.; Thompson Learning, Inc. , 2004; pp. 211-216.
[12]
Tosi, S.; Costa, C. Vesco; U., Quaglia, G.; Guido, G. A survey of honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ., 2018, 615, 208-218.
[http://dx.doi.org/10.1016/j.scitotenv.2017.09.226] [PMID: 28968582]
[13]
Quinn, A.L. The Impacts of Agricultural Chemicals and Temperature on the Physiological Stress Response in Fish., MSc Thesis, University of Lethbridge: Lethbridge. 2007.
[14]
Sims, G.K.; Cupples, A.M. Factors controlling degradation of pesticides in soil. Pestic. Sci., 1999, 55, 598-601.
[http://dx.doi.org/10.1002/(SICI)1096-9063(199905)55:5<598:AID-PS962>3.0.CO;2-N]
[15]
Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain., 2005, 7, 229-252.
[http://dx.doi.org/10.1007/s10668-005-7314-2]
[16]
Flint, M.L.; Dreistadt, S.H.; Clark, J.K. Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control; University of California Press, 1998.
[17]
Unruh, T.R. Biological control. Orchard Pest Management Online; Washington State University Press: Washington, D.C., 1993.
[18]
Sanda, N.B.; Sunusi, M. Fundamentals of biological control of pests. Int. J. Chem. Bio. Sci., 2014, 1(6), 1-11.
[19]
Gurr, G.M.; Lu, Z.; Zheng, X.; Xu, H.; Zhu, P.; Chen, G.; Yao, X.; Cheng, J.; Zhu, Z.; Catindig, J.L.; Villareal, S.; Van Chien, H.; Cuong, Q.; Channoo, C.; Chengwattana, N.; Lan, L.P.; Hai, H.; Chaiwong, J.; Nicol, H.I.; Perovic, D.J.; Wratten, S.D.; Heong, K.L. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants, 2016, 2, 16014-16018.
[http://dx.doi.org/10.1038/nplants.2016.14] [PMID: 27249349]
[20]
Bale, J.S.; van Lenteren, J.C.; Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2008, 363(1492), 761-776.
[http://dx.doi.org/10.1098/rstb.2007.2182] [PMID: 17827110]
[21]
Paine, T.D.; Millar, J.G.; Hanks, L.M.; Gould, J.; Wang, Q.; Daane, K.; Dahlsten, D.L.; Mcpherson, E.G. Cost-benefit analysis for biological control programs that targeted insect pests of Eucalyptus in urban landscapes of California. J. Econ. Entomol., 2015, 108(6), 2497-2504.
[http://dx.doi.org/10.1093/jee/tov224] [PMID: 26470370]
[22]
Follett, P.A.; Duan, J.J. Nontarget Effects of Biological Control; Springer: Boston, 2000.
[http://dx.doi.org/10.1007/978-1-4615-4577-4]
[23]
National Research Council. Ecologically Based Pest Management: New Solutions for a New Century; The National Academies Press, 1996.
[24]
The cane toad (Bufo marinus). Australian Government: Department of the Environment., 2010.
[25]
Boiteau, G.; Vernon, R.S. Physical barriers for the control of insect pests. In: Physical Control Methods in Plant Protection; Vincent, C.; Panneton, B.; Lessard, F.F., Eds.; Springer: Berlin, 2001.
[http://dx.doi.org/10.1007/978-3-662-04584-8_16]
[26]
Osorio, A.R.; Lypez, C.A.; Quiceno, N.J.; Morales, P.F. Agrotextiles and crop protection textiles. In: High Performance Technical Textiles, 1st ed; Paul, R., Ed.; John Wiley and Sons, 2019; pp. 279-318.
[http://dx.doi.org/10.1002/9781119325062.ch10]
[27]
Dickey, P. Alternative pest and disease controls. A “how to” guide for using least-toxic controls in the garden; The Garden Hotline: Seattle, 2007.
[28]
Sharp, T.; Saunders, G. A Model for Assessing the Relative Humaneness of Pest Animal Control Methods, 2nd ed; Australian Government: Canberra, 2011.
[29]
Ramamurthi, R. Readings in Behaviour; New Age International: New Delhi, 1996.
[30]
Luc, B.J.; Philippe, B. A new laser equipment designed for avian dispersal in airport environment. International Bird Strike Committee, Warsaw, 2003, 5-9.
[31]
Bishop, J.; McKay, H.; Parrott, D.; Allan, J. Review of international research literature regarding the effectiveness of auditory bird scaring techniques and potential alternatives. Food and Rural Affairs London, 2003, 1-53.
[32]
Mazany, T. A food and agriculture roadmap for Illinois; University of Illinois Press: Chicago, 2015.
[33]
Genetically Altered Potato Ok'd for Crops Lawrence Journal-World, 1995.
[34]
Transgenic Plants and World Agriculture; National Academy Press: Washington, 2001.
[http://dx.doi.org/10.17226/9889]
[35]
Paarlburg, R. Maize in Africa, Anticipating Regulatory Hurdles; International Life Sciences Institute, 2011.
[36]
Carpenter, J.; Gianessi, L. Herbicide tolerant soybeans: why growers are adopting roundup ready varieties. AgBioForum, 1999, 2(2), 65-72.
[37]
About Golden Rice Irri.org.(Accessed February 5, 2019).
[38]
King, D.; Dalton, H.; Avery, M.I.; Bainbridge, J.; Bharucha, C. GM science review first report: an open review of the science relevant to GM crops and food based on interests and concerns of the public., 2003.
[39]
Nicolia, A.; Manzo, A.; Veronesi, F.; Rosellini, D. An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol., 2014, 34(1), 77-88.
[http://dx.doi.org/10.3109/07388551.2013.823595] [PMID: 24041244]
[40]
Zhang, C.; Wohlhueter, R.; Zhang, H. Genetically modified foods: A critical review of their promise and problems. Food Sci. Hum. Wellness, 2016, 5(3), 116-123.
[http://dx.doi.org/10.1016/j.fshw.2016.04.002]
[41]
Domingo, J.L.; Giné Bordonaba, J. A literature review on the safety assessment of genetically modified plants. Environ. Int., 2011, 37(4), 734-742.
[http://dx.doi.org/10.1016/j.envint.2011.01.003] [PMID: 21296423]
[42]
Yang, Y.T.; Chen, B. Governing GMOs in the USA: science, law and public health. J. Sci. Food Agric., 2016, 96(6), 1851-1855.
[http://dx.doi.org/10.1002/jsfa.7523] [PMID: 26536836]
[43]
Haslberger, A.G. Codex guidelines for GM foods include the analysis of unintended effects. Nat. Biotechnol., 2003, 21(7), 739-741.
[http://dx.doi.org/10.1038/nbt0703-739] [PMID: 12833088]
[44]
Funk, C.; Rainie, L. Public and Scientists’ Views on Science and Society; Pew Research Center: Washington, D.C., 2015.
[45]
Marris, C. Public views on GMOs: deconstructing the myths. Stakeholders in the GMO debate often describe public opinion as irrational. But do they really understand the public? EMBO Rep., 2001, 2(7), 545-548.
[http://dx.doi.org/10.1093/embo-reports/kve142] [PMID: 11463731]
[46]
Final Report of the PABE research project: Public Perceptions of Agricultural Biotechnologies in Europe. Commission of European Communities 2001.
[47]
Food and Agriculture Organzation of United Nations. http://www.fao.org/faostat/en/#data/RP
[48]
Donaldson, D.; Kiely, T.; Grube, A. Pesticide's industry sales and usage 1998-1999 market estimates US Environmental Protection Agency; Washington (DC): Report No. EPA-733-R-02-OOI.
[49]
Repetto, R.; Baliga, S. Trends and patterns of pesticide use. Pesticides and the immune system; Public Health Risks; World Resources Institute: Washington, D.C., 1996, pp. 3-8.
[50]
Jeyaratnam, J. Acute pesticide poisoning: a major global health problem. World Health Stat. Q., 1990, 43(3), 139-144.
[PMID: 2238694]
[51]
Lawrence, D. Chinese develop taste for organic food: Higher cost no barrier to safer eating Bloomberg News, International Herald Tribune, 2007.
[52]
Sanborn, M.; Kerr, K.J.; Sanin, L.H.; Cole, D.C.; Bassil, K.L.; Vakil, C. Non-cancer health effects of pesticides: systematic review and implications for family doctors. Can. Fam. Physician, 2007, 53(10), 1712-1720.
[PMID: 17934035]
[53]
Crisp, P.E.F. Risk-assessment and risk management: the regulatory process. In: Handbook of Pesticide Toxicology, 2nd ed; Kreiger, R., Ed.; Academic: San Diego, 2001; pp. 681-690.
[http://dx.doi.org/10.1016/B978-012426260-7.50034-3]
[54]
Vetek, G.; Asea, T.; Chubinishvili, M.; Avagyan, G.; Torchan, V.; Hajdu, Z.; Veres, A.; Nersisyan, A. Integrated Pest Management of Major Pests and Diseases in Eastern Europe and the Caucasus,; Food and Agriculture Organization of the United Nations . , 2018.
[55]
Management, I.P. (IMP) Principles; United States Environmental Protection Agency, 2012.
[56]
Bennett, G.W.; Owens, J.M.; Corrigan, R.M. Truman’s Scientific Guide to Pest Management Operations; Purdue University Press: West Lafayette, 2010.
[57]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[58]
Zolotareva, D.; Zazybin, A.; Rafikova, K.; Dembitsky, V.; Dauletbakov, A.; Yu, V. Ionic liquids assisted desulfurization and denitrogention of fuels. Vietnam J. Chem., 2019, 57(2), 133-163.
[http://dx.doi.org/10.1002/vjch.201900008]
[59]
Bui, T.T.L.; Nguyen, D.D.; Ho, S.V.; Nguye, B.T.; Uong, H.T.N. Synthesis, characterization and application of some non-halogen ionic liquids as green solvents for deep desulfurization of diesel oil. Fuel, 2017, 191, 54-61.
[http://dx.doi.org/10.1016/j.fuel.2016.11.044]
[60]
Yang, J.; Cai, D.; Zeng, T.; Zhou, L.; Li, L.; Hong, R.; Qiu, T. Application of Brönsted acid ionic liquids as green catalyst in the synthesis of 2-propanol with reactive distillation. Chin. J. Chem. Eng., 2016, 24, 1561-1569.
[http://dx.doi.org/10.1016/j.cjche.2016.04.025]
[61]
Dobler, D.; Schmidts, T.; Klingenhöfer, I.; Runkel, F. Ionic liquids as ingredients in topical drug delivery systems. Int. J. Pharm., 2013, 441(1-2), 620-627.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.035] [PMID: 23123180]
[62]
Matsumoto, M.; Inomoto, Y.; Kondo, K. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J. Membr. Sci., 2005, 246, 77-81.
[http://dx.doi.org/10.1016/j.memsci.2004.08.013]
[63]
Wei, D.; Ivaska, A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta, 2008, 607(2), 126-135.
[http://dx.doi.org/10.1016/j.aca.2007.12.011] [PMID: 18190800]
[64]
Watanabe, M.; Thomas, M.L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev., 2017, 117(10), 7190-7239.
[http://dx.doi.org/10.1021/acs.chemrev.6b00504] [PMID: 28084733]
[65]
Stoimenovski, J.; MacFarlane, D.R.; Bica, K.; Rogers, R.D. Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm. Res., 2010, 27(4), 521-526.
[http://dx.doi.org/10.1007/s11095-009-0030-0] [PMID: 20143257]
[66]
Bica, K.; Rijksen, C.; Nieuwenhuyzen, M.; Rogers, R.D. In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys. Chem. Chem. Phys., 2010, 12(8), 2011-2017.
[http://dx.doi.org/10.1039/b923855g] [PMID: 20145871]
[67]
Zimdahl, R.L. A History of Weed Science in the United States; Elsevier, 2007.
[68]
Vats, S. Herbicides: history, classification and genetic manipulation of plants for herbicide resistance. In: Sustainable Agriculture Reviews 15; Lichtfouse, E., Ed.; Springer International Publishing: Cham, 2015; pp. 153-192.
[http://dx.doi.org/10.1007/978-3-319-09132-7_3]
[69]
Reade, J.; Cobb, A.H. Herbicides: modes of action and metabolism In: Weed Management Handbook, 9th ed.; Wiley-Blackwell. , 2002; pp. 134-170.
[70]
Cranston, H.J.; Kern, A.J.; Hackett, J.L.; Miller, E.K.; Maxwell, B.D.; Dyer, W.E. Dicamba resistance in kochia. Weed Sci., 2001, 49(2), 164-170.
[http://dx.doi.org/10.1614/0043-1745(2001)049[0164:DRIK]2.0.CO;2]
[71]
Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; Vandenberg, L.N.; Vom Saal, F.S.; Welshons, W.V.; Benbrook, C.M. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ. Health, 2016, 15(19), 70134-70138.
[http://dx.doi.org/10.1186/s12940-016-0117-0] [PMID: 26883814]
[72]
Pernak, J.; Niemczak, M.; Materna, K.; Żelechowski, K.; Marcinkowska, K.; Praczyk, T. Synthesis, properties and evaluation of biological activity of herbicidal ionic liquids with 4-(4-chloro-2-methylphenoxy)butanoate anion. RSC Adv., 2016, 6, 7330-7338.
[http://dx.doi.org/10.1039/C5RA23997D]
[73]
Polit, J.T.; Praczyk, T.; Pernak, J.; Sobiech, Ł.; Jakubiak, E.; Skrzypczak, G. Inhibition of germination and early growth of rape seed (Brassica napus L.) by MCPA in anionic and ester form. Acta Physiol. Plant., 2014, 36, 699-711.
[http://dx.doi.org/10.1007/s11738-013-1448-x]
[74]
Czuryszkiewicz, D.; Maćkowiak, A.; Marcinkowska, K.; Borkowski, A.; Chrzanowski, Ł.; Pernak, J. Herbicidal ionic liquids containing the acetylcholine cation. ChemPlusChem, 2019, 84(3), 268-276.
[http://dx.doi.org/10.1002/cplu.201800651] [PMID: 31950757]
[75]
Marcinkowska, K.; Praczyk, T.; Łęgosz, B.; Biedziak, A.; Pernak, J. Bio-ionic liquids as adjuvants for Sulfonylurea herbicides. Weed Sci., 2018, 66(03), 404-414.
[http://dx.doi.org/10.1017/wsc.2017.85]
[76]
Pernak, J.; Kubis, J.F.; Rosłonkiewicz, A.C.; Fischmeister, C.; Grifin, S.T.; Rogers, R.D. Synthesis and properties of chiral imidazolium ionic liquids with a (1R,2S,5R)-(−)-menthoxymethyl substituent. New J. Chem., 2007, 31, 879-892.
[http://dx.doi.org/10.1039/B616215K]
[77]
Biczak, R.; Pawlowska, B.; Kubis, J.F. The effect of Ionic liquids with (-)-menthol derivative containing a chloride anion to weed. Ecol. Chem. Eng. S, 2017, 24(4), 637-651.
[http://dx.doi.org/10.1515/eces-2017-0042]
[78]
Wang, W.; Zhu, J.; Tang, G.; Huo, H.; Zhang, W.; Liang, Y.; Dong, H.; Yang, J.; Cao, Y. Novel herbicide ionic liquids based on nicosulfuron with increased efficacy. New J. Chem., 2019, 43, 827-833.
[http://dx.doi.org/10.1039/C8NJ05903A]
[79]
Cojocaru, O.A.; Shamshina, J.L.; Gurau, G.; Syguda, A.; Praczyk, T.; Pernak, J.; Rogers, R.D. Ionic liquid forms of the herbicide dicamba with increased efficacy and reduced volatility. Green Chem., 2013, 15(8), 2110-2120.
[http://dx.doi.org/10.1039/c3gc37143c]
[80]
Pernak, J.; Syguda, A.; Materna, K.; Janus, E.; Kardasz, P.; Praczyk, T. 2,4-D based herbicidal ionic liquids. Tetrahedron, 2012, 68(22), 4267-4273.
[http://dx.doi.org/10.1016/j.tet.2012.03.065]
[81]
Pernak, J.; Niemczak, M.; Materna, K.; Marcinkowska, K.; Praczyk, T. Ionic liquids as herbicides and plant growth regulators. Tetrahedron, 2013, 69(23), 4665-4669.
[http://dx.doi.org/10.1016/j.tet.2013.03.097]
[82]
Wu, Q.; Liu, C.; Yang, J.; Guan, A.; Ma, H. Design, synthesis, and herbicidal activity of novel quaternary ammonium salt derivatives. Pestic. Biochem. Physiol., 2017, 143, 246-251.
[http://dx.doi.org/10.1016/j.pestbp.2017.05.006] [PMID: 29183599]
[83]
Ding, G.; Liu, Y.; Wang, B.; Punyapitak, D.; Guo, M.; Duan, Y.; Cao, Y. Preparation and characterization of fomesafen ionic liquids for reducing the risk to the aquatic environment. New J. Chem., 2014, 38(11), 5590-5596.
[http://dx.doi.org/10.1039/C4NJ01186D]
[84]
Bica, K.; Cooke, L.R.; Nugent, P.; Rijksen, C.; Rogers, R.D. Toxic on purpose: ionic liquid fungicides as combinatorial crop protecting agents. Green Chem., 2011, 13(9), 2344-2346.
[http://dx.doi.org/10.1039/c1gc15170c]
[85]
Pernak, J.; Goc, I. New ionic liquids with organic anions. Pol. J. Chem., 2003, 77, 975-984.
[http://dx.doi.org/10.1002/chin.200349119]
[86]
Pernak, J.; Goc, I.; Mirska, I. Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem., 2004, 6, 323-329.
[http://dx.doi.org/10.1039/b404625k]
[87]
Ranjan, P.; Kitawat, B.S.; Singh, M. 1-Butylimidazole-derived ionic liquids: synthesis, characterisation and evaluation of their antibacterial, antifungal and anticancer activities. RSC Adv., 2014, 4(96), 53634-53644.
[http://dx.doi.org/10.1039/C4RA08370A]
[88]
Suchodolski, J.; Kubis, J.F.; Krasowska, A. Antifungal activity of ionic liquids based on (-)-menthol: a mechanism study. Microbiol. Res., 2017, 197, 56-64.
[http://dx.doi.org/10.1016/j.micres.2016.12.008] [PMID: 28219526]
[89]
Markiewicz, B.; Sznajdrowska, A.; Chrzanowski, Ł.; Ławniczak, Ł.; Grześkowiak, A.Z.; Kubiak, K.; Pernak, J. Ionic liquids with a theophyllinate anion. New J. Chem., 2014, 38(7), 3146-3153.
[http://dx.doi.org/10.1039/C4NJ00463A]
[90]
Sadaf, A.; Khare, S.K. Efficacy of ionic liquids on the growth and simultaneous xylanase production by Sporotrichum thermophile: membrane integrity, composition and morphological investigation. RSC Ad., 2017, 7, 21114-21123.
[http://dx.doi.org/10.1039/C6RA27979A]
[91]
Kubis, J.F.; Matejuk, J.Z.; Stangierska, A.; Przybylski, P.; Jacquemin, J.; Rybczyńska, M.G. Towards designing “sweet” ionic liquids containing a natural terpene moiety as effective wood preservatives. ACS Sustain. Chem. Eng., 2019, 7(18), 15628-15639.
[http://dx.doi.org/10.1021/acssuschemeng.9b03645]
[92]
Matejuk, J.Z.; Urbanik, E.; Pernak, J. New bis-quaternary ammonium and bis-imidazolium chloride wood preservatives. Holzforschung, 2004, 58, 292-299.
[http://dx.doi.org/10.1515/HF.2004.045]
[93]
Matejuk, J.Z.; Kubis, J.F.; Stangierska, A.; Przybylski, P. Chiral ionic liquids with a (−)-menthol component as wood preservatives. Holzforschung, 2017, 71, 751-757.
[http://dx.doi.org/10.1515/hf-2016-0216]
[94]
Matejuk, J.Z.; Stangierska, A.; Kot, M. New ammonium- and 1,2,4-triazolium-based ionic liquids for wood preservation. J. Wood Chem. Technol., 2015, 35, 178-192.
[http://dx.doi.org/10.1080/02773813.2014.909852]
[95]
O’Neill, J. Antimicrobials in agriculture and the environment: reducing unnecessary use and waste; Wellcome Trust: London, 2015.
[96]
Cole, M.R.; Li, M.; El-Zahab, B.; Janes, M.E.; Hayes, D.; Warner, I.M. Design, synthesis, and biological evaluation of β-lactam antibiotic-based imidazolium- and pyridinium-type ionic liquids. Chem. Biol. Drug Des., 2011, 78(1), 33-41.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01114.x] [PMID: 21443681]
[97]
He, B.; Ou, G.; Zhou, C.; Wang, M.; Chen, S. Antimicrobial Ionic liquids with fumarate anion. J. Chem., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/473153]
[98]
Wiåniewska, A.; Ski, P.F.J.L.; Woèniak, K.; Szklarz, F.W.S. Ros£onkiewicz, A.C.; Michalczyk, A.; Dąbrowski, Z.; Adamiak, A.K.; Ska, J.M.; Leå, A.; Cybulski, J. Synthesis and antimicrobial properties of new mandelate ionic liquids. Acta Pol. Pharm. -. Drug Res., 2016, 73(3), 705-715.
[PMID: 27476289]
[99]
Borkowski, A.; Ławniczak, Ł.; Cłapa, T.; Narożna, D.; Selwet, M.; Pęziak, D.; Markiewicz, B.; Chrzanowski, Ł. Different antibacterial activity of novel theophylline-based ionic liquids - Growth kinetic and cytotoxicity studies. Ecotoxicol. Environ. Saf., 2016, 130, 54-64.
[http://dx.doi.org/10.1016/j.ecoenv.2016.04.004] [PMID: 27082812]
[100]
Gouveia, W.; Jorge, T.F.; Martins, S.; Meireles, M.; Carolino, M.; Cruz, C.; Almeida, T.V.; Araújo, M.E. Toxicity of ionic liquids prepared from biomaterials. Chemosphere, 2014, 104, 51-56.
[http://dx.doi.org/10.1016/j.chemosphere.2013.10.055] [PMID: 24268343]
[101]
Smiglak, M.; Lewandowski, P.; Kukawka, R.; Budziszewska, M.; Krawczyk, K.; Stęplowska, A.O.; Pospieszny, H. Dual functional salts of benzo[1.2.3]thiadiazole-7-carboxylates as a highly efficient weapon against viral plant diseases. ACS Sustain. Chem.& Eng., 2017, 5(5), 4197-4204.
[http://dx.doi.org/10.1021/acssuschemeng.7b00161]
[102]
Kapitanov, I.V.; Jordan, A.; Karpichev, Y.; Spulak, M.; Perez, L.; Kellett, A.; Gathergood, N. Synthesis, self-assembly, bacterial and fungal toxicity, and preliminary biodegradation studies of a series of l-phenylalanine-derived surface-active ionic liquids. Green Chem., 2019, 21, 1777-1794.
[http://dx.doi.org/10.1039/C9GC00030E]
[103]
Marguerre, A.K.; Geyer, K.; Mertoglu, M.; Hopf, A.; Weiler, R. Aqueous agrochemical composition comprising a pesticide in suspended form, a dispersant, and an ionic liquid. WO Patent 2014128009A1, 2014.
[104]
Łęgosz, B.; Biedziak, A.; Klejdysz, T.; Pernak, J. Quaternary ammonium nonanoate-based ionic liquids as chemicals for crop protection. Eur. J. Chem., 2016, 7(2), 217-224.
[http://dx.doi.org/10.5155/eurjchem.7.2.217-224.1428]
[105]
Kaczmarek, D.K.; Czerniak, K.; Klejdysz, T. Dicationic ionic liquids as new feeding deterrents. Chem. Papers, 2018, 72(10), 2457-2466.
[http://dx.doi.org/10.1007/s11696-018-0495-6] [PMID: 30147225]
[106]
Klejdysz, T.; Łęgosz, B.; Czuryszkiewicz, D.; Czerniak, K.; Pernak, J. Biobased ionic liquids with abietate anion. ACS Sustain. Chem. & Eng., 2016, 4(12), 6543-6550.
[http://dx.doi.org/10.1021/acssuschemeng.6b01381]
[107]
Pernak, J.; Łęgosz, B.; Klejdysz, T.; Marcinkowska, K.; Rogowski, J.; Popowska, D.K.; Szablewska, K.S. Ammonium bio-ionic liquids based on camelina oil as potential novel agrochemicals. RSC Adv., 2018, 8(50), 28676-28683.
[http://dx.doi.org/10.1039/C8RA03519A]
[108]
Mischko, W.; Hirte, M.; Roehrer, S.; Engelhardt, H.; Mehlmer, N.; Minceva, M.; Brück, T. Modular biomanufacturing for a sustainable production of terpenoid-based insect deterrents. Green Chem., 2018, 20(11), 2637-2650.
[http://dx.doi.org/10.1039/C8GC00434J]
[109]
Moyano, E.; Games, D.E.; Galceran, M.T. Determination of quaternary ammonium herbicides by capillary electrophoresis. Rapid Commun. Mass Spectrom., 1996, 10, 1379-1385.
[http://dx.doi.org/10.1002/(SICI)1097-0231(199608)10:11<1379:AID-RCM612>3.0.CO;2-P]
[110]
Juhler, R.K.; Henriksen, T.; Rosenbom, A.E.; Kjaer, J. Fate and transport of chlormequat in subsurface environments. Environ. Sci. Pollut. Res. Int., 2010, 17(6), 1245-1256.
[http://dx.doi.org/10.1007/s11356-010-0303-5] [PMID: 20177799]
[111]
Tolbert, N.E. (2-Chloroethyl) trimethylammonium chloride and related compounds as plant growth substances. II. Effect on growth of wheat. Plant Physiol., 1960, 35(3), 380-385.
[http://dx.doi.org/10.1104/pp.35.3.380] [PMID: 16655360]
[112]
Praczyk, T.; Zakrocka, K.; Wyrzykowska, D.; Niemczak, M.; Pernak, J. Ionic liquids based on 2-Chloroethyltrimethylammonium Chloride (CCC) as plant growth regulators. Cent. Eur. J. Chem., 2013, 11(11), 1816-1821.
[113]
Marrucho, I.M.; Branco, L.C.; Rebelo, L.P.N. Ionic liquids in pharmaceutical applications. Annu. Rev. Chem. Biomol. Eng., 2014, 5, 527-546.
[http://dx.doi.org/10.1146/annurev-chembioeng-060713-040024] [PMID: 24910920]
[114]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[http://dx.doi.org/10.1021/acs.chemrev.6b00562] [PMID: 28125212]
[115]
Kaczmarek, D.K.; Kleiber, T.; Wenping, L.; Niemczak, M.; Chrzanowski, Ł.; Pernak, J. Transformation of indole-3-butyric acid into ionic liquids as a sustainable strategy leading to highly efficient plant growth stimulators. ACS Sustain. Chem. Eng., 2020, 8(3), 1591-1598.
[http://dx.doi.org/10.1021/acssuschemeng.9b06378]
[116]
Zolotareva, D.S.; Basharimova, A.A.; Bayazit, S.; Yu, V.K.; Zazybin, A.G. N-ethoxyethylpiperidine, trimecaine and piromecaine based ionic compounds: synthesis and prediction of biological activity. Int. J. Chem. Eng. Appl., 2017, 8, 226-232.
[http://dx.doi.org/10.18178/ijcea.2017.8.3.661]
[117]
Salgado, J.; Parajó, J.J.; Teijeira, T.; Cruz, O.; Proupín, J.; Villanueva, M.; Añón, J.A.R.; Verdes, P.V.; Reyes, O. New insight into the environmental impact of two imidazolium ionic liquids. Effects on seed germination and soil microbial activity. Chemosphere, 2017, 185, 665-672.
[http://dx.doi.org/10.1016/j.chemosphere.2017.07.065] [PMID: 28734209]
[118]
Biczak, R.; Pawłowska, B.; Telesiński, A.; Kapuśniak, J. Role of cation structure in the phytotoxicity of ionic liquids: growth inhibition and oxidative stress in spring barley and common radish. Environ. Sci. Pollut. Res. Int., 2017, 24(22), 18444-18457.
[http://dx.doi.org/10.1007/s11356-017-9439-x] [PMID: 28643283]
[119]
Chen, Z.; Zhou, Q.; Guan, W.; Wang, J.; Li, Y.; Yu, N.; Wei, J. Effects of imidazolium-based ionic liquids with different anions on wheat seedlings. Chemosphere, 2018, 194, 20-27.
[http://dx.doi.org/10.1016/j.chemosphere.2017.11.145] [PMID: 29195090]
[120]
Shahriari, S.; Tome, L.C.; Araujo, J.M.M. RObelo, L.P.N.; Coutinhio, J.A.P.; Marrucho, I.M.; Freire, M.G. Aqueous biphasic systems: a benign route using cholinium-based ionic liquids. RSC Adv. , 2013, 6, 1835-1843.
[http://dx.doi.org/10.1039/C2RA22972B]
[121]
Tao, D.; Cheng, Z.; Chen, F.; Li, Z.; Hu, N.; Chen, X. Synthesis and thermophysical properties of biocompatible cholinium-based amino acid ionic liquids. J. Chem. Eng. Data, 2013, 58, 1542-1548.
[http://dx.doi.org/10.1021/je301103d]
[122]
Hou, X.D.; Xu, J.; Li, N.; Zong, M.H. Effect of anion structures on cholinium ionic liquids pretreatment of rice straw and the subsequent enzymatic hydrolysis. Biotechnol. Bioeng., 2015, 112(1), 65-73.
[http://dx.doi.org/10.1002/bit.25335] [PMID: 25067792]
[123]
Pernak, J.; Syguda, A.; Mirska, I.; Pernak, A.; Nawrot, J.; Pradzyńska, A.; Griffin, S.T.; Rogers, R.D. Choline-derivative-based ionic liquids. Chemistry, 2007, 13(24), 6817-6827.
[http://dx.doi.org/10.1002/chem.200700285] [PMID: 17534999]
[124]
Petkovic, M.; Ferguson, J.L.; Gunaratne, H.N.; Ferreira, R.; Leitao, M.C.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Novel biocompatible cholinium-based ionic liquids-toxicity and biodegradability. Green Chem., 2010, 12, 643-649.
[http://dx.doi.org/10.1039/b922247b]
[125]
Nockemann, P.; Thijs, B.; Driesen, K.; Janssen, C.R.; van Hecke, K.; van Meervelt, L.; Kossmann, S.; Kirchner, B.; Binnemans, K. Choline saccharinate and choline acesulfamate: ionic liquids with low toxicities. J. Phys. Chem. B, 2007, 111(19), 5254-5263.
[http://dx.doi.org/10.1021/jp068446a] [PMID: 17444674]
[126]
Kukawka, R.; Czerwoniec, P.; Lewandowski, P.; Pospieszny, H.; Smiglak, M. New ionic liquids based on systemic acquired resistance inducers combined with the phytotoxicity reducing cholinium cation. New J. Chem., 2018, 42(14), 11984-11990.
[http://dx.doi.org/10.1039/C8NJ00778K]
[127]
Kubis, J.F.; Czerwoniec, P.; Lewandowski, P.; Pospieszny, H.; Smiglak, M. Ionic liquids with natural origin component: a path to new plant protection products. ACS Sustain. Chem.& Eng., 2020, 8(2), 842-852.
[http://dx.doi.org/10.1021/acssuschemeng.9b04859]
[128]
Zerrer, N.W.; Gundolf, T.; Kalb, R.; Oßmer, R.; Rossmanith, P.; Mester, P. Predictability of ionic liquid toxicity from a SAR study on different systematic levels of pathogenic bacteria. Ecotoxicol. Environ. Saf., 2017, 139, 394-403.
[http://dx.doi.org/10.1016/j.ecoenv.2017.01.055] [PMID: 28189781]
[129]
Jordan, A.; Haiß, A.; Spulak, M.; Karpichev, Y.; Kümmerer, K.; Gathergood, N. Synthesis of a series of amino acid derived ionic liquids and tertiary amines: green chemistry metrics including microbial toxicity and preliminary biodegradation data analysis. Green Chem., 2016, 18, 4374-4392.
[http://dx.doi.org/10.1039/C6GC00415F]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy