Generic placeholder image

Current Graphene Science (Discontinued)

Editor-in-Chief

ISSN (Print): 2452-2732
ISSN (Online): 2452-2740

Review Article

Graphene and its Composite Materials for Water Decontamination

Author(s): Manas Roy and Mitali Saha*

Volume 3, Issue 1, 2020

Page: [41 - 48] Pages: 8

DOI: 10.2174/2452273204999200604144903

Price: $65

Abstract

Acute water cataclysm on account of eco-noxious anthropogenic exploitation caused massive setbacks on the global prerequisite of clean water. Subsequently, with the purpose of circumventing the worldwide unpolluted water deficiency, wastewater treatment technologies have received extraordinary precedence to disinfect water for a sustainable environment. Presently, diverse, efficient materials are being used to remove organic/ inorganic noxious substances from wastewater, among which graphene and its composites have received remarkable attention for water decontamination technology by virtue of their substantial surface area, mechanical strength, mesoporosity, nanosheet arrangement and outstanding absorption proficiency for the contaminant. The present review accentuates the contemporary progresses in the implementation of graphene along with its composite as a potential adsorbent for the exclusion of pernicious inorganic mixture of miscellaneous pollutants, as photocatalysts for the breakdown of venomous organic toxins by employing photocatalytic oxidation. The prospect of graphene and its nanocomposites towards comprehensive water treatment approaches has been discussed.

Keywords: Adsorbent, composite, graphene oxide, graphene, photocatalyst, water decontamination.

Graphical Abstract
[1]
Morris BL, Lawrence AR, Chilton PJ, Adams B, Calow RC, Klinck BA. Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. United Nations Environment Programme 2003.
[2]
Sarkar S. Can I drink water. Directions, The Newsletter of Indian Institute of Technology Kanpur: 2012. Available from: https://www.iitk.ac.in/dora/newsletter-m/
[3]
Panjabi RK. Not a drop to spare: The global water crisis of the Twenty-First Century. Ga J Int’l & Comp L 2013; 42: 277.
[4]
Tsetseris L, Pantelides ST. Graphene: An impermeable or selectively permeable membrane for atomic species? Carbon 2014; 67: 58-63.
[http://dx.doi.org/10.1016/j.carbon.2013.09.055]
[5]
Gandhi MR, Vasudevan S, Shibayama A, Yamada M. Graphene and graphene‐based composites: A rising star in water purification‐a comprehensive overview. Chem Select 2016; 1(15): 4358-85.
[http://dx.doi.org/10.1002/slct.201600693]
[6]
Wang H, Yuan X, Wu Y, et al. Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Adv Colloid Interface Sci 2013; 195-196: 19-40.
[http://dx.doi.org/10.1016/j.cis.2013.03.009] [PMID: 23642336]
[7]
Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958; 80(6): 1339.
[http://dx.doi.org/10.1021/ja01539a017]
[8]
Roy M, Kusurkar TS, Maurya SK, et al. Graphene oxide from silk cocoon: a novel magnetic fluorophore for multi-photon imaging. 3 Biotech 2014; 4(1): 67-75.
[9]
Naik JP, Sutradhar P, Saha M. Molecular scale rapid synthesis of graphene quantum dots (GQDs). J Nanostructure in Chemistry 2017; 7(1): 85-9.
[http://dx.doi.org/10.1007/s40097-017-0222-9]
[10]
Ramesha GK, Kumara AV, Muralidhara HB, Sampath S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 2011; 361(1): 270-7.
[http://dx.doi.org/10.1016/j.jcis.2011.05.050] [PMID: 21679961]
[11]
Singh A, Bhati A, Khare P, Tripathi KM, Sonkar SK. Soluble graphene nanosheets for the sunlight-induced photodegradation of the mixture of dyes and its environmental assessment. Sci Rep 2019; 9(1): 1-2.
[PMID: 30626917]
[12]
Gupta VK, Saleh TA. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ Sci Pollut Res Int 2013; 20(5): 2828-43.
[http://dx.doi.org/10.1007/s11356-013-1524-1] [PMID: 23430732]
[13]
Athanasekou CP, Romanos GE, Kordatos K, Kasselouri-Rigopoulou V, Kakizis NK, Sapalidis AA. . Grafting of alginates on UF/NF ceramic membranes for wastewater treatment. J Hazar mater 2010; 182(1-3): 611-23.
[14]
Burakov AE, Burakova IV, Galunin EV, Kucherova AE. New carbon nanomaterials for water purification from heavy metals. Handbook of Ecomaterials 2019; 393-412.
[http://dx.doi.org/10.1007/978-3-319-68255-6_166]
[15]
Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. J Environ Manage 2011; 92(3): 407-18.
[http://dx.doi.org/10.1016/j.jenvman.2010.11.011] [PMID: 21138785]
[16]
Gunatilake SK. Methods of removing heavy metals from industrial wastewater. J Multidiscip Eng Sci Stud 2015; 1(1): 14.
[17]
Raizada P, Sudhaik A, Singh P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Mate Sci Energy Technol 2019; 2: 509-25.
[http://dx.doi.org/10.1016/j.mset.2019.04.007]
[18]
Sudhaik A, Raizada P, Shandilya P, Singh P. Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light. J Environ Chem Eng 2018; 6(4): 3874-83.
[http://dx.doi.org/10.1016/j.jece.2018.05.039]
[19]
Raizada P, Sudhaik A, Singh P, et al. Fabrication of Ag3VO4 decorated phosphorus and sulphur co-doped graphitic carbon nitride as a high-dispersed photocatalyst for phenol mineralization and E. coli disinfection. Separ Purif Tech 2019; 212: 887-900.
[http://dx.doi.org/10.1016/j.seppur.2018.12.007]
[20]
Nicolaï A, Sumpter BG, Meunier V. Tunable water desalination across graphene oxide framework membranes. Phys Chem Chem Phys 2014; 16(18): 8646-54.
[http://dx.doi.org/10.1039/c4cp01051e] [PMID: 24675972]
[21]
Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater 2014; 267: 194-205.
[http://dx.doi.org/10.1016/j.jhazmat.2013.12.062] [PMID: 24457611]
[22]
Ling L, Zhang WX. Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 2015; 137(8): 2788-91.
[http://dx.doi.org/10.1021/ja510488r] [PMID: 25689272]
[23]
Sarkar S, Allam A, Allam A, Allam I. inventors; CNanoz Inc, assignee. Making and using composite material containing nanospheres and devices for water filtration and devices containg such composites. United States patent application US 13/181,855 2012.
[24]
Upadhyayula VK, Deng S, Mitchell MC, Smith GB. Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 2009; 408(1): 1-13.
[http://dx.doi.org/10.1016/j.scitotenv.2009.09.027] [PMID: 19819525]
[25]
De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. science 2013; 339(6119): 535-9.
[26]
Robati D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. nanostr. Chem 2013; 3(1): 55.
[27]
Sublet R, Simonnot MO, Boireau A, Sardin M. Selection of an adsorbent for lead removal from drinking water by a point-of-use treatment device. Water Res 2003; 37(20): 4904-12.
[http://dx.doi.org/10.1016/j.watres.2003.08.010] [PMID: 14604636]
[28]
Long RQ, Yang RT. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 2001; 123(9): 2058-9.
[http://dx.doi.org/10.1021/ja003830l] [PMID: 11456830]
[29]
Lu C, Liu C, Rao GP. Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 2008; 151(1): 239-46.
[http://dx.doi.org/10.1016/j.jhazmat.2007.05.078] [PMID: 17618049]
[30]
Rosli F. Statistical analaysis for removal of cadmium from aqueous solution at high pH. Aust J Basic Appl Sci 2011; 5(6): 440-6.
[31]
Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D. Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 2003; 41(5): 1057-62.
[http://dx.doi.org/10.1016/S0008-6223(02)00440-2]
[32]
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. science 2004; 306(5696): 666-9.
[33]
Song H, Hao L, Tian Y, Wan X, Zhang L, Lv Y. Stable and water‐dispersible graphene nanosheets: Sustainable preparation, functionalization, and high‐performance adsorbents for Pb2+. ChemPlusChem 2012; 77(5): 379-86.
[http://dx.doi.org/10.1002/cplu.201200012]
[34]
Perreault F, Fonseca de Faria A, Elimelech M. Environmental applications of graphene-based nanomaterials. Chem Soc Rev 2015; 44(16): 5861-96.
[http://dx.doi.org/10.1039/C5CS00021A] [PMID: 25812036]
[35]
Hofmann U, Holst R. The acidic nature and the methylation of graphitoxide. Ber Dtsch Chem Ges 1939; 72: 754-71.
[http://dx.doi.org/10.1002/cber.19390720417]
[36]
Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev 2010; 39(1): 228-40.
[http://dx.doi.org/10.1039/B917103G] [PMID: 20023850]
[37]
Gómez-Navarro C, Meyer JC, Sundaram RS, et al. Atomic structure of reduced graphene oxide. Nano Lett 2010; 10(4): 1144-8.
[http://dx.doi.org/10.1021/nl9031617] [PMID: 20199057]
[38]
Berry V. Impermeability of graphene and its applications. Carbon 2013; 62: 1-0.
[http://dx.doi.org/10.1016/j.carbon.2013.05.052]
[39]
Brodie BC. XIII. On the atomic weight of graphite. Philos Trans R Soc Lond 1859; 149: 249-59.
[40]
Boehm H, Clauss A, Fischer G, Hofmann U. In Surface properties of extremely thin graphite lamellae Proceedings of the fifth conference on carbon. 73-80.
[http://dx.doi.org/10.1016/B978-0-08-009707-7.50013-3]
[41]
Yusuf M, Elfghi FM, Zaidi SA, Abdullah EC, Khan MA. Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: A systematic and comprehensive overview. RSC Advances 2015; 5(62): 50392-420.
[http://dx.doi.org/10.1039/C5RA07223A]
[42]
Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006; 312(5777): 1191-6.
[http://dx.doi.org/10.1126/science.1125925] [PMID: 16614173]
[43]
Choi W, Lahiri I, Seelaboyina R, Kang YS. Synthesis of graphene and its applications: A review. Crit Rev Solid State Mater 2010; 35(1): 52-71.
[http://dx.doi.org/10.1080/10408430903505036]
[44]
Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater 2011; 56(8): 1178-271.
[http://dx.doi.org/10.1016/j.pmatsci.2011.03.003]
[45]
Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano 2010; 4(8): 4806-14.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[46]
Abdolhosseinzadeh S, Asgharzadeh H, Seop Kim H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 2015; 5: 10160.
[http://dx.doi.org/10.1038/srep10160] [PMID: 25976732]
[47]
Zhang W, Shi X, Zhang Y, Gu W, Li B, Xian Y. Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J Mater Chem A Mater Energy Sustain 2013; 1(5): 1745-53.
[http://dx.doi.org/10.1039/C2TA00294A]
[48]
Huang ZH, Zheng X, Lv W, Wang M, Yang QH, Kang F. Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 2011; 27(12): 7558-62.
[http://dx.doi.org/10.1021/la200606r] [PMID: 21591809]
[49]
Sitko R, Turek E, Zawisza B, et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 2013; 42(16): 5682-9.
[http://dx.doi.org/10.1039/c3dt33097d] [PMID: 23443993]
[50]
Zhao G, Li J, Ren X, Chen C, Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 2011; 45(24): 10454-62.
[http://dx.doi.org/10.1021/es203439v] [PMID: 22070750]
[51]
Chang CF, Truong QD, Chen JR. Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification. Appl Surf Sci 2013; 264: 329-34.
[http://dx.doi.org/10.1016/j.apsusc.2012.10.022]
[52]
Wu W, Yang Y, Zhou H, et al. Highly efficient removal of Cu (II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 2013; 224(1): 1372.
[http://dx.doi.org/10.1007/s11270-012-1372-5]
[53]
Zhao G, Jiang L, He Y, et al. Sulfonated graphene for persistent aromatic pollutant management. Adv Mater 2011; 23(34): 3959-63.
[http://dx.doi.org/10.1002/adma.201101007] [PMID: 21800380]
[54]
Ali I, Basheer AA, Mbianda XY, et al. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int 2019; 127: 160-80.
[http://dx.doi.org/10.1016/j.envint.2019.03.029] [PMID: 30921668]
[55]
Wu Y, Luo H, Wang H, Wang C, Zhang J, Zhang Z. Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide. J Colloid Interface Sci 2013; 394: 183-91.
[http://dx.doi.org/10.1016/j.jcis.2012.11.049] [PMID: 23273541]
[56]
Deng X, Lü L, Li H, Luo F. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J Hazard Mater 2010; 183(1-3): 923-30.
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.117] [PMID: 20800353]
[57]
Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J Hazard Mater 2011; 186(1): 921-31.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.100] [PMID: 21168962]
[58]
Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010; 4(7): 3979-86.
[http://dx.doi.org/10.1021/nn1008897] [PMID: 20552997]
[59]
Zhang K, Dwivedi V, Chi C, Wu J. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater 2010; 182(1-3): 162-8.
[http://dx.doi.org/10.1016/j.jhazmat.2010.06.010] [PMID: 20580161]
[60]
Chowdhury S, Balasubramanian R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 2014; 204: 35-56.
[http://dx.doi.org/10.1016/j.cis.2013.12.005] [PMID: 24412086]
[61]
Luo X, Wang C, Wang L, et al. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As (III) and As (V) from water. Chem Eng J 201(220): 98-106.
[http://dx.doi.org/10.1016/j.cej.2013.01.017]
[62]
Lee YC, Yang JW. Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J Ind Eng Chem 2012; 18(3): 1178-85.
[http://dx.doi.org/10.1016/j.jiec.2012.01.005]
[63]
Ren Y, Yan N, Wen Q, et al. Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem Eng J 2011; 175: 1-7.
[http://dx.doi.org/10.1016/j.cej.2010.08.010]
[64]
Ren Y, Yan N, Feng J, et al. Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater Chem Phys 2012; 136(2-3): 538-44.
[http://dx.doi.org/10.1016/j.matchemphys.2012.07.023]
[65]
Bhunia P, Kim G, Baik C, Lee H. A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption. Chem Commun (Camb) 2012; 48(79): 9888-90.
[http://dx.doi.org/10.1039/c2cc35120j] [PMID: 22932929]
[66]
Madadrang CJ, Kim HY, Gao G, et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces 2012; 4(3): 1186-93.
[http://dx.doi.org/10.1021/am201645g] [PMID: 22304446]
[67]
Yang ST, Chen S, Chang Y, Cao A, Liu Y, Wang H. Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 2011; 359(1): 24-9.
[http://dx.doi.org/10.1016/j.jcis.2011.02.064] [PMID: 21482424]
[68]
Zhang W, Zhou C, Zhou W, et al. Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull Environ Contam Toxicol 2011; 87(1): 86-90.
[http://dx.doi.org/10.1007/s00128-011-0304-1] [PMID: 21567134]
[69]
Liu T, Li Y, Du Q, et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B Biointerfaces 2012; 90: 197-203.
[http://dx.doi.org/10.1016/j.colsurfb.2011.10.019] [PMID: 22036471]
[70]
Wu T, Cai X, Tan S, Li H, Liu J, Yang W. Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem Eng J 2011; 173(1): 144-9.
[http://dx.doi.org/10.1016/j.cej.2011.07.050]
[71]
Li Y, Du Q, Liu T, et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 2013; 91(2): 361-8.
[http://dx.doi.org/10.1016/j.cherd.2012.07.007]
[72]
Fan L, Luo C, Li X, Lu F, Qiu H, Sun M. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater 2012; 215-216: 272-9.
[http://dx.doi.org/10.1016/j.jhazmat.2012.02.068] [PMID: 22429622]
[73]
Gan L, Xu L, Shang S, Zhou X, Meng L. Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceram Int cety 2016; 42(14): 15235-41.
[74]
Ai L, Zhang C, Chen Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 2011; 192(3): 1515-24.
[http://dx.doi.org/10.1016/j.jhazmat.2011.06.068] [PMID: 21782325]
[75]
Jiao T, Zhao H, Zhou J, et al. Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments. ACS Sustain Chem& Eng 2015; 3(12): 3130-9.
[http://dx.doi.org/10.1021/acssuschemeng.5b00695]
[76]
Singh A, Khare P, Verma S, et al. Pollutant soot for pollutant dye degradation: soluble graphene nanosheets for visible light induced photodegradation of methylene blue. ACS Sustain Chem& Eng 2017; 5(10): 8860-9.
[http://dx.doi.org/10.1021/acssuschemeng.7b01645]
[77]
Das GS, Tripathi KM, Kumar G, et al. Nitrogen-doped fluorescent graphene nanosheets as visible-light-driven photocatalysts for dye degradation and selective sensing of ascorbic acid. New J Chem 2019; 43(36): 14575-83.
[http://dx.doi.org/10.1039/C9NJ02344E]
[78]
Umrao S, Sharma P, Bansal A, Sinha R, Singh RK, Srivastava A. Multi-layered graphene quantum dots derived photodegradation mechanism of methylene blue. RSC Advances 2015; 5(64): 51790-8.
[http://dx.doi.org/10.1039/C5RA07310C]
[79]
Li Y, Qu J, Gao F, et al. In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue. Appl Catal B 2015; 162: 268-74.
[http://dx.doi.org/10.1016/j.apcatb.2014.06.058]
[80]
Xu J, Wang L, Zhu Y. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 2012; 28(22): 8418-25.
[http://dx.doi.org/10.1021/la301476p] [PMID: 22571829]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy