Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Yishen Huazhuo Decoction Induces Autophagy to Promote the Clearance of Aβ1-42 in SAMP8 Mice: Mechanism Research of a Traditional Chinese Formula Against Alzheimer’s Disease

Author(s): Kai Wang, Weiming Sun, Jiachun Xu, Qijing Qin, Zhen Yu, Ruzhen Cheng, Linlin Zhang, Shuang Liu, Zhen Zhou, Yulian Zhang* and Yuanwu Cui*

Volume 19, Issue 4, 2020

Page: [276 - 289] Pages: 14

DOI: 10.2174/1871527319666200604174223

Price: $65

Abstract

Background: Studies have found that autophagy could promote the clearance of Aβ. To promote and maintain the occurrence of autophagy in Alzheimer's Disease (AD) might be a potential way to reduce neuronal loss and improve the learning and memory of AD.

Objective: To investigate the possible mechanisms of Yishen Huazhuo Decoction (YHD) against AD model.

Methods: Forty 7-month-old male SAMP8 mice were randomly divided into model (P8) group and YHD group, 20 in each group, with 20 SAMR1 mice as control (R1) group. All mice were intragastrically administered for 4 weeks, YHD at the dosage of 6.24g/kg for YHD group, and distilled water for P8 group and R1 group. Morris Water Maze (MWM) test, Nissl’s staining, TEM, TUNEL staining, immunofluorescence double staining, and western blot analysis were applied to learning and memory, structure and ultrastructure of neurons, autophagosome, apoptosis index, Aβ, LAMP1, and autophagy related proteins.

Results: The escape latency time of YHD group was significantly shorter on the 4th and 5th day during MWM test than those in P8 group (P=0.011, 0.008<0.05), and the number of crossing platform in YHD group increased significantly (P=0.02<0.05). Nissl’s staining showed that the number of neurons in YHD group increased significantly (P<0.0001). TEM showed in YHD group that the nucleus of neurons was slightly irregular, with slightly reduced organelles, partially fused and blurred cristae and membrane of mitochondria. The apoptosis index of YHD group showed a decreasing trend, without statistically significant difference (P=0.093>0.05), while Caspase3 expression in YHD group was significantly lower (P=0.044<0.05). YHD could promote the clearance of Aβ1-42 protein, improve the expression of Beclin-1 and p-Bcl2 proteins, reduce mTOR and p62 proteins.

Conclusion: YHD could induce autophagy initiation, increase the formation of autophagosomes and autolysosome, promote the degradation of autophagy substrates, thereby regulating autophagy, and promoting the clearance of Aβ1-42 to improve memory impairment in SAMP8 mice.

Keywords: Alzheimer`s disease, autophagy, senescence accelerated mouse prone 8, β-amyloid, Yishen Huazhuo Decoction (YHD), Nissl’s staining.

Graphical Abstract
[1]
Gaugler J, James B, Johnson T, Scholz K, Weuve J. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[2]
Wilson RS, Segawa E, Boyle PA, Anagnos SE, Hizel LP, Bennett DA. The natural history of cognitive decline in Alzheimer’s disease. Psychol Aging 2012; 27(4): 1008-17.
[http://dx.doi.org/10.1037/a0029857] [PMID: 22946521]
[3]
Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol 2018; 14(4): 225-36.
[http://dx.doi.org/10.1038/nrneurol.2018.9] [PMID: 29449700]
[4]
Singh A, Hasan A, Tiwari S, Pandey LM. Therapeutic advancement in Alzheimer disease: new hopes on the horizon? CNS Neurol Disord Drug Targets 2018; 17(8): 571-89.
[http://dx.doi.org/10.2174/1871527317666180627122448] [PMID: 29952273]
[5]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[6]
Masters CL, Selkoe DJ. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2(6): a006262.
[http://dx.doi.org/10.1101/cshperspect.a006262] [PMID: 22675658]
[7]
Wang L, Cao J, Shi Z, et al. Experimental study on the neurotoxic effect of β-amyloid on the cytoskeleton of PC12 cells. Int J Mol Med 2018; 41(5): 2764-70.
[http://dx.doi.org/10.3892/ijmm.2018.3467] [PMID: 29436599]
[8]
Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid betaprotein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996; 2(8): 864-70.
[http://dx.doi.org/10.1038/nm0896-864] [PMID: 8705854]
[9]
Huang M, Jiang X, Liang Y, Liu Q, Chen S, Guo Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Exp Gerontol 2017; 91(91): 25-33.
[http://dx.doi.org/10.1016/j.exger.2017.02.004] [PMID: 28223223]
[10]
Qiuyan W, Chen C, Guoli S. The Role of endolysosomeautophagic system in the pathological process of Alzheimer’s disease. Chinese Journal of Cell Biology 2015; 37(12): 1702-7.
[11]
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885-9.
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[12]
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 2008; 118(6): 2190-9.
[http://dx.doi.org/10.1172/JCI33585] [PMID: 18497889]
[13]
Wang C, Zhang X, Teng Z, Zhang T, Li Y. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol 2014; 740(740): 312-20.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.051] [PMID: 25041840]
[14]
Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 2005; 64(2): 113-22.
[http://dx.doi.org/10.1093/jnen/64.2.113] [PMID: 15751225]
[15]
Yu WH, Cuervo AM, Kumar A, et al. Macroautophagy--a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 2005; 171(1): 87-98.
[http://dx.doi.org/10.1083/jcb.200505082] [PMID: 16203860]
[16]
Tung YT, Wang BJ, Hu MK, et al. Autophagy: a double-edged sword in Alzheimer’s disease. J Biosci 2012; 37(1): 157-65.
[http://dx.doi.org/10.1007/s12038-011-9176-0] [PMID: 22357213]
[17]
Samarghandian S, Farkhondeh T, Samini F. A review on possible therapeutic effect of nigella sativa and thymoquinone in neurodegenerative diseases. CNS Neurol Disord Drug Targets 2018; 17(6): 412-20.
[http://dx.doi.org/10.2174/1871527317666180702101455] [PMID: 29962349]
[18]
Huang Y, Ma S, Wang Y, et al. The role of traditional Chinese herbal medicines and bioactive ingredients on ion channels: a brief review and prospect. CNS Neurol Disord Drug Targets 2019; 18(4): 257-65.
[http://dx.doi.org/10.2174/1871527317666181026165400] [PMID: 30370864]
[19]
Yan R, Chen R, Wang J, et al. Jingshu keli and its components notoginsenoside R1 and ginsenoside Rb1 alleviate the symptoms of cervical myelopathy through Kir3.1 mediated mechanisms. CNS Neurol Disord Drug Targets 2019; 18(8): 631-42.
[http://dx.doi.org/10.2174/0929866526666190911150514] [PMID: 31530268]
[20]
Bais S, Kumari R, Prashar Y. Ameliorative effect of trans-sinapic acid and its protective role in cerebral hypoxia in aluminium chloride induced dementia of Alzheimer’s type. CNS Neurol Disord Drug Targets 2018; 17(2): 144-54.
[http://dx.doi.org/10.2174/1871527317666180309130912] [PMID: 29521253]
[21]
Beg T, Jyoti S, Naz F, et al. Protective effect of kaempferol on the transgenic drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2018; 17(6): 421-9.
[http://dx.doi.org/10.2174/1871527317666180508123050] [PMID: 29745345]
[22]
Wang K, Sun W, Zhang L, et al. Oleanolic acid ameliorates Aβ25-35 injection-induced memory deficit in Alzheimer’s disease model rats by maintaining synaptic plasticity. CNS Neurol Disord Drug Targets 2018; 17(5): 389-99.
[http://dx.doi.org/10.2174/1871527317666180525113109] [PMID: 29793416]
[23]
Ali F, Siddique YH. Bioavailability and pharmaco-therapeutic Potential of luteolin in overcoming Alzheimer’s disease. CNS Neurol Disord Drug Targets 2019; 18(5): 352-65.
[http://dx.doi.org/10.2174/1871527318666190319141835] [PMID: 30892166]
[24]
Furukawa K, Tomita N, Uematsu D, et al. Randomized double-blind placebo-controlled multicenter trial of Yokukansan for neuropsychiatric symptoms in Alzheimer’s disease. Geriatr Gerontol Int 2017; 17(2): 211-8.
[http://dx.doi.org/10.1111/ggi.12696] [PMID: 26711658]
[25]
Kudoh C, Arita R, Honda M, et al. Effect of ninjin'yoeito, a Kampo (traditional Japanese) medicine, on cognitive impairment and depression in patients with Alzheimer's disease: 2 years of observation. Psychogeriatrics: the official journal of the Japanese Psychogeriatric Society 2016; 16(2): 85-92.
[26]
Feng J, Chen C, Hai J, et al. Protective effects of icariin on spatial learning and memory in rats with Aβ25-35 induced Alzheimer’s disease via inhibiting TNF-a, IL-6 and caspase-3 expression. Chinese Journal of New Drugs and Clinical Remedies 2013; 32(10): 833-7.
[27]
Gang Y, Daokai G, Banghui L, Changjiang Y. Effect of cistanche deserticola polysaccharide on learning and memory ability and expression of Bcl-2 and Caspase-3 in hippocampal neurons of Alzheimer’s disease model rats. Lishizhen Medicine and Materia Medica Research 2013; 24(05): 1091-2.
[28]
Zhang Y, Lin C, Zhang L, et al. Cognitive improvement during treatment for mild Alzheimer’s disease with a Chinese herbal formula: a randomized controlled trial. PLoS One 2015; 10(6): e0130353.
[http://dx.doi.org/10.1371/journal.pone.0130353] [PMID: 26076022]
[29]
Weiming S, Yuanwu C, Kai W, Ruzhen C, Yulian Z. Effects of Yishen Huazhuo prescription on β-amyloid protein,phosphorylated tau protein in hippocampus and liver and renal function of SAMP8 mice. Zhongguo Laonianxue Zazhi 2019; 39(04): 882-5.
[30]
Weiming S, Yuanwu C, Kai W, Wei G, Ruzhen C, Yulian Z. Effects of Yishen Huazhuo decoction on learning and memory ability, hippocampal neurons and expressions of inflammatory factors in senescence accelerated mouse prone 8. Zhongguo Zhongyiyao Xinxi Zazhi 2019; 26(07): 60-5.
[31]
Ma Q, Qiang J, Gu P, Wang Y, Geng Y, Wang M. Age-related autophagy alterations in the brain of senescence accelerated mouse prone 8 (SAMP8) mice. Exp Gerontol 2011; 46(7): 533-41.
[http://dx.doi.org/10.1016/j.exger.2011.02.006] [PMID: 21385605]
[32]
Yin J, Sha S, Chen T, et al. Sigma-1 (σ1) receptor deficiency reduces β-amyloid(25-35)-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B. Neuropharmacology 2015; 89: 215-24.
[http://dx.doi.org/10.1016/j.neuropharm.2014.09.027] [PMID: 25286118]
[33]
Yang SH, Lee DK, Shin J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med 2017; 9(1): 61-77.
[http://dx.doi.org/10.15252/emmm.201606566] [PMID: 27861127]
[34]
Wang F, Feng J, Yang Y, et al. The Chinese herbal formula Fuzheng Quxie decoction attenuates cognitive impairment and protects cerebrovascular function in SAMP8 mice. Neuropsychiatr Dis Treat 2018; 14: 3037-51.
[http://dx.doi.org/10.2147/NDT.S175484] [PMID: 30519025]
[35]
Takigawa K, Matsuda R, Uchitomi R, Onishi T, Hatazawa Y, Kamei Y. Effects of long-term physical exercise on skeletal muscles in senescence-accelerated mice (SAMP8). Biosci Biotechnol Biochem 2019; 83(3): 518-24.
[http://dx.doi.org/10.1080/09168451.2018.1547625] [PMID: 30537907]
[36]
Takeda T, Hosokawa M, Higuchi K. Senescence-accelerated mouse (SAM): a novel murine model of accelerated senescence. J Am Geriatr Soc 1991; 39(9): 911-9.
[http://dx.doi.org/10.1111/j.1532-5415.1991.tb04460.x] [PMID: 1885867]
[37]
Ding N, Jiang J, Xu A, Tang Y, Li Z. Manual acupuncture regulates behavior and cerebral blood flow in the SAMP8 mouse model of Alzheimer’s disease. Front Neurosci 2019; 13: 37.
[http://dx.doi.org/10.3389/fnins.2019.00037] [PMID: 30766475]
[38]
Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 1992; 99(2): 195-231.
[http://dx.doi.org/10.1037/0033-295X.99.2.195] [PMID: 1594723]
[39]
LeBlanc AC. The role of apoptotic pathways in Alzheimer’s disease neurodegeneration and cell death. Curr Alzheimer Res 2005; 2(4): 389-402.
[http://dx.doi.org/10.2174/156720505774330573] [PMID: 16248844]
[40]
Ishida C, Kobayashi K, Kitamura T, Ujike H, Iwasa K, Yamada M. Frontotemporal dementia with parkinsonism linked to chromosome 17 with the MAPT R406W mutation presenting with a broad distribution of abundant senile plaques. Neuropathology: official journal of the Japanese Society of Neuropathology 2015; 35(1): 75-82.
[41]
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Abeta in Alzheimer’s disease: reassessing the role of microglia and monocytes. Cellular and molecular life sciences. Cell Mol Life Sci 2017; 74(12): 2167-201.
[http://dx.doi.org/10.1007/s00018-017-2463-7] [PMID: 28197669]
[42]
Hung SY, Huang WP, Liou HC, Fu WM. Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy 2009; 5(4): 502-10.
[http://dx.doi.org/10.4161/auto.5.4.8096] [PMID: 19270530]
[43]
Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 2010; 5(4): e9979.
[http://dx.doi.org/10.1371/journal.pone.0009979] [PMID: 20376313]
[44]
Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments. J Biol Chem 2010; 285(17): 13107-20.
[http://dx.doi.org/10.1074/jbc.M110.100420] [PMID: 20178983]
[45]
Lee HR, Shin HK, Park SY, et al. Cilostazol upregulates autophagy via SIRT1 activation: reducing amyloid-β peptide and APP-CTFβ levels in neuronal cells. PLoS One 2015; 10(8): e0134486.
[http://dx.doi.org/10.1371/journal.pone.0134486] [PMID: 26244661]
[46]
Ohta K, Mizuno A, Ueda M, et al. Autophagy impairment stimulates PS1 expression and gamma-secretase activity. Autophagy 2010; 6(3): 345-52.
[http://dx.doi.org/10.4161/auto.6.3.11228] [PMID: 20168091]
[47]
Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease--locating the primary defect. Neurobiol Dis 2011; 43(1): 38-45.
[http://dx.doi.org/10.1016/j.nbd.2011.01.021] [PMID: 21296668]
[48]
Musiwaro P, Smith M, Manifava M, Walker SA, Ktistakis NT. Characteristics and requirements of basal autophagy in HEK 293 cells. Autophagy 2013; 9(9): 1407-17.
[http://dx.doi.org/10.4161/auto.25455] [PMID: 23800949]
[49]
Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004; 36(12): 2445-62.
[http://dx.doi.org/10.1016/j.biocel.2004.02.002] [PMID: 15325584]
[50]
Chu CT. Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 2006; 65(5): 423-32.
[http://dx.doi.org/10.1097/01.jnen.0000229233.75253.be] [PMID: 16772866]
[51]
Qin AP, Liu CF, Qin YY, et al. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 2010; 6(6): 738-53.
[http://dx.doi.org/10.4161/auto.6.6.12573] [PMID: 20574158]
[52]
Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 2008; 4(6): 762-9.
[http://dx.doi.org/10.4161/auto.6412] [PMID: 18567942]
[53]
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008; 118(6): 2190-9.
[PMID: 18497889]
[54]
Jaeger PA, Wyss-Coray T. Beclin 1 complex in autophagy and Alzheimer disease. Arch Neurol 2010; 67(10): 1181-4.
[http://dx.doi.org/10.1001/archneurol.2010.258] [PMID: 20937944]
[55]
Xue Z, Zhang S, Huang L, He Y, Fang R, Fang Y. Upexpression of beclin-1-dependent autophagy protects against beta-amyloid-induced cell injury in PC12 cells. J Mol Neurosci 2013; 51(1): 180-6.
[http://dx.doi.org/10.1007/s12031-013-9974-y] [PMID: 23420039]
[56]
Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy. Mol Cell 2009; 34(3): 259-69.
[http://dx.doi.org/10.1016/j.molcel.2009.04.026] [PMID: 19450525]
[57]
Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2004; 36(12): 2503-18.
[http://dx.doi.org/10.1016/j.biocel.2004.05.009] [PMID: 15325588]
[58]
Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3(6): 542-5.
[http://dx.doi.org/10.4161/auto.4600] [PMID: 17611390]
[59]
Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19(21): 5720-8.
[http://dx.doi.org/10.1093/emboj/19.21.5720] [PMID: 11060023]
[60]
Filimonenko M, Isakson P, Finley KD, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 2010; 38(2): 265-79.
[http://dx.doi.org/10.1016/j.molcel.2010.04.007] [PMID: 20417604]
[61]
Bjørkøy G, Lamark T, Pankiv S, Øvervatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009; 452: 181-97.
[http://dx.doi.org/10.1016/S0076-6879(08)03612-4] [PMID: 19200883]
[62]
Zatloukal K, Stumptner C, Fuchsbichler A, et al. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 2002; 160(1): 255-63.
[http://dx.doi.org/10.1016/S0002-9440(10)64369-6] [PMID: 11786419]
[63]
Wang H-C, Zhang T, Kuerban B, et al. Autophagy is involved in oral rAAV/Aβ vaccine-induced Aβ clearance in APP/PS1 transgenic mice. Neurosci Bull 2015; 31(4): 491-504.
[http://dx.doi.org/10.1007/s12264-015-1546-4] [PMID: 26254061]
[64]
Monastyrska I, Rieter E, Klionsky DJ, Reggiori F. Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 2009; 84(3): 431-48.
[http://dx.doi.org/10.1111/j.1469-185X.2009.00082.x] [PMID: 19659885]
[65]
Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007; 9(10): 1102-9.
[http://dx.doi.org/10.1038/ncb1007-1102] [PMID: 17909521]
[66]
Bordi M, Berg MJ, Mohan PS, et al. Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 2016; 12(12): 2467-83.
[http://dx.doi.org/10.1080/15548627.2016.1239003] [PMID: 27813694]
[67]
Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol 2010; 12(9): 814-22.
[http://dx.doi.org/10.1038/ncb0910-814] [PMID: 20811353]
[68]
LeBlanc AC, Goodyer CG. Role of endoplasmic reticulum, endosomal-lysosomal compartments, and microtubules in amyloid precursor protein metabolism of human neurons. J Neurochem 1999; 72(5): 1832-42.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0721832.x] [PMID: 10217259]
[69]
Rajendran L, Honsho M, Zahn TR, et al. Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 2006; 103(30): 11172-7.
[http://dx.doi.org/10.1073/pnas.0603838103] [PMID: 16837572]
[70]
Yu WH, Cuervo AM, Kumar A, et al. Macroautophagy--a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 2005; 171(1): 87-98.
[http://dx.doi.org/10.1083/jcb.200505082] [PMID: 16203860]
[71]
Rubinsztein DC, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 2005; 1(1): 11-22.
[http://dx.doi.org/10.4161/auto.1.1.1513] [PMID: 16874045]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy