Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Current Film Coating Designs for Colon-Targeted Oral Delivery

Author(s): Phuong H.L. Tran and Thao T.D. Tran*

Volume 28, Issue 10, 2021

Published on: 04 June, 2020

Page: [1957 - 1969] Pages: 13

DOI: 10.2174/0929867327666200604170048

Price: $65

Abstract

Colon-targeted oral delivery has recently attracted a substantial number of studies on both systemic and local treatments. Among approaches for colonic delivery, film coatings have been demonstrated as effective elements of the drug delivery systems because they can integrate multiple release strategies, such as pH-controlled release, time-controlled release and enzyme-triggered release. Moreover, coating layer modulations, natural film materials and nanoparticle coatings have been vigorously investigated with promising applications. This review aims to describe the primary approaches for improving drug delivery to the colon in the last decade. The outstanding importance of current developments in film coatings will advance dosage form designs and lead to the development of efficient colon-targeted oral delivery systems.

Keywords: Colonic delivery, film coating, film modulation, natural-based film, nanoparticle coating, drug delivery.

[1]
Vass, P.; Démuth, B.; Hirsch, E.; Nagy, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; Csontos, I.; Nagy, Z.K.; Marosi, G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J. Control. Release, 2019, 296, 162-178.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.023] [PMID: 30677436]
[2]
Jones, R.G.A.; Martino, A. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications. Crit. Rev. Biotechnol., 2016, 36(3), 506-520.
[http://dx.doi.org/10.3109/07388551.2014.992388] [PMID: 25600465]
[3]
Richard, J. Challenges in oral peptide delivery: lessons learnt from the clinic and future prospects. Ther. Deliv., 2017, 8(8), 663-684.
[http://dx.doi.org/10.4155/tde-2017-0024] [PMID: 28730934]
[4]
Wang, Q.-S.; Wang, G.-F.; Zhou, J.; Gao, L.-N.; Cui, Y.-L. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int. J. Pharm., 2016, 515(1-2), 176-185.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.002] [PMID: 27713029]
[5]
Kaur, A.; Kaur, A.P.; Kaur, V.; Kaur, M.; Murthy, R. Polymeric drug delivery approaches for colon targeting: a review. Drug Deliv. Lett., 2014, 4(1), 38-48.
[http://dx.doi.org/10.2174/22103031113036660017]
[6]
Yang, L.; Chu, J.S.; Fix, J.A. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int. J. Pharm., 2002, 235(1-2), 1-15.
[http://dx.doi.org/10.1016/S0378-5173(02)00004-2] [PMID: 11879735]
[7]
Handali, S.; Moghimipour, E.; Rezaei, M.; Kouchak, M.; Ramezani, Z.; Dorkoosh, F.A. In vitro and in vivo evaluation of coated capsules for colonic delivery. J. Drug Deliv. Sci. Technol., 2018, 47, 492-498.
[http://dx.doi.org/10.1016/j.jddst.2018.07.027]
[8]
Philip, A.K.; Philip, B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med. J., 2010, 25(2), 79-87.
[http://dx.doi.org/10.5001/omj.2010.24] [PMID: 22125706]
[9]
Shen, M.-Y.; Liu, T.-I.; Yu, T.-W.; Kv, R.; Chiang, W.-H.; Tsai, Y.-C.; Chen, H.-H.; Lin, S.-C.; Chiu, H.-C. Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer. Biomaterials, 2019, 197, 86-100.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.019] [PMID: 30641267]
[10]
Tian, B.; Liu, S.; Wu, S.; Lu, W.; Wang, D.; Jin, L.; Hu, B.; Li, K.; Wang, Z.; Quan, Z. pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf. B Biointerfaces, 2017, 154, 287-296.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.024] [PMID: 28351801]
[11]
Zhou, X.; Liu, Y.; Huang, Y.; Ma, Y.; Lv, J.; Xiao, B. Mucus-penetrating polymeric nanoparticles for oral delivery of curcumin to inflamed colon tissue. J. Drug Deliv. Sci. Technol., 2019, 52, 157-164.
[http://dx.doi.org/10.1016/j.jddst.2019.04.030]
[12]
El-Kamel, A.H.; Abdel-Aziz, A.A.M.; Fatani, A.J.; El-Subbagh, H.I. Oral colon targeted delivery systems for treatment of inflammatory bowel diseases: synthesis, in vitro and in vivo assessment. Int. J. Pharm., 2008, 358(1-2), 248-255.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.021] [PMID: 18502065]
[13]
Krishnamachari, Y.; Madan, P.; Lin, S. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int. J. Pharm., 2007, 338(1-2), 238-247.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.015] [PMID: 17368982]
[14]
Li, H.; Sanchez-Vazquez, B.; Trindade, R.P.; Zou, Q.; Mai, Y.; Dou, L.; Zhu, L.-M.; Williams, G.R. Electrospun oral formulations for combined photo-chemotherapy of colon cancer. Colloids Surf. B Biointerfaces, 2019, 183, 110411.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110411] [PMID: 31421404]
[15]
Miramontes-Corona, C.; Escalante, A.; Delgado, E.; Corona-González, R.I.; Vázquez-Torres, H.; Toriz, G. Hydrophobic agave fructans for sustained drug delivery to the human colon. React. Funct. Polym., 2020, 146, 104396.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104396]
[16]
Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excip. Food Chem., 2016, 1(3), 1132.
[17]
Khan, M.Z.I.; Prebeg, Z.; Kurjaković, N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. I. Manipulation of drug release using Eudragit L100-55 and Eudragit S100 combinations. J. Control. Release, 1999, 58(2), 215-222.
[http://dx.doi.org/10.1016/S0168-3659(98)00151-5] [PMID: 10053194]
[18]
Deng, L.; Dong, H.; Dong, A.; Zhang, J. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity. Eur. J. Pharm. Biopharm., 2015, 97(Pt A), 107-117.
[http://dx.doi.org/10.1016/j.ejpb.2015.10.010] [PMID: 26515259]
[19]
Kang, J.-H.; Hwang, J.-Y.; Seo, J.-W.; Kim, H.-S.; Shin, U.S. Small intestine- and colon-specific smart oral drug delivery system with controlled release characteristic. Mater. Sci. Eng. C, 2018, 91, 247-254.
[http://dx.doi.org/10.1016/j.msec.2018.05.052] [PMID: 30033252]
[20]
Ishibashi, T.; Ikegami, K.; Kubo, H.; Kobayashi, M.; Mizobe, M.; Yoshino, H. Evaluation of colonic absorbability of drugs in dogs using a novel colon-targeted delivery capsule (CTDC). J. Control. Release, 1999, 59(3), 361-376.
[http://dx.doi.org/10.1016/S0168-3659(99)00005-X] [PMID: 10332066]
[21]
Nalinbenjapun, S.; Ovatlarnporn, C. Chitosan-5-aminosalicylic acid conjugates for colon-specific drug delivery: methods of preparation and in vitro evaluations. J. Drug Deliv. Sci. Technol., 2020, 57, 101397.
[http://dx.doi.org/10.1016/j.jddst.2019.101397]
[22]
Basit, A.W. Advances in colonic drug delivery. Drugs, 2005, 65(14), 1991-2007.
[http://dx.doi.org/10.2165/00003495-200565140-00006] [PMID: 16162022]
[23]
Rubinstein, A. Approaches and opportunities in colon-specific drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 1995, 12(2-3), 101-149.
[http://dx.doi.org/10.1615/critrevtherdrugcarriersyst.v12.i2-3.10] [PMID: 9501968]
[24]
Gupta, V.K.; Beckert, T.E.; Price, J.C. A novel pH- and time-based multi-unit potential colonic drug delivery system. I. Development. Int. J. Pharm., 2001, 213(1-2), 83-91.
[http://dx.doi.org/10.1016/S0378-5173(00)00649-9] [PMID: 11165096]
[25]
Maroni, A.; Del Curto, M.D.; Serratoni, M.; Zema, L.; Foppoli, A.; Gazzaniga, A.; Sangalli, M.E. Feasibility, stability and release performance of a time-dependent insulin delivery system intended for oral colon release. Eur. J. Pharm. Biopharm., 2009, 72(1), 246-251.
[http://dx.doi.org/10.1016/j.ejpb.2008.12.002] [PMID: 19121388]
[26]
Song, L.; Liang, L.; Shi, X.; Chen, H.; Zhao, S.; Chen, W.; Zhou, R.; Zhao, W. Optimizing pH-sensitive and time-dependent polymer formula of colonic pH-responsive pellets to achieve precise drug release. Asian J Pharm Sci, 2019, 14(4), 413-422.
[http://dx.doi.org/10.1016/j.ajps.2018.05.012] [PMID: 32104470]
[27]
Foppoli, A.; Maroni, A.; Moutaharrik, S.; Melocchi, A.; Zema, L.; Palugan, L.; Cerea, M.; Gazzaniga, A. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int. J. Pharm., 2019, 572, 118723.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118723] [PMID: 31628978]
[28]
Maroni, A.; Del Curto, M.D.; Salmaso, S.; Zema, L.; Melocchi, A.; Caliceti, P.; Gazzaniga, A. In vitro and in vivo evaluation of an oral multiple-unit formulation for colonic delivery of insulin. Eur. J. Pharm. Biopharm., 2016, 108, 76-82.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.002] [PMID: 27519826]
[29]
Moghimipour, E.; Dorkoosh, F.A.; Rezaei, M.; Kouchak, M.; Fatahiasl, J.; Angali, K.A.; Ramezani, Z.; Amini, M.; Handali, S. In vivo evaluation of pH and time-dependent polymers as coating agent for colonic delivery using central composite design. J. Drug Deliv. Sci. Technol., 2018, 43, 50-56.
[http://dx.doi.org/10.1016/j.jddst.2017.09.010]
[30]
Kaffash, E.; Saremnejad, F.; Abbaspour, M.; Mohajeri, S.A.; Garekani, H.A.; Jafarian, A.H.; Sardo, H.S.; Akhgari, A.; Nokhodchi, A. Statistical optimization of alginate-based oral dosage form of 5-aminosalicylic acid aimed to colonic delivery: in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2019, 52, 177-188.
[http://dx.doi.org/10.1016/j.jddst.2019.04.006]
[31]
Ferrari, P.C.; Souza, F.M.; Giorgetti, L.; Oliveira, G.F.; Ferraz, H.G.; Chaud, M.V.; Evangelista, R.C. Development and in vitro evaluation of coated pellets containing chitosan to potential colonic drug delivery. Carbohydr. Polym., 2013, 91(1), 244-252.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.044] [PMID: 23044129]
[32]
Liu, F.; Moreno, P.; Basit, A.W. A novel double-coating approach for improved pH-triggered delivery to the ileo-colonic region of the gastrointestinal tract. Eur. J. Pharm. Biopharm., 2010, 74(2), 311-315.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.008] [PMID: 19932177]
[33]
Elyagoby, A.; Layas, N.; Wong, T.W. Colon-specific delivery of 5-fluorouracil from zinc pectinate pellets through in situ intracapsular ethylcellulose-pectin plug formation. J. Pharm. Sci., 2013, 102(2), 604-616.
[http://dx.doi.org/10.1002/jps.23388] [PMID: 23225084]
[34]
Schellekens, R.C.A.; Stellaard, F.; Mitrovic, D.; Stuurman, F.E.; Kosterink, J.G.W.; Frijlink, H.W. Pulsatile drug delivery to ileo-colonic segments by structured incorporation of disintegrants in pH-responsive polymer coatings. J. Control. Release, 2008, 132(2), 91-98.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.008] [PMID: 18775755]
[35]
Sweety, J.P.; Sowparani, S.; Mahalakshmi, P.; Selvasudha, N.; Yamini, D.; Geetha, K.; Ruckmani, K. Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment - insight into thymoquinone’s improved physicochemical properties. J. Drug Deliv. Sci. Technol., 2020., 55101334.
[http://dx.doi.org/10.1016/j.jddst.2019.101334]
[36]
Huanbutta, K.; Sriamornsak, P.; Luangtana-Anan, M.; Limmatvapirat, S.; Puttipipatkhachorn, S.; Lim, L-Y.; Terada, K.; Nunthanid, J. Application of multiple stepwise spinning disk processing for the synthesis of poly(methyl acrylates) coated chitosan-diclofenac sodium nanoparticles for colonic drug delivery. Eur. J. Pharm. Sci., 2013, 50(3-4), 303-311.
[http://dx.doi.org/10.1016/j.ejps.2013.07.010] [PMID: 23896171]
[37]
Giri, T.K.; Bhowmick, S.; Maity, S. Entrapment of capsaicin loaded nanoliposome in pH responsive hydrogel beads for colonic delivery. J. Drug Deliv. Sci. Technol., 2017, 39, 417-422.
[http://dx.doi.org/10.1016/j.jddst.2017.05.002]
[38]
Javanbakht, S.; Hemmati, A.; Namazi, H.; Heydari, A. Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int. J. Biol. Macromol., 2020, 155, 876-882.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.007] [PMID: 31805324]
[39]
Wei, H.; Li-Fang, F.; Min, B.; Yong-Zhen, C.; Bai, X.; Qing, D.; Feng, W.; Min, Q.; De-Ying, C. Chitosan/Kollicoat SR 30D film-coated pellets of aminosalicylates for colonic drug delivery. J. Pharm. Sci., 2010, 99(1), 186-195.
[http://dx.doi.org/10.1002/jps.21810] [PMID: 19655374]
[40]
Sharma, N.; Sharma, A.; Bhatnagar, A.; Nishad, D.; Karwasra, R.; Khanna, K.; Sharma, D.; Kumar, N.; Jain, G.K. Novel gum acacia based macroparticles for colon delivery of mesalazine: development and gammascintigraphy study. J. Drug Deliv. Sci. Technol., 2019, 54, 101224.
[http://dx.doi.org/10.1016/j.jddst.2019.101224]
[41]
Kumar, V.S.; Rijo, J.; Sabitha, M. Guargum and Eudragit® coated curcumin liquid solid tablets for colon specific drug delivery. Int. J. Biol. Macromol., 2018, 110, 318-327.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.082] [PMID: 29378277]
[42]
Pachuau, L.; Mazumder, B. Evaluation of Albizia procera gum as compression coating material for colonic delivery of budesonide. Int. J. Biol. Macromol., 2013, 61, 333-339.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.07.017] [PMID: 23916644]
[43]
Celkan, A.; Acartürk, F.; Tuğcu-Demiröz, F.; Gökçora, N.; Akkaş, B.E.; Güner, L.A. Gamma scintigraphic studies on guar gum-based compressed coated tablets for colonic delivery of theophylline in healthy volunteers. J. Drug Deliv. Sci. Technol., 2016, 32(Pt A), 31-37.
[http://dx.doi.org/10.1016/j.jddst.2016.01.009]
[44]
Sivapragasam, N.; Thavarajah, P.; Ohm, J.-B.; Ohm, J.-B.; Margaret, K.; Thavarajah, D. Novel starch based nano scale enteric coatings from soybean meal for colon-specific delivery. Carbohydr. Polym., 2014, 111, 273-279.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.091] [PMID: 25037352]
[45]
Pu, H.; Chen, L.; Li, X.; Xie, F.; Yu, L.; Li, L. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets. J. Agric. Food Chem., 2011, 59(10), 5738-5745.
[http://dx.doi.org/10.1021/jf2005468] [PMID: 21513356]
[46]
Chen, J.; Li, X.; Chen, L.; Xie, F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr. Polym., 2018, 191, 242-254.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.025] [PMID: 29661315]
[47]
Assifaoui, A.; Bouyer, F.; Chambin, O.; Cayot, P. Silica-coated calcium pectinate beads for colonic drug delivery. Acta Biomater., 2013, 9(4), 6218-6225.
[http://dx.doi.org/10.1016/j.actbio.2012.11.031] [PMID: 23219846]
[48]
Nguyen, M.N.U.; Tran, P.H.L.; Tran, T.T.D. A single-layer film coating for colon-targeted oral delivery. Int. J. Pharm., 2019, 559, 402-409.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.066] [PMID: 30738130]
[49]
Bisharat, L.; Barker, S.A.; Narbad, A.; Craig, D.Q.M. In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int. J. Pharm., 2019, 556, 311-319.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.021] [PMID: 30557678]
[50]
Ibekwe, V.C.; Fadda, H.M.; McConnell, E.L.; Khela, M.K.; Evans, D.F.; Basit, A.W. Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release systems. Pharm. Res., 2008, 25(8), 1828-1835.
[http://dx.doi.org/10.1007/s11095-008-9580-9] [PMID: 18465212]
[51]
Koziolek, M.; Grimm, M.; Becker, D.; Iordanov, V.; Zou, H.; Shimizu, J.; Wanke, C.; Garbacz, G.; Weitschies, W. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap® system. J. Pharm. Sci., 2015, 104(9), 2855-2863.
[http://dx.doi.org/10.1002/jps.24274] [PMID: 25411065]
[52]
Reyes-Ortega, F. Chapter 3 - pH-Responsive Polymers: Properties, Synthesis and Applications. In: Smart Polymers and their Applications; Aguilar, M.R.; San Román, J., Eds.; Woodhead Publishing, 2014; pp. 45-92.
[http://dx.doi.org/10.1533/9780857097026.1.45]
[53]
Obeidat, W.M.; Price, J.C. Preparation and evaluation of Eudragit S 100 microspheres as pH-sensitive release preparations for piroxicam and theophylline using the emulsion-solvent evaporation method. J. Microencapsul., 2006, 23(2), 195-202.
[http://dx.doi.org/10.1080/02652040500435337] [PMID: 16754375]
[54]
Del Curto, M.D.; Palugan, L.; Foppoli, A.; Zema, L.; Gazzaniga, A.; Maroni, A. Erodible time-dependent colon delivery systems with improved efficiency in delaying the onset of drug release. J. Pharm. Sci., 2014, 103(11), 3585-3593.
[http://dx.doi.org/10.1002/jps.24150] [PMID: 25213173]
[55]
Del Curto, M.D.; Maroni, A.; Foppoli, A.; Zema, L.; Gazzaniga, A.; Sangalli, M.E. Preparation and evaluation of an oral delivery system for time-dependent colon release of insulin and selected protease inhibitor and absorption enhancer compounds. J. Pharm. Sci., 2009, 98(12), 4661-4669.
[http://dx.doi.org/10.1002/jps.21761] [PMID: 19655371]
[56]
Sankalia, J.M.; Sankalia, M.G.; Mashru, R.C. Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: establishment of level A IVIVC. J. Control. Release, 2008, 129(1), 49-58.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.016] [PMID: 18456362]
[57]
Mastiholimath, V.S.; Dandagi, P.M.; Jain, S.S.; Gadad, A.P.; Kulkarni, A.R. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. Int. J. Pharm., 2007, 328(1), 49-56.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.045] [PMID: 16942847]
[58]
Han, M.; Fang, Q.-L.; Zhan, H.-W.; Luo, T.; Liang, W.-Q.; Gao, J.-Q. In vitro and in vivo evaluation of a novel capsule for colon-specific drug delivery. J. Pharm. Sci., 2009, 98(8), 2626-2635.
[http://dx.doi.org/10.1002/jps.21627] [PMID: 19067397]
[59]
Yadava, S.K.; Patil, J.S.; Mokale, V.J.; Naik, J.B. Sodium alginate/HPMC/liquid paraffin emulsified (o/w) gel beads, by factorial design approach and in vitro analysis. J. Sol-Gel Sci. Technol., 2014, 71(1), 60-68.
[http://dx.doi.org/10.1007/s10971-014-3325-5]
[60]
Schiller, C.; Fröhlich, C.P.; Giessmann, T.; Siegmund, W.; Mönnikes, H.; Hosten, N.; Weitschies, W. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther., 2005, 22(10), 971-979.
[http://dx.doi.org/10.1111/j.1365-2036.2005.02683.x] [PMID: 16268972]
[61]
Liu, F.; Lizio, R.; Schneider, U.J.; Petereit, H.-U.; Blakey, P.; Basit, A.W. SEM/EDX and confocal microscopy analysis of novel and conventional enteric-coated systems. Int. J. Pharm., 2009, 369(1-2), 72-78.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.035] [PMID: 19061944]
[62]
Liu, F.; Lizio, R.; Meier, C.; Petereit, H.-U.; Blakey, P.; Basit, A.W. A novel concept in enteric coating: a double-coating system providing rapid drug release in the proximal small intestine. J. Control. Release, 2009, 133(2), 119-124.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.083] [PMID: 18930772]
[63]
Varum, F.J.O.; Hatton, G.B.; Freire, A.C.; Basit, A.W. A novel coating concept for ileo-colonic drug targeting: proof of concept in humans using scintigraphy. Eur. J. Pharm. Biopharm., 2013, 84(3), 573-577.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.002] [PMID: 23348235]
[64]
Bose, A.; Elyagoby, A.; Wong, T.W. Oral 5-fluorouracil colon-specific delivery through in vivo pellet coating for colon cancer and aberrant crypt foci treatment. Int. J. Pharm., 2014, 468(1-2), 178-186.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.006] [PMID: 24709212]
[65]
Maurer, J.M.; Schellekens, R.C.A.; van Rieke, H.M.; Wanke, C.; Iordanov, V.; Stellaard, F.; Wutzke, K.D.; Dijkstra, G.; van der Zee, M.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.W. Gastrointestinal pH and transit time profiling in healthy volunteers using the IntelliCap system confirms ileo-colonic release of colopulse tablets. PloS One, 2015, 10(7)e0129076.s
[http://dx.doi.org/10.1371/journal.pone.0129076] [PMID: 26177019]
[66]
Schellekens, R.C.; Olsder, G.G.; Langenberg, S.M.; Boer, T.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.; Stellaard, F. Proof-of-concept study on the suitability of 13C-urea as a marker substance for assessment of in vivo behaviour of oral colon-targeted dosage forms. Br. J. Pharmacol., 2009, 158(2), 532-540.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00302.x] [PMID: 19732063]
[67]
Schellekens, R.C.A.; Stellaard, F.; Olsder, G.G.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.W. Oral ileocolonic drug delivery by the colopulse-system: a bioavailability study in healthy volunteers. J. Control. Release, 2010, 146(3), 334-340.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.028] [PMID: 20621586]
[68]
Maurer, J.M.; Schellekens, R.C.A.; van Rieke, H.M.; Stellaard, F.; Wutzke, K.D.; Buurman, D.J.; Dijkstra, G.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.W. Colopulse tablets perform comparably in healthy volunteers and Crohn’s patients and show no influence of food and time of food intake on bioavailability. J. Control. Release, 2013, 172(3), 618-624.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.021] [PMID: 24096020]
[69]
Gareb, B.; Dijkstra, G.; Kosterink, J.G.W.; Frijlink, H.W. Development of novel zero-order release budesonide tablets for the treatment of ileo-colonic inflammatory bowel disease and comparison with formulations currently used in clinical practice. Int. J. Pharm., 2019, 554, 366-375.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.019] [PMID: 30414898]
[70]
Oxley, P.; Brechtelsbauer, C.; Ricard, F.; Lewis, N.; Ramshaw, C. Evaluation of spinning disk reactor technology for the manufacture of pharmaceuticals. Ind. Eng. Chem. Res., 2000, 39(7), 2175-2182.
[http://dx.doi.org/10.1021/ie990869u]
[71]
Brechtelsbauer, C.; Lewis, N.; Oxley, P.; Ricard, F.; Ramshaw, C. Evaluation of a spinning disc reactor for continuous processing 1. Org. Process Res. Dev., 2001, 5(1), 65-68.
[http://dx.doi.org/10.1021/op0000834]
[72]
Loh, J.W.; Schneider, J.; Carter, M.; Saunders, M.; Lim, L-Y. Spinning disc processing technology: potential for large-scale manufacture of chitosan nanoparticles. J. Pharm. Sci., 2010, 99(10), 4326-4336.
[http://dx.doi.org/10.1002/jps.22145] [PMID: 20737637]
[73]
Franco, A.P.; Recio, M.A.L.; Szpoganicz, B.; Delgado, A.L.; Felcman, J.; Mercê, A.L.R. Complexes of carboxymethylcellulose in water. Part 2. Co2+ and Al3+ remediation studies of wastewaters with Co2+, Al3+, Cu2+, VO2+ and Mo6+. Hydrometallurgy, 2007, 87(3-4), 178-189.
[http://dx.doi.org/10.1016/j.hydromet.2006.08.013]
[74]
Ormrod, D.J.; Holmes, C.C.; Miller, T.E. Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis. Atherosclerosis, 1998, 138(2), 329-334.
[http://dx.doi.org/10.1016/S0021-9150(98)00045-8] [PMID: 9690916]
[75]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[76]
Park, J.H.; Saravanakumar, G.; Kim, K.; Kwon, I.C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev., 2010, 62(1), 28-41.
[http://dx.doi.org/10.1016/j.addr.2009.10.003] [PMID: 19874862]
[77]
Chourasia, M.K.; Jain, S.K. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci., 2003, 6(1), 33-66.
[PMID: 12753729]
[78]
McConnell, E.L.; Murdan, S.; Basit, A.W. An investigation into the digestibility of chitosan by human colonic bacteria. J. Pharm. Sci., 2008, 97(9), 3820-3829.
[http://dx.doi.org/10.1002/jps.21271] [PMID: 18186460]
[79]
Muzzarelli, R.A. Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar. Drugs, 2011, 9(9), 1510-1533.
[http://dx.doi.org/10.3390/md9091510] [PMID: 22131955]
[80]
Pardo-Castaño, C.; Bolaños, G. Solubility of chitosan in aqueous acetic acid and pressurized carbon dioxide-water: experimental equilibrium and solubilization kinetics. J. Supercrit. Fluids, 2019, 151, 63-74.
[http://dx.doi.org/10.1016/j.supflu.2019.05.007]
[81]
Yan, T.; Li, C.; Ouyang, Q.; Zhang, D.; Zhong, Q.; Li, P.; Li, S.; Yang, Z.; Wang, T.; Zhao, Q. Synthesis of gentamicin-grafted-chitosan with improved solubility and antibacterial activity. React. Funct. Polym., 2019, 137, 38-45.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.01.013]
[82]
Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34(7), 641-678.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[83]
Fu, Y.; Xiao, C.; Liu, J. Facile fabrication of quaternary water soluble chitosan-sodium alginate gel and its affinity characteristic toward multivalent metal ion. Environ. Technol. Innov., 2019, 13, 340-345.
[http://dx.doi.org/10.1016/j.eti.2019.01.007]
[84]
Wei, H.; Li-Fang, F.; Bai, X.; Chun-Lei, L.; Qing, D.; Yong-Zhen, C.; De-Ying, C. An investigation into the characteristics of chitosan/Kollicoat SR30D free films for colonic drug delivery. Eur. J. Pharm. Biopharm., 2009, 72(1), 266-274.
[http://dx.doi.org/10.1016/j.ejpb.2008.10.017] [PMID: 19028578]
[85]
Ngo, V.D.; Luu, T.D.; Van Vo, T.; Tran, V.T.; Duan, W.; Tran, P.H.L.; Tran, T.T.D. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice. Mater. Sci. Eng. C, 2016, 67, 1-7.
[http://dx.doi.org/10.1016/j.msec.2016.04.098] [PMID: 27287092]
[86]
Luu, T.D.; Lee, B.-J.; Tran, P.H.L.; Tran, T.T.D. Modified sprouted rice for modulation of curcumin crystallinity and dissolution enhancement by solid dispersion. J. Pharm. Investig., 2019, 49(1), 127-134.
[http://dx.doi.org/10.1007/s40005-018-0393-5]
[87]
Chi, H.; Xu, K.; Wu, X.; Chen, Q.; Xue, D.; Song, C.; Zhang, W.; Wang, P. Effect of acetylation on the properties of corn starch. Food Chem., 2008, 106(3), 923-928.
[http://dx.doi.org/10.1016/j.foodchem.2007.07.002]
[88]
Xie, W.; Shao, L.; Liu, Y. Synthesis of starch esters in ionic liquids. J. Appl. Polym. Sci., 2010, 116(1), 218-224.
[http://dx.doi.org/10.1002/app.31327]
[89]
Chen, L.; Li, X.; Li, L.; Guo, S. Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Curr. Appl. Phys., 2007, 7(Suppl. 1), e90-e93.
[http://dx.doi.org/10.1016/j.cap.2006.11.023]
[90]
Bán, M.; Bombicz, P.; Madarász, J. Thermal stability and structure of a new co-crystal of theophylline formed with phthalic acid: TG/DTA-EGA-MS and TG-EGA-FTIR study. J. Therm. Anal. Calorim., 2008, 95(3), 895-901.
[http://dx.doi.org/10.1007/s10973-007-8902-1]
[91]
Assifaoui, A.; Chambin, O.; Cayot, P. Drug release from calcium and zinc pectinate beads: Impact of dissolution medium composition. Carbohydr. Polym., 2011, 85(2), 388-393.
[http://dx.doi.org/10.1016/j.carbpol.2011.02.037]
[92]
Dhalleine, C.; Assifaoui, A.; Moulari, B.; Pellequer, Y.; Cayot, P.; Lamprecht, A.; Chambin, O. Zinc-pectinate beads as an in vivo self-assembling system for pulsatile drug delivery. Int. J. Pharm., 2011, 414(1-2), 28-34.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.059] [PMID: 21601627]
[93]
Sriamornsak, P.; Puttipipatkhachorn, S.; Prakongpan, S. Calcium pectinate gel coated pellets as an alternative carrier to calcium pectinate beads. Int. J. Pharm., 1997, 156(2), 189-194.
[http://dx.doi.org/10.1016/S0378-5173(97)00192-0] [PMID: 10477816]
[94]
Li, Y.; Bai, Y.; Huang, J.; Yuan, C.; Ding, T.; Liu, D.; Hu, Y. Airglow discharge plasma treatment affects the surface structure and physical properties of zein films. J. Food Eng., 2020, 273, 109813.
[http://dx.doi.org/10.1016/j.jfoodeng.2019.109813]
[95]
Sun, Y.; Liu, Z.; Zhang, L.; Wang, X.; Li, L. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film. Int. J. Biol. Macromol., 2020, 143, 334-340.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.035] [PMID: 31812748]
[96]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. Int. J. Pharm., 2019, 569, 118614.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118614] [PMID: 31415877]
[97]
Spasojević, L.; Katona, J.; Bučko, S.; Savić, S.M.; Petrović, L.; Milinković Budinčić, J.; Tasić, N.; Aidarova, S.; Sharipova, A. Edible water barrier films prepared from aqueous dispersions of zein nanoparticles. LWT, 2019, 109, 350-358.
[http://dx.doi.org/10.1016/j.lwt.2019.04.038]
[98]
Huang, D.; Zhang, Z.; Quan, Q.; Zheng, Y. Tannic acid: a versatile and effective modifier for gelatin/zein composite films. Food Packag. Shelf Life, 2020., 23100440.
[http://dx.doi.org/10.1016/j.fpsl.2019.100440]
[99]
Chen, G.; Dong, S.; Zhao, S.; Li, S.; Chen, Y. Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Ind. Crops Prod., 2019, 129, 318-326.
[http://dx.doi.org/10.1016/j.indcrop.2018.11.072]
[100]
Zhang, L.; Liu, Z.; Wang, X.; Dong, S.; Sun, Y.; Zhao, Z. The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus). Postharvest Biol. Technol., 2019, 155, 47-56.
[http://dx.doi.org/10.1016/j.postharvbio.2019.05.013]
[101]
Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S.M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces, 2019, 177, 25-32.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.045] [PMID: 30703751]
[102]
Notario-Pérez, F.; Martín-Illana, A.; Cazorla-Luna, R.; Ruiz-Caro, R.; Bedoya, L.-M.; Peña, J.; Veiga, M.-D. Development of mucoadhesive vaginal films based on HPMC and zein as novel formulations to prevent sexual transmission of HIV. Int. J. Pharm., 2019., 570118643.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118643] [PMID: 31446023]
[103]
Chen, X.; Cui, F.; Zi, H.; Zhou, Y.; Liu, H.; Xiao, J. Development and characterization of a hydroxypropyl starch/zein bilayer edible film. Int. J. Biol. Macromol., 2019, 141, 1175-1182.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.240] [PMID: 31473310]
[104]
Tran, P.H.L.; Duan, W.; Lee, B.-J.; Tran, T.T.D. The use of zein in the controlled release of poorly water-soluble drugs. Int. J. Pharm., 2019, 566, 557-564.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.018] [PMID: 31181306]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy