4,4′-Isopropylidenebis(2,6-dibromophenol) Photocatalytic Debromination on Nano- and Micro-Particles Fe3O4 Surface

Author(s): Joanna Kisała*, Anna Tomaszewska, Dariusz Pogocki

Journal Name: Journal of Photocatalysis

Volume 1 , Issue 1 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Tetrabromobisphenol A (4,4’-isopropylidenebis(2,6-dibromophenol), TBBPA) is one of the most widely used brominated flame retardants. Due to its widespread use, high lipophilicity, and persistence, it has been detected in various environmental samples. Therefore, it is of great significance to develop methods to efficiently remove TBBPA from the contaminated environment.

Objective: The aim of our study was to examine photocatalytic dehalogenation of TBBPA on microand nano-sized Fe3O4 exposed to the visible light. The Fe3O4 catalyst was chosen due to its indisputable low impact on the environment.

Methods: A solution of TBBPA (1.84 × 10-4 mol dm-3) with a pH = 8 with suspended catalyst was illuminated (light intensity about 1.1x1017 photons per second, spectrum range 200-600 nm) for 1 hour. Analysis of the reaction progress was carried out by HPLC measurements of TBBPA decay and potentiometric measurements of an increase in bromide concentration.

Results: The degradation process seems to be the most effective for TBBPA in the reaction mixture containing the n-Fe3O4 (t0.5 ≈ 2 min). Slightly lower degradation efficacy is observed for TBBPA degradation in the presence of the μ-Fe3O4 (decay within the first 5 min). TBBPA decomposition of both n-Fe3O4 and μ-Fe3O4 is accompanied by different bromide concentrations time-profile.

Conclusion: The photogenerated electron-induced degradation by dissociative-attachment to the aromatic ring was followed by bromine ion expulsion. The micro-magnetite showed a strong tendency for adsorption of bromide anions during the process, which could be adventurous for the overall waste-decontamination process.

Keywords: Photocatalysis, magnetite, persistent organic pollutants, TBBPA, electron dissociative-attachment, HPLC.

[1]
Barontini, F.; Cozzani, V.; Marsanich, K.; Raffa, V.; Petarca, L. An experimental investigation of tetrabromobisphenol a decomposition pathways. J. Anal. Appl. Pyrolysis, 2004, 72, 41-53.
[http://dx.doi.org/10.1016/j.jaap.2004.02.003]
[2]
Colnot, T.; Kacew, S.; Dekant, W. Mammalian toxicology and human exposures to the flame retardant 2,2′,6,6′-tetrabromo-4,4′-isopropylidenediphenol (TBBPA): implications for risk assessment. Arch. Toxicol., 2014, 88(3), 553-573.
[http://dx.doi.org/10.1007/s00204-013-1180-8] [PMID: 24352537]
[3]
Kim, S.; Park, J.; Kim, H-J.; Lee, J.J.; Choi, G.; Choi, S.; Kim, S.; Kim, S.Y.; Moon, H-B.; Kim, S.; Choi, K. Association between several persistent organic pollutants and thyroid hormone levels in cord blood serum and bloodspot of the newborn infants of Korea. PLoS One, 2015, 10(5)e0125213
[http://dx.doi.org/10.1371/journal.pone.0125213] [PMID: 25965908]
[4]
Covaci, A.; Voorspoels, S.; Abdallah, M.A-E.; Geens, T.; Harrad, S.; Law, R.J. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J. Chromatogr. A, 2009, 1216(3), 346-363.
[http://dx.doi.org/10.1016/j.chroma.2008.08.035] [PMID: 18760795]
[5]
Ni, H-G.; Zeng, H. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Sci. Total Environ., 2013, 458-460, 15-19.
[http://dx.doi.org/10.1016/j.scitotenv.2013.04.003] [PMID: 23639907]
[6]
Yang, S.; Wang, S.; Liu, H.; Yan, Z.; Tetrabromobisphenol, A. Tetrabromobisphenol A: tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China. Environ. Sci. Pollut. Res. Int., 2012, 19(9), 4090-4096.
[http://dx.doi.org/10.1007/s11356-012-1023-9] [PMID: 22825637]
[7]
Morf, L.S.; Tremp, J.; Gloor, R.; Huber, Y.; Stengele, M.; Zennegg, M. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant. Environ. Sci. Technol., 2005, 39(22), 8691-8699.
[http://dx.doi.org/10.1021/es051170k] [PMID: 16323764]
[8]
Söderström, G.; Marklund, S. PBCDD and PBCDF from incineration of waste-containing brominated flame retardants. Environ. Sci. Technol., 2002, 36(9), 1959-1964.
[http://dx.doi.org/10.1021/es010135k] [PMID: 12026978]
[9]
Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today, 1999, 53, 51-59.
[http://dx.doi.org/10.1016/S0920-5861(99)00102-9]
[10]
Haag, W.R.; Yao, C.C.D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol., 1992, 26, 1005-1013.
[http://dx.doi.org/10.1021/es00029a021]
[11]
Vogel, T.M.; Criddle, C.S.; McCarty, P.L. ES Critical Reviews: Transformations of halogenated aliphatic compounds. Environ. Sci. Technol., 1987, 21(8), 722-736.
[http://dx.doi.org/10.1021/es00162a001] [PMID: 19995052]
[12]
R.H.H. Sims J.L. Suflita J.M. Reductive dehalogenation of organic contaminants in soils and ground water. Remediat. J., 1990, 1, 75-93.
[13]
Booth, F. Theory of electrokinetic effects. Nature, 1948, 161(4081), 83-86.
[http://dx.doi.org/10.1038/161083a0] [PMID: 18898334]
[14]
Saad, J.G.; Sherman, M.N. Using Zeta Potential to Determine Equivalency of Generic and Non-Generic Oral Suspensions, 2018.Available from: . https://www.particulatesystems.com/wp-content/uploads/2017/08/application-note-ps-029_v2.pdf [Accessed on: November 14, 2019]
[15]
Neta, P.; Schuler, R.H. Rate constants for the reaction of oxygen(1-) radicals with organic substrates in aqueous solution. J. Phys. Chem., 1975, 79, 1-6.
[http://dx.doi.org/10.1021/j100568a001]
[16]
Verma, N.C.; Fessenden, R.W. Time resolved ESR spectroscopy. IV. Detailed measurement and analysis of the ESR time profile. J. Chem. Phys., 1976, 65, 2139-2155.
[http://dx.doi.org/10.1063/1.433370]
[17]
Hatchard, C.G.; Parker, C.A. A new sensitive chemical actinometer - II. Potassium ferrioxalate as a standard chemical actinometer, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., 1956, 235(1956), pp 518-536.
[18]
White, A.F.; Peterson, M.L.; Hochella, M.F. Electrochemistry and dissolution kinetics of magnetite and ilmenite. Geochim. Cosmochim. Acta, 1994, 58, 1859-1875.
[http://dx.doi.org/10.1016/0016-7037(94)90420-0]
[19]
Benton, D.P.; Horsfall, G.A. Sorption from some electrolyte solutions by synthetic magnetite. J. Chem. Soc., 1962, 0, 3899-3904.
[http://dx.doi.org/10.1039/jr9620003899]
[20]
Regazzoni, A.E.; Blesa, M.A.; Maroto, A.J.G. Interfacial properties of zirconium dioxide and magnetite in water. J. Colloid Interface Sci., 1983, 91, 560-570.
[http://dx.doi.org/10.1016/0021-9797(83)90370-3]
[21]
Blesa, M.A.; Figliolia, N.M.; Maroto, A.J.G.; Regazzoni, A.E. The influence of temperature on the interface magnetite-aqueous electrolyte solution. J. Colloid Interface Sci., 1984, 101, 410-418.
[http://dx.doi.org/10.1016/0021-9797(84)90052-3]
[22]
Allen, G.C.; Tuckek, P.M.; Wild, R.K. Characterization of iron/oxygen surface reactions by X-ray photoelectron spectroscopy. Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 1982, 46, 411-421.
[http://dx.doi.org/10.1080/01418638208224020]
[23]
Peterson, M.L.; Brown, G.E.; Parks, G.A. Direct XAFS evidence for heterogeneous redox reaction at the aqueous chromium/magnetite interface. Colloids Surfaces A Physicochem. Eng. Asp; Elsevier Science B.V., 1996, 107, 77-88.
[http://dx.doi.org/10.1016/0927-7757(95)03345-9]
[24]
Gutz, I.G.R. pH Calculation and Acid-Base Titration Curves - Freeware for Data Analysis and Simulation. Available from: http://www.iq.usp.br/gutz/Curtipot_.html[Accessed on: April 6, 2020].
[25]
Kisch, H. Semiconductor photocatalysis--mechanistic and synthetic aspects. Angew. Chem. Int. Ed. Engl., 2013, 52(3), 812-847.
[http://dx.doi.org/10.1002/anie.201201200] [PMID: 23212748]
[26]
Paz, Y. Specificity in Photocatalysis. In: Photocatalysis: Fundamentals and Perspectives; Schneider, J.; Bahnemann, D.; Ye, J.; Puma, G.L.; Dionysiou, D.D., Eds.; The Royal Society of Chemistry, 2016; pp. 80-109.
[http://dx.doi.org/10.1039/9781782622338-00080]
[27]
Swallow, A.J. Radiation chemistry; an introduction; Wiley, 1973.
[28]
Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O − in Aqueous Solution. J. Phys. Chem. Ref. Data, 1988, 17, 513-886.
[http://dx.doi.org/10.1063/1.555805]
[29]
Kroh, J.; Polevoi, P. Formation of electron-cation pairs in the radiolysis of alkaline ice. Radiat. Phys. Chem. (1977), 1978, 11. , 111-115.
[http://dx.doi.org/10.1016/0146-5724(78)90005-5]
[30]
Lide, D.R., Ed.; CRC Handbook of Chemistry and Physics, Internet Version; CRC Press LLC: Boca Raton, FL, 2005.
[http://dx.doi.org/www.hbcpnetbase.com]
[31]
Neta, P.; Steenken, S. Radiation chemistry of phenols.Chem. Phenols; John Wiley & Sons, Ltd: Chichester, UK, 2003, pp. 1097-1104.
[http://dx.doi.org/10.1002/0470857277.ch15]
[32]
European Union Risk Assessment Report6’-tetrabromo-4,4’- isopropylidenediphenol (tetrabromobisphenol-A or TBBP-A) Part II-human health 4 th Priority List, 2006.https://echa.europa.eu/documents/10162/32b000fe-b4fe-4828-b3d3-93c24c1cdd51[February 11, 2019];.
[33]
Zeng, G.; Zhang, C.; Huang, G.; Yu, J.; Wang, Q.; Li, J.; Xi, B.; Liu, H. Adsorption behavior of bisphenol A on sediments in Xiangjiang River, Central-south China. Chemosphere, 2006, 65(9), 1490-1499.
[http://dx.doi.org/10.1016/j.chemosphere.2006.04.013] [PMID: 16737729]
[34]
Wardman, P. Reduction potentials of one‐electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data, 1989, 18, 1637-1755.
[http://dx.doi.org/10.1063/1.555843]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 1
ISSUE: 1
Year: 2020
Published on: 07 June, 2020
Page: [61 - 66]
Pages: 6
DOI: 10.2174/2665976X01999200607181110

Article Metrics

PDF: 16
HTML: 1
EPUB: 1