Insights on Engineered Microbes in Sustainable Agriculture: Biotechnological Developments and Future Prospects

Author(s): Surya Sudheer*, Renu Geetha Bai, Zeba Usmani, Minaxi Sharma

Journal Name: Current Genomics

Volume 21 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Enhanced agricultural production is essential for increasing demand of the growing world population. At the same time, to combat the adverse effects caused by conventional agriculture practices to the environment along with the impact on human health and food security, a sustainable and healthy agricultural production needs to be practiced using beneficial microorganisms for enhanced yield. It is quite challenging because these microorganisms have rich biosynthetic repositories to produce biomolecules of interest; however, the intensive research in allied sectors and emerging genetic tools for improved microbial consortia are accepting new approaches that are helpful to farmers and agriculturists to meet the ever-increasing demand of sustainable food production. An important advancement is improved strain development via genetically engineered microbial systems (GEMS) as well as genetically modified microorganisms (GMOs) possessing known and upgraded functional characteristics to promote sustainable agriculture and food security. With the development of novel technologies such as DNA automated synthesis, sequencing and influential computational tools, molecular biology has entered the systems biology and synthetic biology era. More recently, CRISPR/Cas has been engineered to be an important tool in genetic engineering for various applications in the agri sector. The research in sustainable agriculture is progressing tremendously through GMOs/GEMS for their potential use in biofertilizers and as biopesticides.

Conclusion: In this review, we discuss the beneficial effects of engineered microorganisms through integrated sustainable agriculture production practices to improve the soil microbial health in order to increase crop productivity.

Keywords: Plant-microbe interactions, genetic engineering, molecular tools, sustainable agriculture, microbiome, inoculants.

[1]
Alori, E.T.; Babalola, O.O. microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol., 2018, 9, 2213.
[http://dx.doi.org/10.3389/fmicb.2018.02213] [PMID: 30283427]
[2]
Amarger, N. Genetically modified bacteria in agriculture. Biochimie, 2002, 84(11), 1061-1072.
[http://dx.doi.org/10.1016/S0300-9084(02)00035-4] [PMID: 12595134]
[3]
Antoun, H.; Prévost, D. Ecology of plant growth promoting Rhizobacteria. PGPR: Biocontrol and Biofertilization; Siddiqui, Z.A., Ed.; Springer-Verlag: Berlin, Heidelberg, 2006, pp. 1-38.
[http://dx.doi.org/10.1007/1-4020-4152-7_1]
[4]
Augé, R.M.; Toler, H.D.; Saxton, A.M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza, 2015, 25(1), 13-24.
[http://dx.doi.org/10.1007/s00572-014-0585-4] [PMID: 24831020]
[5]
Babalola, O.O. Pectinase and cellulase enhance the control of Abutilon theophrasti by Colletotrichum coccodes. Biocontrol Sci. Technol., 2007, 17(1), 53-61.
[http://dx.doi.org/10.1080/09583150600828783]
[6]
Barea, J.M. Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J. Soil Sci. Plant Nutr., 2015, 15(2)
[http://dx.doi.org/10.4067/S0718-95162015005000021]]
[7]
Barea, J.M.; Werner, D.; Azcón-Guilar, C.; Azcón, R. Interactions of Arbuscular mycorrhiza and nitrogen-fixing symbiosis in sustainable agriculture. Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment; Werner, D; Newton, W.E., Ed.; Springer-Verlag: Berlin, Heidelberg, 2005, Vol. 4, pp. 199-222.
[http://dx.doi.org/10.1007/1-4020-3544-6_10]
[8]
Barret, M.; Tan, H.; Egan, F.; Morrissey, J.P.; Reen, J.; O’Gara, F. Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. molecular microbial ecology of the rhizosphere; de bruijn, f.j., ed.; john wiley & sons, inc.: hoboken, nj, usa , 2013; pp. 57-68.
[http://dx.doi.org/10.1002/9781118297674.ch6]
[9]
Bashan, Y.; de-Bashan, L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth- A critical assessment. Advances in Agronomy; Elsevier, 2010, Vol. 108, pp. 77-136.
[10]
Baslam, M.; Garmendia, I.; Goicoechea, N. Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J. Agric. Food Chem., 2011, 59(10), 5504-5515.
[http://dx.doi.org/10.1021/jf200501c] [PMID: 21504187]
[11]
Belimov, A.A.; Hontzeas, N.; Safronova, V.I.; Demchinskaya, S.V.; Piluzza, G.; Bullitta, S.; Glick, B.R. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem., 2005, 37(2), 241-250.
[http://dx.doi.org/10.1016/j.soilbio.2004.07.033]
[12]
Benckiser, G.; Bamforth, S.S. Role of pathogens, signal recalcitrance, and organisms shifting for ecosystem recuperation. A review. Agronomy Sust. Developm., 2011, 31(1), 205-215.
[http://dx.doi.org/10.1051/agro/2010024]
[13]
Brachi, B.; Filiault, D.; Darme, P.; Mentec, M.L.; Kerdaffrec, E.; Rabanal, F.; Anastasio, A.; Box, M.; Duncan, S.; Morton, T. Plant genes influence microbial hubs that shape beneficial leaf communities. Microbiology, 2017.
[http://dx.doi.org/10.1101/181198]
[14]
Brandt, K.; Barrangou, R. Applications of CRISPR technologies across the food supply chain. Annu. Rev. Food Sci. Technol., 2019, 10(1), 133-150.
[http://dx.doi.org/10.1146/annurev-food-032818-121204] [PMID: 30908954]
[15]
Callan, N.W. Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in Sh2 sweet corn. Plant Dis., 1990, 74(5), 368.
[http://dx.doi.org/10.1094/PD-74-0368]
[16]
Cepeda, M.V. Effects of microbial inoculants on biocontrol and plant growth promotion plant pathology. thesis for master of science, ohio state university, plant pathology., 2012.
[17]
Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica, 2005, 142(1-2), 169-196.
[http://dx.doi.org/10.1007/s10681-005-1681-5]
[18]
Cotter, J.G.E. Crops-Necessary? presentation to the national academy of sciences' committee on genetically engineered crops: past experience and future prospects; washington, dc; , 2014.
[19]
Crépin, A.; Barbey, C.; Cirou, A.; Tannières, M.; Orange, N.; Feuilloley, M.; Dessaux, Y.; Burini, J-F.; Faure, D.; Latour, X. Biological control of pathogen communication in the Rhizosphere: a novel approach applied to potato soft rot due to Pectobacterium atrosepticum. Plant Soil, 2012, 358(1-2), 27-37.
[http://dx.doi.org/10.1007/s11104-011-1030-5]
[20]
de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; Lemanceau, P.; Lumini, E.; Mason, K.E.; Oliver, A.; Ostle, N.; Prosser, J.I.; Thion, C.; Thomson, B.; Bardgett, R.D. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun., 2018, 9(1), 3033.
[http://dx.doi.org/10.1038/s41467-018-05516-7] [PMID: 30072764]
[21]
de Vries, F.T.; Shade, A. Controls on soil microbial community stability under climate change. Front. Microbiol., 2013, 4, 265.
[http://dx.doi.org/10.3389/fmicb.2013.00265] [PMID: 24032030]
[22]
De Vries, F.T.; Wallenstein, M.D. Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. J. Ecol., 2017, 105(4), 913-920.
[http://dx.doi.org/10.1111/1365-2745.12783]
[23]
Dodd, I.C.; Ruiz-Lozano, J.M. Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotechnol., 2012, 23(2), 236-242.
[http://dx.doi.org/10.1016/j.copbio.2011.09.005] [PMID: 21982722]
[24]
Etesami, H.; Mirseyed Hosseini, H.; Alikhani, H.A. Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiol. Mol. Biol. Plants, 2014, 20(4), 425-434.
[http://dx.doi.org/10.1007/s12298-014-0251-5] [PMID: 25320466]
[25]
Gaj, T.; Gersbach, C.A.; Barbas, C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 2013, 31(7), 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[26]
Gallart, M.; Adair, K.L.; Love, J.; Meason, D.F.; Clinton, P.W.; Xue, J.; Turnbull, M.H. Host genotype and nitrogen form shape the root microbiome of Pinus radiata. Microb. Ecol., 2018, 75(2), 419-433.
[http://dx.doi.org/10.1007/s00248-017-1055-2] [PMID: 28875273]
[27]
Ganbaatar, O.; Cao, B.; Zhang, Y.; Bao, D.; Bao, W.; Wuriyanghan, H. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol., 2017, 17(1), 9.
[http://dx.doi.org/10.1186/s12896-017-0328-7] [PMID: 28183289]
[28]
García-Fraile, P.; Menéndez, E.; Rivas, R. Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng., 2015, 2(3), 183-205.
[http://dx.doi.org/10.3934/bioeng.2015.3.183]
[29]
García-Salamanca, A.; Molina-Henares, M.A.; van Dillewijn, P.; Solano, J.; Pizarro-Tobías, P.; Roca, A.; Duque, E.; Ramos, J.L. Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb. Biotechnol., 2013, 6(1), 36-44.
[http://dx.doi.org/10.1111/j.1751-7915.2012.00358.x] [PMID: 22883414]
[30]
Goold, H.D.; Wright, P.; Hailstones, D. Emerging opportunities for synthetic biology in agriculture. Genes (Basel), 2018, 9(7), 341.
[http://dx.doi.org/10.3390/genes9070341] [PMID: 29986428]
[31]
Gupta, S.; Pandey, S. ACC Deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) plants. Front. Microbiol., 2019, 10, 1506.
[http://dx.doi.org/10.3389/fmicb.2019.01506] [PMID: 31338077]
[32]
Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev., 2015, 79(3), 293-320.
[http://dx.doi.org/10.1128/MMBR.00050-14] [PMID: 26136581]
[33]
Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2004, 2(1), 43-56.
[http://dx.doi.org/10.1038/nrmicro797] [PMID: 15035008]
[34]
Hart, M. M.; Antunes, P. M.; Abbott, L. K. Unknown risks to soil biodiversity from commercial fungal inoculants. nat. ecol. evol.,, 2017, 1(4), 0115.
[http://dx.doi.org/10.1038/s41559-017-0115]
[35]
He, Y.; Wu, Z.; Tu, L.; Han, Y.; Zhang, G.; Li, C. Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Appl. Clay Sci., 2015, 109-110, 68-75.
[http://dx.doi.org/10.1016/j.clay.2015.02.001]
[36]
Horton, M.W.; Bodenhausen, N.; Beilsmith, K.; Meng, D.; Muegge, B.D.; Subramanian, S.; Vetter, M.M.; Vilhjálmsson, B.J.; Nordborg, M.; Gordon, J.I.; Bergelson, J. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun., 2014, 5(1), 5320.
[http://dx.doi.org/10.1038/ncomms6320] [PMID: 25382143]
[37]
Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front. Plant Sci., 2017, 8, 1617.
[http://dx.doi.org/10.3389/fpls.2017.01617] [PMID: 28974956]
[38]
Jambhulkar, P.P.; Sharma, P.; Yadav, R. Delivery systems for introduction of microbial inoculants in the field. Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D.P.; Singh, H.B.; Prabha, R., eds.; springer india: New Delhi 2016, pp. , 199-218.
[http://dx.doi.org/10.1007/978-81-322-2644-4_13]
[39]
Jones, D.L.; Hinsinger, P. The Rhizosphere: complex by design. Plant Soil, 2008, 312(1-2), 1-6.
[http://dx.doi.org/10.1007/s11104-008-9774-2]
[40]
Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol., 2012, 38(6), 651-664.
[http://dx.doi.org/10.1007/s10886-012-0134-6] [PMID: 22623151]
[41]
Kloepper, J.W.; Leong, J.; Teintze, M.; Schroth, M.N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 1980, 286(5776), 885-886.
[http://dx.doi.org/10.1038/286885a0]
[42]
Kunin, V.; Sorek, R.; Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol., 2007, 8(4), R61.
[http://dx.doi.org/10.1186/gb-2007-8-4-r61] [PMID: 17442114]
[43]
Liu, J.; Abdelfattah, A.; Norelli, J.; Burchard, E.; Schena, L.; Droby, S.; Wisniewski, M. Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome, 2018, 6(1), 18.
[http://dx.doi.org/10.1186/s40168-018-0403-x] [PMID: 29374490]
[44]
Lugtenberg, B. Life of microbes in the rhizosphere. Principles of Plant-Microbe Interactions; Lugtenberg, B., Ed.; Springer International Publishing: Cham, 2015, pp. 7-15.
[45]
Marschner, P.; Rumberger, A. Rapid changes in the rhizosphere bacterial community structure during re-colonization of sterilized soil. Biol. Fertil. Soils, 2004, 40(1), 1-6.
[http://dx.doi.org/10.1007/s00374-004-0736-4]
[46]
Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev., 2013, 37(5), 634-663.
[http://dx.doi.org/10.1111/1574-6976.12028] [PMID: 23790204]
[47]
Mueller, U.G.; Sachs, J.L. Engineering microbiomes to improve plant and animal health. Trends Microbiol., 2015, 23(10), 606-617.
[http://dx.doi.org/10.1016/j.tim.2015.07.009] [PMID: 26422463]
[48]
Muhammad, T.; Zhang, F.; Zhang, Y.; Liang, Y. RNA interference: a natural immune system of plants to counteract biotic stressors. Cells, 2019, 8(1), 38.
[http://dx.doi.org/10.3390/cells8010038] [PMID: 30634662]
[49]
Müller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet., 2016, 50(1), 211-234.
[http://dx.doi.org/10.1146/annurev-genet-120215-034952] [PMID: 27648643]
[50]
Muñoz, I.V.; Sarrocco, S.; Malfatti, L.; Baroncelli, R.; Vannacci, G. CRISPR-Cas for fungal genome editing: a new tool for the management of plant diseases. Front. Plant Sci., 2019, 10, 135.
[http://dx.doi.org/10.3389/fpls.2019.00135] [PMID: 30828340]
[51]
Nguyen, T.H.; Phan, T.C.; Choudhury, A.T.M.A.; Rose, M.T.; Deaker, R.J.; Kennedy, I.R. BioGro: a plant growth-promoting biofertilizer validated by 15 years’ research from laboratory selection to rice farmer’s fields of the Mekong Delta. Agro-Environmental Sustainability; Singh, J.S; Seneviratne, G., Ed.; Springer International Publishing: Cham, 2017, pp. 237-254.
[http://dx.doi.org/10.1007/978-3-319-49724-2_11]
[52]
Nicolás, C.; Hermosa, R.; Rubio, B.; Mukherjee, P.K.; Monte, E. Trichoderma genes in plants for stress tolerance- status and prospects. Plant Sci., 2014, 228, 71-78.
[http://dx.doi.org/10.1016/j.plantsci.2014.03.005] [PMID: 25438787]
[53]
Nora, L.C.; Westmann, C.A.; Guazzaroni, M.E.; Siddaiah, C.; Gupta, V.K.; Silva-Rocha, R. Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnol. Adv., 2019, 37(8), 107433.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107433] [PMID: 31437573]
[54]
O’Callaghan, M. Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl. Microbiol. Biotechnol., 2016, 100(13), 5729-5746.
[http://dx.doi.org/10.1007/s00253-016-7590-9] [PMID: 27188775]
[55]
Öpik, M.; Vanatoa, A.; Vanatoa, E.; Moora, M.; Davison, J.; Kalwij, J.M.; Reier, U.; Zobel, M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol., 2010, 188(1), 223-241.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03334.x] [PMID: 20561207]
[56]
Owen, D.; Williams, A.P.; Griffith, G.W.; Withers, P.J.A. Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl. Soil Ecol., 2015, 86, 41-54.
[http://dx.doi.org/10.1016/j.apsoil.2014.09.012]
[57]
Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci., 2017, 8, 537.
[http://dx.doi.org/10.3389/fpls.2017.00537] [PMID: 28458674]
[58]
Pellegrino, E.; Öpik, M.; Bonari, E.; Ercoli, L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol. Biochem., 2015, 84, 210-217.
[http://dx.doi.org/10.1016/j.soilbio.2015.02.020]
[59]
Pellegrino, E.; Turrini, A.; Gamper, H.A.; Cafà, G.; Bonari, E.; Young, J.P.W.; Giovannetti, M. Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol., 2012, 194(3), 810-822.
[http://dx.doi.org/10.1111/j.1469-8137.2012.04090.x] [PMID: 22380845]
[60]
Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: in search of conceptual origins. Sustain. Sci., 2019, 14(3), 681-695.
[http://dx.doi.org/10.1007/s11625-018-0627-5]
[61]
Qiu, Z.; Egidi, E.; Liu, H.; Kaur, S.; Singh, B.K. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv., 2019, 37(6), 107371.
[http://dx.doi.org/10.1016/j.biotechadv.2019.03.010] [PMID: 30890361]
[62]
Rani, A.; Bhat, M.N.; Singh, B.P. Effect of potato phylloplane fungi on potato late blight pathogen Phytophthora infestans. J. Mycol. Plant Pathol., 2007, 37, 413-417.
[63]
Rani, A.; Singh, R.; Kumar, P.; Shukla, G. Pros and cons of fungicides: an overview. Int. J. Eng. Sci. Res. Technol., 2017, 6(1), 112-117.
[64]
Rasmussen, P.U.; Bennett, A.E.; Tack, A.J.M. The impact of elevated temperature and drought on the ecology and evolution of plant-soil microbe interactions. J. Ecol., 2020, 108(1), 337-352.
[http://dx.doi.org/10.1111/1365-2745.13292]
[65]
Rekha, P.D.; Lai, W.-A.; Arun, A.B.; Young, C.-C. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour. Technol., 2007, 98(2), 447-451.
[http://dx.doi.org/10.1016/j.biortech.2006.01.009] [PMID: 16516465]
[66]
Remus-Emsermann, M.N.P.; Lücker, S.; Müller, D.B.; Potthoff, E.; Daims, H.; Vorholt, J.A. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization: bacterial distribution on Arabidopsis phylloplanes. Environ. Microbiol., 2014, 16(7), 2329-2340.
[http://dx.doi.org/10.1111/1462-2920.12482] [PMID: 24725362]
[67]
Saikia, J.; Sarma, R.K.; Dhandia, R.; Yadav, A.; Bharali, R.; Gupta, V.K.; Saikia, R. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci. Rep., 2018, 8(1), 3560.
[http://dx.doi.org/10.1038/s41598-018-21921-w] [PMID: 29476114]
[68]
Sapkota, R.; Knorr, K.; Jørgensen, L.N.; O’Hanlon, K.A.; Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol., 2015, 207(4), 1134-1144.
[http://dx.doi.org/10.1111/nph.13418] [PMID: 25898906]
[69]
Savka, M.A.; Dessaux, Y.; McSpadden Gardener, B.B.; Mondy, S.; Kohler, P.R.A.; De Bruijn, F.J.; Rossbach, S. the “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in the phytosphere. molecular microbial ecology of the rhizosphere;De Bruijn, F.J., Ed.;John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013, pp. 1145-1161.
[http://dx.doi.org/10.1002/9781118297674.ch110]
[70]
Schaeffer, S.M.; Nakata, P.A. CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci., 2015, 240, 130-142.
[http://dx.doi.org/10.1016/j.plantsci.2015.09.011] [PMID: 26475194]
[71]
Schwartz, M.W.; Hoeksema, J.D.; Gehring, C.A.; Johnson, N.C.; Klironomos, J.N.; Abbott, L.K.; Pringle, A. The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol. Lett., 2006, 9(5), 501-515.
[http://dx.doi.org/10.1111/j.1461-0248.2006.00910.x] [PMID: 16643296]
[72]
Sekar, J.; Prabavathy, V.R. Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity. FEMS Microbiol. Ecol., 2014, 89(1), 32-46.
[http://dx.doi.org/10.1111/1574-6941.12354] [PMID: 24819774]
[73]
Shand, H. corporate concentration in ge crops: what impact on farmers, biodiversity and food security? in: presentation to the national academy of sciences' committee on genetically engineered crops: past experience and future prospects,; washington, dc , 2014.
[74]
Shelake, R.M.; Pramanik, D.; Kim, J.-Y. Exploration of plant-microbe interactions for sustainable agriculture in CRISPR era. Microorganisms, 2019, 7(8), 269.
[http://dx.doi.org/10.3390/microorganisms7080269] [PMID: 31426522]
[75]
Simeonov, D.R.; Marson, A. CRISPR-Based tools in immunity. Annu. Rev. Immunol., 2019, 37(1), 571-597.
[http://dx.doi.org/10.1146/annurev-immunol-042718-041522] [PMID: 30698999]
[76]
Subramanian, P.; Mageswari, A.; Kim, K.; Lee, Y.; Sa, T. Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Mol. Plant Microbe Interact., 2015, 28(10), 1073-1081.
[http://dx.doi.org/10.1094/MPMI-01-15-0021-R] [PMID: 26075827]
[77]
Taie, H.A.; El-Mergawi, R.; Radwan, S. Am.-Eurasian J. Agric. Environ. Sci., 2008, 4, 207-213.
[78]
Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.-C. Perspectives and challenges of microbial application for crop improvement. Front. Plant Sci., 2017, 8, 49.
[http://dx.doi.org/10.3389/fpls.2017.00049] [PMID: 28232839]
[79]
Tiwari, S.; Lata, C.; Chauhan, P.S.; Nautiyal, C.S. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol. Biochem., 2016, 99, 108-117.
[http://dx.doi.org/10.1016/j.plaphy.2015.11.001] [PMID: 26744996]
[80]
Trabelsi, D.; Mhamdi, R. Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res. Int., 2013, 2013, 863240.
[http://dx.doi.org/10.1155/2013/863240] [PMID: 23957006]
[81]
Trivedi, P.; Schenk, P.M.; Wallenstein, M.D.; Singh, B.K. Tiny Microbes, Big Yields: enhancing food crop production with biological solutions. Microb. Biotechnol., 2017, 10(5), 999-1003.
[http://dx.doi.org/10.1111/1751-7915.12804] [PMID: 28840959]
[82]
Tu, L.; He, Y.; Shan, C.; Wu, Z. Preparation of microencapsulated Bacillus subtilis SL-13 seed coating agents and their effects on the growth of cotton seedlings. BioMed Res. Int., 2016, 2016, 3251357.
[http://dx.doi.org/10.1155/2016/3251357] [PMID: 26885507]
[83]
Umesha, S.; Singh, K. P; P; Singh, R. Microbial biotechnology and sustainable agriculture. Biotechnology for Sustainable Agriculture; Elsevier, 2018, pp. 185-205.
[http://dx.doi.org/10.1016/B978-0-12-812160-3.00006-4]
[84]
Vega-Avila, A.D.; Gumiere, T.; Andrade, P.A.M.; Lima-Perim, J.E.; Durrer, A.; Baigori, M.; Vazquez, F.; Andreote, F.D. Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Antonie van Leeuwenhoek, 2015, 107(2), 575-588.
[http://dx.doi.org/10.1007/s10482-014-0353-7] [PMID: 25527391]
[85]
Verbruggen, E.; van der Heijden, M.G.A.; Rillig, M.C.; Kiers, E.T. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol., 2013, 197(4), 1104-1109.
[http://dx.doi.org/10.1111/j.1469-8137.2012.04348.x] [PMID: 23495389]
[86]
Wang, W,-X.; Zhu, T.-H.; Lai, F.-X.; Fu, Q. Event-specific qualitative and quantitative detection of transgenic rice Kefeng-6 by characterization of the transgene flanking sequence. Eur. Food Res. Technol., 2011, 232(2), 297-305.
[http://dx.doi.org/10.1007/s00217-010-1389-1]
[87]
Weyens, N.; van der Lelie, D.; Taghavi, S.; Newman, L.; Vangronsveld, J. Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol., 2009, 27(10), 591-598.
[http://dx.doi.org/10.1016/j.tibtech.2009.07.006]
[88]
Whitehead, N.A.; Barnard, A.M.L.; Slater, H.; Simpson, N.J.L.; Salmond, G.P.C. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev., 2001, 25(4), 365-404.
[http://dx.doi.org/10.1111/j.1574-6976.2001.tb00583.x] [PMID: 11524130]
[89]
Woo, S.L.; Pepe, O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci., 2018, 9, 1801.
[http://dx.doi.org/10.3389/fpls.2018.01801] [PMID: 30564264]
[90]
Woods, T.S. Pesticide Formulations. AGR 185 in Encyclopedia of Agrochemicals; Wiley & Sons: New York, 2003, pp. 1-11.
[http://dx.doi.org/10.1002/047126363X.agr185]
[91]
Wright, A.V.; Nuñez, J.K.; Doudna, J.A. Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell, 2016, 164(1-2), 29-44.
[http://dx.doi.org/10.1016/j.cell.2015.12.035] [PMID: 26771484]
[92]
Xu, X.; Qi, L.S. A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol., 2019, 431(1), 34-47.
[http://dx.doi.org/10.1016/j.jmb.2018.06.037] [PMID: 29958882]
[93]
Yadav, S.K.; Soni, R.; Rajput, A.S. Role of microbes in organic farming for sustainable agro-ecosystem. Microorganisms for Green Revolution; Panpatte, D.G.; Jhala, Y.K.; Shelat, H.N.; Vyas, R.V., eds.: Singapore , 2018; Vol. 7, pp. 241-252.
[http://dx.doi.org/10.1007/978-981-10-7146-1_12]
[94]
Young, C.-C.; Rekha, P.D.; Lai, W.-A.; Arun, A.B. Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol. Bioeng., 2006, 95(1), 76-83.
[http://dx.doi.org/10.1002/bit.20957] [PMID: 16619210]
[95]
Zahran, E.; Sauerborn, J.; Abbasher, A.A.; Ahmed, E.A.; Mohukker, R.I.; Karlovsky, P.; Mohamed, E.A.; Müller-Stöver, D. “Pesta” and alginate delivery systems of Fusarium Spp. for biological control of Striga hermonthica (Del.) Benth. under sudanese field conditions. Biol. Control, 2008, 44(2), 160-168.
[http://dx.doi.org/10.1016/j.biocontrol.2007.10.025]
[96]
Zeilinger, S.; Gupta, V.K.; Dahms, T.E.; Silva, R.N.; Singh, H.B.; Upadhyay, R.S.; Gomes, E.V.; Tsui, C.K.; Nayak, S. C. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol. Rev., 2016, 40(2), 182-207.
[http://dx.doi.org/10.1093/femsre/fuv045] [PMID: 26591004]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 5
Year: 2020
Published on: 04 September, 2020
Page: [321 - 333]
Pages: 13
DOI: 10.2174/1389202921999200603165934
Price: $65

Article Metrics

PDF: 29
HTML: 2