Commentary on “Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer” by Shaker A. Mousa, Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States - Peptide-Conjugated Nanoparticles for Multimodal Nanomedicine

Author(s): Ajay Vikram Singh*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 17 , 2020


Become EABM
Become Reviewer
Call for Editor

[1]
Shin, S. H.; Bode, A. M.; Dong, Z. Precision medicine: the foundation of future cancer therapeutics. NP. J. Precis. Oncol., 2017, 1(1), 12.
[http://dx.doi.org/10.1038/s41698-017-0016-z] [PMID: 29872700]
[2]
Singh, A.V.; Sitti, M. Targeted Drug Delivery and Imaging Using Mobile Milli/Microrobots: A Promising Future Towards Theranostic Pharmaceutical Design. Curr. Pharm. Des., 2016, 22(11), 1418-1428.
[http://dx.doi.org/10.2174/1381612822666151210124326] [PMID: 26654436]
[3]
Singh, A.V.; Subhashree, L.; Milani, P.; Gemmati, D.; Zamboni, P. Interplay of Iron Metallobiology, Metalloproteinases, and FXIII, and Role of Their Gene Variants in Venous Leg Ulcer. Int. J. Low. Extrem. Wounds, 2010, 9(4), 166-179.
[http://dx.doi.org/10.1177/1534734610384653] [PMID: 21118859]
[4]
Singh, A.V.; Jahnke, T.; Xiao, Y.; Wang, S.; Yu, Y.; David, H.; Richter, G.; Laux, P.; Luch, A.; Srivastava, A.; Saxena, P.S.; Bill, J.; Sitti, M. Peptide-Induced Biomineralization of Tin Oxide (SnO2) Nanoparticles for Antibacterial Applications. J. Nanosci. Nanotechnol., 2019, 19(9), 5674-5686.
[http://dx.doi.org/10.1166/jnn.2019.16645] [PMID: 30961724]
[5]
Rajabi, M.; Adeyeye, M.; Mousa, S.A. Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Curr. Med. Chem., 2019, 26(30), 5664-5683.
[http://dx.doi.org/10.2174/0929867326666190620100800] [PMID: 31250748]
[6]
Singh, A. V.; Gemmati, D.; Kanase, A.; Pandey, I.; Misra, V.; Kishore, V.; Jahnke, T.; Bill, J. Nanobiomaterials for vascular biology and wound management: a review. Veins and Lymphatics, 2018.
[http://dx.doi.org/10.4081/vl.2018.7196]
[7]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12, 991-1003.
[http://dx.doi.org/10.1038/nmat3776]
[8]
Singh, A.V.; Laux, P.; Luch, A.; Sudrik, C.; Wiehr, S.; Wild, A.M.; Santomauro, G.; Bill, J.; Sitti, M. Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods, 2019, 29(5), 378-387.
[http://dx.doi.org/10.1080/15376516.2019.1566425] [PMID: 30636497]
[9]
Gindawi, M.; Singh, A.V. Nanoparticle Enabled Drug Delivery Across the Blood Brain Barrier: in vivo and in vitro Models, Opportunities and Challenges. Curr. Pharm. Biotechnol., 2014, 14(14), 1201-1212.
[http://dx.doi.org/10.2174/1389201015666140508122558] [PMID: 24809717]
[10]
Singh, A.V. Multiple sclerosis takes venous route: CCSVI and liberation therapy. Indian J. Med. Sci., 2010, 64(7), 337-340.
[http://dx.doi.org/10.4103/0019-5359.99879] [PMID: 22918077]


promotion: free to download

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 17
Year: 2020
Published on: 04 June, 2020
Page: [2927 - 2928]
Pages: 2
DOI: 10.2174/092986732717200604120627

Article Metrics

PDF: 21
HTML: 3