Aging Liver: Can Exercise be a Better Way to Delay the Process than Nutritional and Pharmacological Intervention? Focus on Lipid Metabolism

Author(s): Hao Su*, Dongsen Liu, Jia Shao, Yinuo Li, Xiaoxia Wang*, Qi Gao*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 39 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background & Aims: Nowadays, the world is facing a common problem that the population aging process is accelerating. How to delay metabolic disorders in middle-aged and elderly people, has become a hot scientific and social issue worthy of attention. The liver plays an important role in lipid metabolism, and abnormal lipid metabolism may lead to liver diseases. Exercise is an easily controlled and implemented intervention, which has attracted extensive attention in improving the health of liver lipid metabolism in the elderly. This article reviewed the body aging process, changes of lipid metabolism in the aging liver, and the mechanism and effects of different interventions on lipid metabolism in the aging liver, especially focusing on exercise intervention.

Methods: A literature search was performed using PubMed-NCBI, EBSCO Host and Web of Science, and also a report from WHO. In total, 143 studies were included from 1986 to 15 February 2020.

Conclusion: Nutritional and pharmacological interventions can improve liver disorders, and nutritional interventions are less risky relatively. Exercise intervention can prevent and improve age-related liver disease, especially the best high-intensity interval training intensity and duration is expected to be one of the research directions in the future.

Keywords: Liver, aging, lipid metabolism, aerobic exercise, resistance exercise, high-intensity interval training.

[1]
John B, Alana O, Andrew C, Eds. World report on ageing and health monograph on the internet. Geneva: World Health Organization 2015.https://www.who.int/ageing/events/world-report-2015-launch/
[2]
Inglis JE, Reilly W, Kelly OJ, Ilich JZ. Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake. J Endocrinol 2017; 234(1): R37-51. 10.1530/JOE-16-0603 28442508
[3]
Ilich JZ, Kelly OJ, Kim Y, Spicer MT. Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis. Arh Hig Rada Toksikol 2014; 65(2): 139-48. 10.2478/10004-1254-65-2014-2541 24945416
[4]
Ilich JZ, Kelly OJ, Inglis JE. Osteosarcopenic Obesity Syndrome: What Is It and How Can It Be Identified and Diagnosed? Curr Gerontol Geriatr Res 2016; •••20167325973 10.1155/2016/7325973 27667996
[5]
Jeon EY, Choi YH. J Korean Acad Nurs 2010; 40(3): 400-10. [Factors affecting the health-related quality of life according to age in vulnerable aged men 10.4040/jkan.2010.40.3.400 20634631
[6]
Collaborators GRF. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1659-724. 10.1016/S0140-6736(16)31679-8 27733284
[7]
Inglis JE, Kelly OJ, Ilich JZ. Osteosarcopenic obesity in women: impact, prevalence, and management challenges. Int J Womens Health 2017; 9: 33-42. 10.2147/IJWH.S106107 28144165
[8]
Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol 2014; 2(10): 819-29. 10.1016/S2213-8587(14)70034-8 24731660
[9]
Riggs BL, Melton LJ III, O’Fallon WM. Drug therapy for vertebral fractures in osteoporosis: evidence that decreases in bone turnover and increases in bone mass both determine antifracture efficacy. Bone 1996; 18(3)(Suppl.): 197S-201S. 10.1016/8756-3282(95)00502-1 8777088
[10]
Hunter GR, Gower BA, Kane BL. Age Related Shift in Visceral Fat. Int J Body Compos Res 2010; 8(3): 103-8.
[11]
Schmucker DL. Age-related changes in liver structure and function: Implications for disease? Exp Gerontol 2005; 40(8-9): 650-9. 10.1016/j.exger.2005.06.009 16102930
[12]
Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology 1989; 9(2): 297-301. 10.1002/hep.1840090222 2643548
[13]
Tajiri K, Shimizu Y. Liver physiology and liver diseases in the elderly. World J Gastroenterol 2013; 19(46): 8459-67. 10.3748/wjg.v19.i46.8459 24379563
[14]
Honma T, Yanaka M, Tsuduki T, Ikeda I. Increased lipid accumulation in liver and white adipose tissue in aging in the SAMP10 mouse. J Nutr Sci Vitaminol (Tokyo) 2011; 57(2): 123-9. 10.3177/jnsv.57.123 21697630
[15]
Bertolotti M, Lonardo A, Mussi C, et al. Nonalcoholic fatty liver disease and aging: epidemiology to management. World J Gastroenterol 2014; 20(39): 14185-204. 10.3748/wjg.v20.i39.14185 25339806
[16]
Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148(3): 547-55. 10.1053/j.gastro.2014.11.039 25461851
[17]
Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia 2009; 13(1): 9-19.
[18]
Chen SH, Van Tuinen P, Ledbetter DH, Smith LC, Chan L. Human liver fatty acid binding protein gene is located on chromosome 2. Somat Cell Mol Genet 1986; 12(3): 303-6. 10.1007/BF01570790 3012800
[19]
Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 2002; 23(1): 23-6. 10.1016/S0197-4580(01)00266-4 11755014
[20]
Kaplan DT, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, Goldberger AL. Aging and the complexity of cardiovascular dynamics. Biophys J 1991; 59(4): 945-9. 10.1016/S0006-3495(91)82309-8 2065195
[21]
Terrier P, Dériaz O. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. J Neuroeng Rehabil 2011; 8: 12. 10.1186/1743-0003-8-12 21345241
[22]
Schumann AY, Bartsch RP, Penzel T, Ivanov PCh, Kantelhardt JW. Aging effects on cardiac and respiratory dynamics in healthy subjects across sleep stages. Sleep 2010; 33(7): 943-55. 10.1093/sleep/33.7.943 20614854
[23]
Azemin MZ, Kumar DK, Wong TY, et al. Age-related rarefaction in the fractal dimension of retinal vessel. Neurobiol Aging 2012; 33(1): 194.e1-4. 10.1016/j.neurobiolaging.2010.04.010 20472327
[24]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217. 10.1016/j.cell.2013.05.039 23746838
[25]
Goldsmith TC. On the programmed/non-programmed aging controversy. Biochemistry (Mosc) 2012; 77(7): 729-32. 10.1134/S000629791207005X 22817536
[26]
Harman D. The aging process. Proc Natl Acad Sci USA 1981; 78(11): 7124-8. 10.1073/pnas.78.11.7124 6947277
[27]
De Loof A, De Haes W, Boerjan B, Schoofs L. The Fading Electricity Theory of Ageing: the missing biophysical principle? Ageing Res Rev 2013; 12(1): 58-66. 10.1016/j.arr.2012.08.001 22940501
[28]
Yin D, Chen K. The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions. Exp Gerontol 2005; 40(6): 455-65. 10.1016/j.exger.2005.03.012 15935593
[29]
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29: 90-112. [https://dx.doi.org/10.1016/j.arr.2016.06.005 PMID: 27353257
[30]
Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 2017; 16(4): 624-33. [https://dx.doi.org/10.1111/acel.12601 PMID: 28544158
[31]
Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 1993; 88(4 Pt 1): 1456-62. [https://dx.doi.org/10.1161/01.CIR.88.4.1456 PMID: 8403292
[32]
Davies CH, Ferrara N, Harding SE. Beta-adrenoceptor function changes with age of subject in myocytes from non-failing human ventricle. Cardiovasc Res 1996; 31(1): 152-6.
[33]
Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 2012; 111(2): 245-59. [https://dx.doi.org/10.1161/CIRCRESAHA.111.261388 PMID: 22773427
[34]
Fleg JL, Morrell CH, Bos AG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 2005; 112(5): 674-82. [https://dx.doi.org/10.1161/CIRCULATIONAHA.105.545459 PMID: 16043637
[35]
Gillooly M, Lamb D. Airspace size in lungs of lifelong non-smokers: effect of age and sex. Thorax 1993; 48(1): 39-43. [https://dx.doi.org/10.1136/thx.48.1.39 PMID: 8434351
[36]
Xu X, Laird N, Dockery DW, Schouten JP, Rijcken B, Weiss ST. Age, period, and cohort effects on pulmonary function in a 24-year longitudinal study. Am J Epidemiol 1995; 141(6): 554-66. [https://dx.doi.org/10.1093/oxfordjournals.aje.a117471 PMID: 7900723
[37]
Enright PL, Kronmal RA, Manolio TA, Schenker MB, Hyatt RE. Respiratory muscle strength in the elderly. Correlates and reference values. Am J Respir Crit Care Med 1994; 149(2 Pt 1): 430-8. [https://dx.doi.org/10.1164/ajrccm.149.2.8306041 PMID: 8306041
[38]
Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 1992; 232(2): 194-201. [https://dx.doi.org/10.1002/ar.1092320205 PMID: 1546799
[39]
Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int 2009; 22(11): 1041-50. [https://dx.doi.org/10.1111/j.1432-2277.2009.00927.x PMID: 19624493
[40]
Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371(26): 2488-98. [https://dx.doi.org/10.1056/NEJMoa1408617 PMID: 25426837
[41]
Loerch PM, Lu T, Dakin KA, et al. Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 2008; 3(10)e3329 [https://dx.doi.org/10.1371/journal.pone.0003329 PMID: 18830410
[42]
Delbono O. Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle. Curr Aging Sci 2011; 4(3): 248-59. [https://dx.doi.org/10.2174/1874609811104030248 PMID: 21529320
[43]
Elewa RM, Abdallah MA, Zouboulis CC. Age-associated skin changes in innate immunity markers reflect a complex interaction between aging mechanisms in the sebaceous gland. J Dermatol 2015; 42(5): 467-76. [https://dx.doi.org/10.1111/1346-8138.12793 PMID: 25818897
[44]
Salvi SM, Akhtar S, Currie Z. Ageing changes in the eye. Postgrad Med J 2006; 82(971): 581-7. [https://dx.doi.org/10.1136/pgmj.2005.040857 PMID: 16954455
[45]
Gates GA, Mills JH. Presbycusis. Lancet 2005; 366(9491): 1111-20. [https://dx.doi.org/10.1016/S0140-6736(05)67423-5 PMID: 16182900
[46]
Zoli M, Iervese T, Abbati S, Bianchi GP, Marchesini G, Pisi E. Portal blood velocity and flow in aging man. Gerontology 1989; 35(2-3): 61-5. [https://dx.doi.org/10.1159/000213000 PMID: 2792785
[47]
Sotaniemi EA, Arranto AJ, Pelkonen O, Pasanen M. Age and cytochrome P450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions. Clin Pharmacol Ther 1997; 61(3): 331-9. [https://dx.doi.org/10.1016/S0009-9236(97)90166-1 PMID: 9091249
[48]
Schmucker DL, Sachs H. Quantifying dense bodies and lipofuscin during aging: a morphologist’s perspective. Arch Gerontol Geriatr 2002; 34(3): 249-61. [https://dx.doi.org/10.1016/S0167-4943(01)00218-7 PMID: 14764327
[49]
Schmucker DL, Sanchez H. Liver regeneration and aging: a current perspective. Curr Gerontol Geriatr Res 2011; •••2011526379 [https://dx.doi.org/10.1155/2011/526379 PMID: 21912543
[50]
Ono Y, Kawachi S, Hayashida T, et al. The influence of donor age on liver regeneration and hepatic progenitor cell populations. Surgery 2011; 150(2): 154-61. [https://dx.doi.org/10.1016/j.surg.2011.05.004 PMID: 21719061
[51]
Iakova P, Awad SS, Timchenko NA. Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. Cell 2003; 113(4): 495-506. [https://dx.doi.org/10.1016/S0092-8674(03)00318-0 PMID: 12757710
[52]
Aravinthan A, Verma S, Coleman N, Davies S, Allison M, Alexander G. Vacuolation in hepatocyte nuclei is a marker of senescence. J Clin Pathol 2012; 65(6): 557-60. [https://dx.doi.org/10.1136/jclinpath-2011-200641 PMID: 22447919
[53]
Nakajima T, Nakashima T, Okada Y, et al. Nuclear size measurement is a simple method for the assessment of hepatocellular aging in non-alcoholic fatty liver disease: Comparison with telomere-specific quantitative FISH and p21 immunohistochemistry. Pathol Int 2010; 60(3): 175-83. [https://dx.doi.org/10.1111/j.1440-1827.2009.02504.x PMID: 20403043
[54]
Abenavoli L, Peta V. Role of adipokines and cytokines in non-alcoholic fatty liver disease. Rev Recent Clin Trials 2014; 9(3): 134-40. [https://dx.doi.org/10.2174/1574887109666141216102458 PMID: 25514909
[55]
Koehler EM, Schouten JN, Hansen BE, et al. Prevalence and risk factors of non-alcoholic fatty liver disease in the elderly: results from the Rotterdam study. J Hepatol 2012; 57(6): 1305-11. [https://dx.doi.org/10.1016/j.jhep.2012.07.028 PMID: 22871499
[56]
Alkhouri N, Tamimi TA, Yerian L, Lopez R, Zein NN, Feldstein AE. The inflamed liver and atherosclerosis: a link between histologic severity of nonalcoholic fatty liver disease and increased cardiovascular risk. Dig Dis Sci 2010; 55(9): 2644-50. [https://dx.doi.org/10.1007/s10620-009-1075-y PMID: 19960252
[57]
Gong Z, Tas E, Yakar S, Muzumdar R. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Mol Cell Endocrinol 2017; 455: 115-30. [https://dx.doi.org/10.1016/j.mce.2016.12.022 PMID: 28017785
[58]
Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15(12): 771-85. [https://dx.doi.org/10.1038/nrn3820 PMID: 25387473
[59]
Glatz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 2010; 90(1): 367-417. [https://dx.doi.org/10.1152/physrev.00003.2009 PMID: 20086080
[60]
Green CJ, Hodson L. The influence of dietary fat on liver fat accumulation. Nutrients 2014; 6(11): 5018-33. [https://dx.doi.org/10.3390/nu6115018 PMID: 25389901
[61]
Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115(5): 1343-51. [https://dx.doi.org/10.1172/JCI23621 PMID: 15864352
[62]
Vatner DF, Majumdar SK, Kumashiro N, et al. Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci USA 2015; 112(4): 1143-8. [https://dx.doi.org/10.1073/pnas.1423952112 PMID: 25564660
[63]
Woudstra TD, Drozdowski LA, Wild GE, Clandinin MT, Agellon LB, Thomson AB. An isocaloric PUFA diet enhances lipid uptake and weight gain in aging rats. Lipids 2004; 39(4): 343-54. [https://dx.doi.org/10.1007/s11745-004-1238-y PMID: 15357022
[64]
Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol 2014; 20(7): 1746-55. [https://dx.doi.org/10.3748/wjg.v20.i7.1746 PMID: 24587652
[65]
Woudstra TD, Drozdowski LA, Wild GE, Clandinin MT, Agellon LB, Thomson AB. The age-related decline in intestinal lipid uptake is associated with a reduced abundance of fatty acid-binding protein. Lipids 2004; 39(7): 603-10. [https://dx.doi.org/10.1007/s11745-004-1272-9 PMID: 15588016
[66]
Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther 2004; 310(1): 417-24. [https://dx.doi.org/10.1124/jpet.103.064717 PMID: 15016835
[67]
Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014; 146(3): 726-35. [https://dx.doi.org/10.1053/j.gastro.2013.11.049 PMID: 24316260
[68]
Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 2013; 48(4): 434-41. [https://dx.doi.org/10.1007/s00535-013-0758-5 PMID: 23397118
[69]
Oosterveer MH, Schoonjans K. Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 2014; 71(8): 1453-67. [https://dx.doi.org/10.1007/s00018-013-1505-z PMID: 24196749
[70]
Chakravarthy MV, Pan Z, Zhu Y, et al. “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 2005; 1(5): 309-22. [https://dx.doi.org/10.1016/j.cmet.2005.04.002 PMID: 16054078
[71]
Mashek DG. Hepatic fatty acid trafficking: multiple forks in the road. Adv Nutr 2013; 4(6): 697-710. [https://dx.doi.org/10.3945/an.113.004648 PMID: 24228201
[72]
Jogl G, Tong L. Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell 2003; 112(1): 113-22. [https://dx.doi.org/10.1016/S0092-8674(02)01228-X PMID: 12526798
[73]
Jogl G, Hsiao YS, Tong L. Structure and function of carnitine acyltransferases. Ann N Y Acad Sci 2004; 1033: 17-29. [https://dx.doi.org/10.1196/annals.1320.002 PMID: 15591000
[74]
Houtkooper RH, Argmann C, Houten SM, et al. The metabolic footprint of aging in mice. Sci Rep 2011; 1: 134. [https://dx.doi.org/10.1038/srep00134 PMID: 22355651
[75]
Kim JY, Kim DH, Choi J, et al. Changes in lipid distribution during aging and its modulation by calorie restriction. Age (Dordr) 2009; 31(2): 127-42. [https://dx.doi.org/10.1007/s11357-009-9089-0 PMID: 19277901
[76]
Kamagate A, Qu S, Perdomo G, et al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest 2008; 118(6): 2347-64. [https://dx.doi.org/10.1172/JCI32914 PMID: 18497885
[77]
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2012; 32(9): 2104-12. [https://dx.doi.org/10.1161/ATVBAHA.111.241463 PMID: 22796579
[78]
Schaefer EJ, Lamon-Fava S, Cohn SD, et al. Effects of age, gender, and menopausal status on plasma low density lipoprotein cholesterol and apolipoprotein B levels in the Framingham Offspring Study. J Lipid Res 1994; 35(5): 779-92.
[79]
Flannery C, Dufour S, Rabøl R, Shulman GI, Petersen KF. Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes 2012; 61(11): 2711-7. [https://dx.doi.org/10.2337/db12-0206 PMID: 22829450
[80]
Wu B, Xiao X, Li S, Zuo G. Transcriptomics and metabonomics of the anti-aging properties of total flavones of Epimedium in relation to lipid metabolism. J Ethnopharmacol 2019; 229: 73-80. [https://dx.doi.org/10.1016/j.jep.2018.09.039 PMID: 30278205
[81]
Zhou Y, Xu Q, Dong Y, Zhu S, Song S, Sun S. Supplementation of Mussel Peptides Reduces aging Phenotype, Lipid Deposition and Oxidative Stress in D-Galactose-Induce Aging Mice. J Nutr Health Aging 2017; 21(10): 1314-20. [https://dx.doi.org/10.1007/s12603-016-0862-3 PMID: 29188895
[82]
Shin SS, Yoon M. Korean red ginseng (Panax ginseng) inhibits obesity and improves lipid metabolism in high fat diet-fed castrated mice. J Ethnopharmacol 2018; 210: 80-7. [https://dx.doi.org/10.1016/j.jep.2017.08.032 PMID: 28844680
[83]
Xu Z, Huo J, Ding X, et al. Coenzyme Q10 Improves Lipid Metabolism and Ameliorates Obesity by Regulating CaMKII-Mediated PDE4 Inhibition. Sci Rep 2017; 7(1): 8253. [https://dx.doi.org/10.1038/s41598-017-08899-7 PMID: 28811612
[84]
Gimeno-Mallench L, Mas-Bargues C, Inglés M, et al. Resveratrol shifts energy metabolism to increase lipid oxidation in healthy old mice. Biomed Pharmacother 2019; •••118109130 [https://dx.doi.org/10.1016/j.biopha.2019.109130 PMID: 31306969
[85]
Aumailley L, Roux-Dalvai F, Kelly I, Droit A, Lebel M. Vitamin C alters the amount of specific endoplasmic reticulum associated proteins involved in lipid metabolism in the liver of mice synthesizing a nonfunctional Werner syndrome (Wrn) mutant protein. PLoS One 2018; 13(3)e0193170 [https://dx.doi.org/10.1371/journal.pone.0193170 PMID: 29494634
[86]
Gharibi S, Bakhtiari N. Elham-Moslemee-Jalalvand, Bakhtiari F. Ursolic Acid Mediates Hepatic Protection through Enhancing of anti-aging Biomarkers. Curr Aging Sci 2018; 11(1): 16-23. [https://dx.doi.org/10.2174/1874609810666170531103140 PMID: 28558631
[87]
Sahin K, Orhan C, Tuzcu M, et al. Tomato Powder Modulates NF-κB, mTOR, and Nrf2 Pathways during Aging in Healthy Rats. J Aging Res 2019; •••20191643243 [https://dx.doi.org/10.1155/2019/1643243 PMID: 30719353
[88]
Corbi G, Conti V, Komici K, et al. Phenolic Plant Extracts Induce Sirt1 Activity and Increase Antioxidant Levels in the Rabbit’s Heart and Liver. Oxid Med Cell Longev 2018; •••20182731289 [https://dx.doi.org/10.1155/2018/2731289 PMID: 30116475
[89]
Li T, Chen S, Feng T, Dong J, Li Y, Li H. Rutin protects against aging-related metabolic dysfunction. Food Funct 2016; 7(2): 1147-54. [https://dx.doi.org/10.1039/C5FO01036E PMID: 26804783
[90]
Arbo BD, Niches G, Zanini P, et al. Aging affects the response of female rats to a hypercaloric diet. Exp Gerontol 2018; 101: 7-12. [https://dx.doi.org/10.1016/j.exger.2017.11.008 PMID: 29133011
[91]
Gatineau E, Capel F, Dardevet D, et al. Effect of high chronic intake of sucrose on liver metabolism in aging rats. Modulation by rutin and micronutrients. J Physiol Biochem 2018; 74(4): 569-77. [https://dx.doi.org/10.1007/s13105-018-0628-y PMID: 29637446
[92]
Chun S, Bamba T, Suyama T, et al. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis. PLoS One 2016; 11(5)e0155386 [https://dx.doi.org/10.1371/journal.pone.0155386 PMID: 27187182
[93]
Zhou D, Hlady RA, Schafer MJ, et al. High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver. Epigenetics 2017; 12(1): 55-69. [https://dx.doi.org/10.1080/15592294.2016.1261239 PMID: 27858497
[94]
Zhou J, Massey S, Story D, Li L. Metformin: An Old Drug with New Applications. Int J Mol Sci 2018; 19(10): 2863-77. [https://dx.doi.org/10.3390/ijms19102863 PMID: 30241400
[95]
Guo J, Zhou Y, Cheng Y, et al. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice. Cell Physiol Biochem 2018; 45(4): 1487-505. [https://dx.doi.org/10.1159/000487575 PMID: 29466788
[96]
Zhu X, Bian H, Gao X. The Potential Mechanisms of Berberine in the Treatment of Nonalcoholic Fatty Liver Disease. Molecules 2016; 21(10)E1336 [https://dx.doi.org/10.3390/molecules21101336 PMID: 27754444
[97]
Zhou D, Chen YW, Zhao ZH, et al. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression. Exp Mol Med 2018; 50(12): 1-12. [https://dx.doi.org/10.1038/s12276-018-0183-1 PMID: 30510243
[98]
Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep 2017; 7(1): 1529. [https://dx.doi.org/10.1038/s41598-017-01751-y PMID: 28484247
[99]
Liou CJ, Wei CH, Chen YL, Cheng CY, Wang CL, Huang WC. Fisetin Protects Against Hepatic Steatosis Through Regulation of the Sirt1/AMPK and Fatty Acid β-Oxidation Signaling Pathway in High-Fat Diet-Induced Obese Mice. Cell Physiol Biochem 2018; 49(5): 1870-84. [https://dx.doi.org/10.1159/000493650 PMID: 30235452
[100]
Nagappan A, Jung DY, Kim JH, et al. Alleviates Ethanol-Induced Liver Injury through Ameliorating Lipid Metabolism and Oxidative Stress. Int J Mol Sci 2018; 19(9)E2601 [https://dx.doi.org/10.3390/ijms19092601 PMID: 30200508
[101]
Armstrong MJ, Houlihan DD, Bentham L, et al. Presence and severity of non-alcoholic fatty liver disease in a large prospective primary care cohort. J Hepatol 2012; 56(1): 234-40. [https://dx.doi.org/10.1016/j.jhep.2011.03.020 PMID: 21703178
[102]
Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011; 140(1): 124-31. [https://dx.doi.org/10.1053/j.gastro.2010.09.038 PMID: 20858492
[103]
Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, et al. American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc 2009; 41(7): 1510-30. [https://dx.doi.org/10.1249/MSS.0b013e3181a0c95c PMID: 19516148
[104]
Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 2006; 16(Suppl. 1): 3-63. [https://dx.doi.org/10.1111/j.1600-0838.2006.00520.x PMID: 16451303
[105]
van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H. The Effects of Physical Exercise on Fatty Liver Disease. Gene Expr 2018; 18(2): 89-101. [https://dx.doi.org/10.3727/105221617X15124844266408 PMID: 29212576
[106]
Forbes SC, Little JP, Candow DG. Exercise and nutritional interventions for improving aging muscle health. Endocrine 2012; 42(1): 29-38. [https://dx.doi.org/10.1007/s12020-012-9676-1 PMID: 22527891
[107]
Ekelund U, Steene-Johannessen J, Brown WJ, et al. Lancet Physical Activity Series 2 Executive Committe; Lancet Sedentary Behaviour Working Group. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016; 388(10051): 1302-10. [https://dx.doi.org/10.1016/S0140-6736(16)30370-1 PMID: 27475271
[108]
Bowden Davies KA, Sprung VS, Norman JA, et al. Physical Activity and Sedentary Time: Association with Metabolic Health and Liver Fat. Med Sci Sports Exerc 2019; 51(6): 1169-77. [https://dx.doi.org/10.1249/MSS.0000000000001901 PMID: 30694971
[109]
Taniguchi H, Tanisawa K, Sun X, Kubo T, Higuchi M. Endurance Exercise Reduces Hepatic Fat Content and Serum Fibroblast Growth Factor 21 Levels in Elderly Men. J Clin Endocrinol Metab 2016; 101(1): 191-8. [https://dx.doi.org/10.1210/jc.2015-3308 PMID: 26562755
[110]
Fealy C E, Haus J M, Solomon T P, et al. 2012.
[111]
Kuhla A, Blei T, Jaster R, Vollmar B. Aging is associated with a shift of fatty metabolism toward lipogenesis. J Gerontol A Biol Sci Med Sci 2011; 66(11): 1192-200. [https://dx.doi.org/10.1093/gerona/glr124 PMID: 21835806
[112]
Finlay LA, Michels AJ, Butler JA, et al. R-α-lipoic acid does not reverse hepatic inflammation of aging, but lowers lipid anabolism, while accentuating circadian rhythm transcript profiles. Am J Physiol Regul Integr Comp Physiol 2012; 302(5): R587-97. [https://dx.doi.org/10.1152/ajpregu.00393.2011 PMID: 22049228
[113]
Garee JP, Oesterreich S. SAFB1's multiple functions in biological control-lots still to be done! J Cell Biochem 2010; 109(2): 312-9. [https://dx.doi.org/10.1002/jcb.22420 PMID: 20014070
[114]
Li F, Li T, Liu Y. Proteomics-Based Identification of the Molecular Signatures of Liver Tissues from Aged Rats following Eight Weeks of Medium-Intensity Exercise. Oxid Med Cell Longev 2016; •••20163269405 [https://dx.doi.org/10.1155/2016/3269405 PMID: 28116034
[115]
da Luz G, Frederico MJ, da Silva S, et al. Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats. Eur J Appl Physiol 2011; 111(9): 2015-23. [https://dx.doi.org/10.1007/s00421-010-1802-2 PMID: 21249392
[116]
Alex S, Boss A, Heerschap A, Kersten S. Exercise training improves liver steatosis in mice. Nutr Metab (Lond) 2015; 12: 29. [https://dx.doi.org/10.1186/s12986-015-0026-1 PMID: 26251667
[117]
Lee S, Deldin AR, White D, et al. Aerobic exercise but not resistance exercise reduces intrahepatic lipid content and visceral fat and improves insulin sensitivity in obese adolescent girls: a randomized controlled trial. Am J Physiol Endocrinol Metab 2013; 305(10): E1222-9. [https://dx.doi.org/10.1152/ajpendo.00285.2013 PMID: 24045865
[118]
Shojaee-Moradie F, Cuthbertson DJ, Barrett M, et al. Exercise Training Reduces Liver Fat and Increases Rates of VLDL Clearance But Not VLDL Production in NAFLD. J Clin Endocrinol Metab 2016; 101(11): 4219-28. [https://dx.doi.org/10.1210/jc.2016-2353 PMID: 27583475
[119]
Pugh CJ, Sprung VS, Jones H, et al. Exercise-induced improvements in liver fat and endothelial function are not sustained 12 months following cessation of exercise supervision in nonalcoholic fatty liver disease. Int J Obes 2016; 40(12): 1927-30. [https://dx.doi.org/10.1038/ijo.2016.123 PMID: 27439593
[120]
Hallsworth K, Fattakhova G, Hollingsworth KG, et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut 2011; 60(9): 1278-83. [https://dx.doi.org/10.1136/gut.2011.242073 PMID: 21708823
[121]
Lemes IR, Ferreira PH, Linares SN, Machado AF, Pastre CM, Netto J. Resistance training reduces systolic blood pressure in metabolic syndrome: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med 2016; 50(23): 1438-42. [https://dx.doi.org/10.1136/bjsports-2015-094715 PMID: 26964146
[122]
Castaneda C, Layne JE, Munoz-Orians L, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care 2002; 25(12): 2335-41. [https://dx.doi.org/10.2337/diacare.25.12.2335 PMID: 12453982
[123]
2018.
[124]
Ghamarchehreh ME, Shamsoddini A, Alavian SM. Investigating the impact of eight weeks of aerobic and resistance training on blood lipid profile in elderly with non-alcoholic fatty liver disease: a randomized clinical trial. Gastroenterol Hepatol Bed Bench 2019; 12(3): 190-6.
[125]
Zelber-Sagi S, Buch A, Yeshua H, et al. Effect of resistance training on non-alcoholic fatty-liver disease a randomized-clinical trial. World J Gastroenterol 2014; 20(15): 4382-92. [https://dx.doi.org/10.3748/wjg.v20.i15.4382 PMID: 24764677
[126]
Hashida R, Kawaguchi T, Bekki M, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J Hepatol 2017; 66(1): 142-52. [https://dx.doi.org/10.1016/j.jhep.2016.08.023 PMID: 27639843
[127]
Bowden Davies KA, Pickles S, Sprung VS, et al. Reduced physical activity in young and older adults: metabolic and musculoskeletal implications. Ther Adv Endocrinol Metab 2019; •••102042018819888824 [https://dx.doi.org/10.1177/2042018819888824 PMID: 31803464
[128]
Moore DR, Kelly RP, Devries MC, et al. Low-load resistance exercise during inactivity is associated with greater fibre area and satellite cell expression in older skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9(4): 747-54. [https://dx.doi.org/10.1002/jcsm.12306 PMID: 29761654
[129]
Tarnopolsky M, Zimmer A, Paikin J, et al. Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One 2007; 2(10)e991 [https://dx.doi.org/10.1371/journal.pone.0000991 PMID: 17912368
[130]
Risérus U, Vessby B, Arnlöv J, Basu S. Effects of cis-9,trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr 2004; 80(2): 279-83. [https://dx.doi.org/10.1093/ajcn/80.2.279 PMID: 15277146
[131]
Risérus U, Basu S, Jovinge S, Fredrikson GN, Arnlöv J, Vessby B. Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation 2002; 106(15): 1925-9. [https://dx.doi.org/10.1161/01.CIR.0000033589.15413.48 PMID: 12370214
[132]
Parise G, Brose AN, Tarnopolsky MA. Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Exp Gerontol 2005; 40(3): 173-80. [https://dx.doi.org/10.1016/j.exger.2004.09.002 PMID: 15763394
[133]
Francois ME, Little JP. Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Diabetes Spectr 2015; 28(1): 39-44. [https://dx.doi.org/10.2337/diaspect.28.1.39 PMID: 25717277
[134]
Cho J, Kim S, Lee S, Kang H. Effect of Training Intensity on Nonalcoholic Fatty Liver Disease. Med Sci Sports Exerc 2015; 47(8): 1624-34. [https://dx.doi.org/10.1249/MSS.0000000000000595 PMID: 25539480
[135]
Hallsworth K, Thoma C, Hollingsworth KG, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci (Lond) 2015; 129(12): 1097-105. [https://dx.doi.org/10.1042/CS20150308 PMID: 26265792
[136]
Cassidy S, Thoma C, Hallsworth K, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia 2016; 59(1): 56-66. [https://dx.doi.org/10.1007/s00125-015-3741-2 PMID: 26350611
[137]
Kalaki-Jouybari F, Shanaki M, Delfan M, Gorgani-Firouzjae S, Khakdan S. High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. Arch Physiol Biochem 2018; •••: 1-8. [https://dx.doi.org/10.1080/13813455.2018.1510968 PMID: 30318957
[138]
Ceccarelli S, Panera N, Gnani D, Nobili V. Dual role of microRNAs in NAFLD. Int J Mol Sci 2013; 14(4): 8437-55. [https://dx.doi.org/10.3390/ijms14048437 PMID: 23594995
[139]
Zhang Y, Cheng X, Lu Z, et al. Upregulation of miR-15b in NAFLD models and in the serum of patients with fatty liver disease. Diabetes Res Clin Pract 2013; 99(3): 327-34. [https://dx.doi.org/10.1016/j.diabres.2012.11.025 PMID: 23287814
[140]
Aragno M, Tomasinelli CE, Vercellinatto I, et al. SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radic Biol Med 2009; 47(7): 1067-74. [https://dx.doi.org/10.1016/j.freeradbiomed.2009.07.016 PMID: 19616615
[141]
Winn NC, Liu Y, Rector RS, Parks EJ, Ibdah JA, Kanaley JA. Energy-matched moderate and high intensity exercise training improves nonalcoholic fatty liver disease risk independent of changes in body mass or abdominal adiposity - A randomized trial. Metabolism 2018; 78: 128-40. [https://dx.doi.org/10.1016/j.metabol.2017.08.012 PMID: 28941598
[142]
Wang N, Liu Y, Ma Y, Wen D. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice. Life Sci 2017; 191: 122-31. [https://doi.org/10.1152/japplphysiol.00154.2017 PMID: 28495843
[143]
Motta VF, Bargut TL, Aguila MB, Mandarim-de-Lacerda CA. Treating fructose-induced metabolic changes in mice with high-intensity interval training: insights in the liver, white adipose tissue, and skeletal muscle. J Appl Physiol 2017; 123(4): 699-709.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 39
Year: 2020
Published on: 10 November, 2020
Page: [4982 - 4991]
Pages: 10
DOI: 10.2174/1381612826666200605111232
Price: $65

Article Metrics

PDF: 23
HTML: 11
EPUB: 2
PRC: 2