A Comprehensive and Contemporary Review on Immunosuppression Therapy for Heart Transplantation

Author(s): Livia A. Goldraich, Santiago A. Tobar Leitão, Fernando L. Scolari, Fabiana G. Marcondes-Braga, Marcely G. Bonatto, Dipika Munyal, Jennifer Harrison, Rafaela V.P. Ribeiro, Estela Azeka, Diogo Piardi, Maria R. Costanzo, Nadine Clausell*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 28 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Heart transplantation is the standard of therapy for patients with end-stage heart disease. Since the first human-to-human heart transplantation, performed in 1967, advances in organ donation, surgical techniques, organ preservation, perioperative care, immunologic risk assessment, immunosuppression agents, monitoring of graft function and surveillance of long-term complications have drastically increased recipient survival. However, there are yet many challenges in the modern era of heart transplantation in which immunosuppression may play a key role in further advances in the field. A fine-tuning of immune modulation to prevent graft rejection while avoiding side effects from over immunosuppression has been the vital goal of basic and clinical research. Individualization of drug choices and strategies, taking into account the recipient's clinical characteristics, underlying heart failure diagnosis, immunologic risk and comorbidities seem to be the ideal approaches to improve post-transplant morbidity and survival while preventing both rejection and complications of immunosuppression.

The aim of the present review is to provide a practical, comprehensive overview of contemporary immunosuppression in heart transplantation. Clinical evidence for immunosuppressive drugs is reviewed and practical approaches are provided. Cardiac allograft rejection classification and up-to-date management are summarized. Expanding therapies, such as photophoresis, are outlined. Drug-to-drug interactions of immunosuppressive agents focused on cardiovascular medications are summarized. Special situations involving heart transplantation such as sarcoidosis, Chagas diseases and pediatric immunosuppression are also reviewed. The evolution of phamacogenomics to individualize immunosuppressive therapy is described. Finally, future perspectives in the field of immunosuppression in heart transplantation are highlighted.

Keywords: Heart transplantation, immunosuppression, clinical management, rejection, drug interactions, pharmacogenomics.

[1]
Lund LH, Khush KK, Cherikh WS, et al. The registry of the international society for heart and lung transplantation: thirty-fourth adult heart transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant 2017; 36(10): 1037-46.
[http://dx.doi.org/10.1016/j.healun.2017.07.019] [PMID: 28779893]
[2]
Stehlik J, Kobashigawa J, Hunt SA, Reichenspurner H, Kirklin JK. honoring 50 years of clinical heart transplantation in circulation: in depth state-of-the-art review. Circulation 2018; 137(1): 71-87.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029753] [PMID: 29279339]
[3]
Mehra MR. Heart transplantation at 50. Lancet 2017; 390(10111): e43-5.
[http://dx.doi.org/10.1016/S0140-6736(17)33093-3] [PMID: 29208305]
[4]
Swanevelder JLC, Gordon PC, Brink JG, Gutsche JT, Dyer RA, Augoustides JG. Fifty years: reflections since the first successful heart transplant. J Cardiothorac Vasc Anesth 2018; 32(1): 14-8.
[http://dx.doi.org/10.1053/j.jvca.2017.10.028] [PMID: 29196138]
[5]
Madsen JC. Advances in the immunology of heart transplantation. J Heart Lung Transplant 2017; 36(12): 1299-305.
[http://dx.doi.org/10.1016/j.healun.2017.10.003] [PMID: 29173391]
[6]
Burchill LJ, Edwards LB, Dipchand AI, Stehlik J, Ross HJ. Impact of adult congenital heart disease on survival and mortality after heart transplantation. J Heart Lung Transplant 2014; 33(11): 1157-63.
[http://dx.doi.org/10.1016/j.healun.2014.05.007] [PMID: 25049065]
[7]
DePasquale EC, Nasir K, Jacoby DL. Outcomes of adults with restrictive cardiomyopathy after heart transplantation. J Heart Lung Transplant 2012; 31(12): 1269-75.
[http://dx.doi.org/10.1016/j.healun.2012.09.018] [PMID: 23079066]
[8]
Davis MK, Lee PH, Witteles RM. Changing outcomes after heart transplantation in patients with amyloid cardiomyopathy. J Heart Lung Transplant 2015; 34(5): 658-66.
[http://dx.doi.org/10.1016/j.healun.2014.09.006] [PMID: 25444369]
[9]
Rana A, Gruessner A, Agopian VG, et al. Survival benefit of solid organ transplant in the United States. JAMA Surg 2015; 150(3): 252-9.
[http://dx.doi.org/10.1001/jamasurg.2014.2038] [PMID: 25629390]
[10]
Wever-Pinzon O, Edwards LB, Taylor DO, et al. Association of recipient age and causes of heart transplant mortality: Implications for personalization of post-transplant management-An analysis of the International Society for Heart and Lung Transplantation Registry. J Heart Lung Transplant 2017; 36(4): 407-17.
[http://dx.doi.org/10.1016/j.healun.2016.08.008] [PMID: 27686602]
[11]
Kobashigawa J. Clinical trials in heart transplantation: The evolution of evidence in immunosuppression. J Heart Lung Transplant 2017; 36(12): 1286-90.
[http://dx.doi.org/10.1016/j.healun.2017.10.009] [PMID: 29173388]
[12]
Kobashigawa J, Miller L, Renlund D, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Transplantation 1998; 66(4): 507-15.
[http://dx.doi.org/10.1097/00007890-199808270-00016] [PMID: 9734496]
[13]
Reichart B, Meiser B, Viganò M, et al. European multicenter tacrolimus (fk506) heart pilot study: one-year results--european tacrolimus multicenter heart study group. J Heart Lung Transplant 1998; 17(8): 775-81.
[PMID: 9730426]
[14]
Taylor DO, Barr ML, Radovancevic B, et al. A randomized, multicenter comparison of tacrolimus and cyclosporine immunosuppressive regimens in cardiac transplantation: decreased hyperlipidemia and hypertension with tacrolimus. J Heart Lung Transplant 1999; 18(4): 336-45.
[http://dx.doi.org/10.1016/S1053-2498(98)00060-6] [PMID: 10226898]
[15]
Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 2003; 349(9): 847-58.
[http://dx.doi.org/10.1056/NEJMoa022171] [PMID: 12944570]
[16]
Kobashigawa JA, Miller LW, Russell SD, et al. Tacrolimus with mycophenolate mofetil (MMF) or sirolimus vs. cyclosporine with MMF in cardiac transplant patients: 1-year report. Am J Transplant 2006; 6(6): 1377-86.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01290.x] [PMID: 16686761]
[17]
Grimm M, Rinaldi M, Yonan NA, et al. Superior prevention of acute rejection by tacrolimus vs. cyclosporine in heart transplant recipients--a large European trial. Am J Transplant 2006; 6(6): 1387-97.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01300.x] [PMID: 16686762]
[18]
Baran DA, Zucker MJ, Arroyo LH, et al. Randomized trial of tacrolimus monotherapy: tacrolimus in combination, tacrolimus alone compared (the TICTAC trial). J Heart Lung Transplant 2007; 26(10): 992-7.
[http://dx.doi.org/10.1016/j.healun.2007.07.022] [PMID: 17919618]
[19]
Lehmkuhl HB, Arizon J, Viganò M, et al. Everolimus with reduced cyclosporine versus MMF with standard cyclosporine in de novo heart transplant recipients. Transplantation 2009; 88(1): 115-22.
[http://dx.doi.org/10.1097/TP.0b013e3181aacd22] [PMID: 19584690]
[20]
Baran DA, Zucker MJ, Arroyo LH, et al. A prospective, randomized trial of single-drug versus dual-drug immunosuppression in heart transplantation: the tacrolimus in combination, tacrolimus alone compared (TICTAC) trial. Circ Heart Fail 2011; 4(2): 129-37.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.110.958520] [PMID: 21216835]
[21]
Eisen HJ, Kobashigawa J, Starling RC, et al. Everolimus versus mycophenolate mofetil in heart transplantation: a randomized, multicenter trial. Am J Transplant 2013; 13(5): 1203-16.
[http://dx.doi.org/10.1111/ajt.12181] [PMID: 23433101]
[22]
Andreassen AK, Andersson B, Gustafsson F, et al. Everolimus initiation and early calcineurin inhibitor withdrawal in heart transplant recipients: a randomized trial. Am J Transplant 2014; 14(8): 1828-38.
[http://dx.doi.org/10.1111/ajt.12809] [PMID: 25041227]
[23]
Baran DA. Induction therapy in cardiac transplantation: when and why? Heart Fail Clin 2007; 3(1): 31-41.
[http://dx.doi.org/10.1016/j.hfc.2007.02.009] [PMID: 17545007]
[24]
Briasoulis A, Inampudi C, Pala M, Asleh R, Alvarez P, Bhama J. Induction immunosuppressive therapy in cardiac transplantation: a systematic review and meta-analysis. Heart Fail Rev 2018; 23(5): 641-9.
[http://dx.doi.org/10.1007/s10741-018-9691-2] [PMID: 29532201]
[25]
Ansari D, Lund LH, Stehlik J, et al. Induction with anti-thymocyte globulin in heart transplantation is associated with better long-term survival compared with basiliximab. J Heart Lung Transplant 2015; 34(10): 1283-91.
[http://dx.doi.org/10.1016/j.healun.2015.04.001] [PMID: 26087667]
[26]
Ruan V, Czer LS, Awad M, et al. Use of anti-thymocyte globulin for induction therapy in cardiac transplantation: A Review. Transplant Proc 2017; 49(2): 253-9.
[http://dx.doi.org/10.1016/j.transproceed.2016.11.034] [PMID: 28219580]
[27]
Thiyagarajan UM, Ponnuswamy A, Bagul A. Thymoglobulin and its use in renal transplantation: a review. Am J Nephrol 2013; 37(6): 586-601.
[http://dx.doi.org/10.1159/000351643] [PMID: 23774740]
[28]
Aliabadi A, Grömmer M, Zuckermann A. Is induction therapy still needed in heart transplantation? Curr Opin Organ Transplant 2011; 16(5): 536-42.
[http://dx.doi.org/10.1097/MOT.0b013e32834a8c61] [PMID: 21836518]
[29]
Laftavi MR, Patel S, Soliman MR, et al. Low-dose thymoglobulin use in elderly renal transplant recipients is safe and effective induction therapy. Transplant Proc 2011; 43(2): 466-8.
[http://dx.doi.org/10.1016/j.transproceed.2011.01.039] [PMID: 21440735]
[30]
Clesca P, Dirlando M, Park SI, et al. Thymoglobulin and rate of infectious complications after transplantation. Transplant Proc 2007; 39(2): 463-4.
[http://dx.doi.org/10.1016/j.transproceed.2007.01.024] [PMID: 17362760]
[31]
Zuckermann A, Schulz U, Deuse T, et al. Thymoglobulin induction in heart transplantation: patient selection and implications for maintenance immunosuppression. Transpl Int 2015; 28(3): 259-69.
[http://dx.doi.org/10.1111/tri.12480] [PMID: 25363471]
[32]
Uber WE, Uber LA, VanBakel AB, et al. CD3 monitoring and thymoglobulin therapy in cardiac transplantation: clinical outcomes and pharmacoeconomic implications. Transplant Proc 2004; 36(10): 3245-9.
[http://dx.doi.org/10.1016/j.transproceed.2004.11.099] [PMID: 15686739]
[33]
McKeage K, McCormack PL. Basiliximab: a review of its use as induction therapy in renal transplantation. BioDrugs 2010; 24(1): 55-76.
[http://dx.doi.org/10.2165/11203990-000000000-00000] [PMID: 20055533]
[34]
Whitson BA, Kilic A, Lehman A, et al. Impact of induction immunosuppression on survival in heart transplant recipients: a contemporary analysis of agents. Clin Transplant 2015; 29(1): 9-17.
[http://dx.doi.org/10.1111/ctr.12469] [PMID: 25284138]
[35]
Higgins R, Kirklin JK, Brown RN, et al. To induce or not to induce: do patients at greatest risk for fatal rejection benefit from cytolytic induction therapy? J Heart Lung Transplant 2005; 24(4): 392-400.
[http://dx.doi.org/10.1016/j.healun.2004.01.002] [PMID: 15797738]
[36]
Emin A, Rogers CA, Thekkudan J, Bonser RS, Banner NR. Antithymocyte globulin induction therapy for adult heart transplantation: a UK national study. J Heart Lung Transplant 2011; 30(7): 770-7.
[http://dx.doi.org/10.1016/j.healun.2011.01.716] [PMID: 21444210]
[37]
Azarbal B, Cheng R, Vanichsarn C, et al. Induction therapy with antithymocyte globulin in patients undergoing cardiac transplantation is associated with decreased coronary plaque progression as assessed by intravascular ultrasound. Circ Heart Fail 2016; 9(1) e002252
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002252] [PMID: 26747860]
[38]
Hertig A, Zuckermann A. Rabbit antithymocyte globulin induction and risk of post-transplant lymphoproliferative disease in adult and pediatric solid organ transplantation: An update. Transpl Immunol 2015; 32(3): 179-87.
[http://dx.doi.org/10.1016/j.trim.2015.04.003] [PMID: 25936966]
[39]
Borel JF, Feurer C, Gubler HU, Stähelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 1976; 6(4): 468-75.
[http://dx.doi.org/10.1007/BF01973261] [PMID: 8969]
[40]
Cheung A, Menkis AH. Cyclosporine heart transplantation. Transplant Proc 1998; 30(5): 1881-4.
[http://dx.doi.org/10.1016/S0041-1345(98)00469-2] [PMID: 9723320]
[41]
Hess AD, Tutschka PJ, Santos GW. Effect of cyclosporin A on human lymphocyte responses in vitro. III. CsA inhibits the production of T lymphocyte growth factors in secondary mixed lymphocyte responses but does not inhibit the response of primed lymphocytes to TCGF. J Immunol 1982; 128(1): 355-9.
[PMID: 6459374]
[42]
Cohen DJ, Loertscher R, Rubin MF, Tilney NL, Carpenter CB, Strom TB. Cyclosporine: a new immunosuppressive agent for organ transplantation. Ann Intern Med 1984; 101(5): 667-82.
[http://dx.doi.org/10.7326/0003-4819-101-5-667] [PMID: 6385799]
[43]
Kahan BD. Immunosuppressive therapy with cyclosporine for cardiac transplantation. Circulation 1987; 75(1): 40-56.
[http://dx.doi.org/10.1161/01.CIR.75.1.40] [PMID: 3539397]
[44]
Seydoux C, Stumpe F, Hurni M, et al. Renal function one year after switching from Sandimmun to Neoral. Clin Transplant 1999; 13(6): 461-4.
[http://dx.doi.org/10.1034/j.1399-0012.1999.130604.x] [PMID: 10617234]
[45]
Leet A, Richardson M, Senior JA, et al. A bioavailability study of cyclosporine: comparison of Neoral versus Cysporin in stable heart transplant recipients. J Heart Lung Transplant 2009; 28(9): 894-8.
[http://dx.doi.org/10.1016/j.healun.2009.05.015] [PMID: 19716041]
[46]
Davies RA, Veinot JP, Williams K, et al. Assessment of cyclosporine pharmacokinetic parameters to facilitate conversion from C0 to C2 monitoring in heart transplant recipients. Transplant Proc 2007; 39(10): 3334-9.
[http://dx.doi.org/10.1016/j.transproceed.2007.08.109] [PMID: 18089382]
[47]
Iversen M, Nilsson F, Sipponen J, et al. Cyclosporine C2 levels have impact on incidence of rejection in de novo lung but not heart transplant recipients: the NOCTURNE study. J Heart Lung Transplant 2009; 28(9): 919-26.
[http://dx.doi.org/10.1016/j.healun.2009.05.022] [PMID: 19716045]
[48]
Jia Y, Meng X, Li Y, et al. Optimal sampling time-point for cyclosporin A concentration monitoring in heart transplant recipients. Exp Ther Med 2018; 16(5): 4265-70.
[http://dx.doi.org/10.3892/etm.2018.6711] [PMID: 30402164]
[49]
Emery RW, Cork R, Christensen R, et al. Cardiac transplant patient at one year. Cyclosporine vs conventional immunosuppression. Chest 1986; 90(1): 29-33.
[http://dx.doi.org/10.1378/chest.90.1.29] [PMID: 3522120]
[50]
Okereke OU, Frazier OH, Cooley DA, Waldenberger F, Radovancevic B. Cardiac transplantation: current results at the Texas heart institute. Tex Heart Inst J 1984; 11(3): 228-32.
[PMID: 15227054]
[51]
Devineni R, McKenzie N, Keown P, Kostuk W, Stiller C, Silver M. Cyclosporine in cardiac transplantation. Can J Surg 1984; 27(3): 252-4.
[PMID: 6232993]
[52]
Yacoub MH, Reid CJ, Al-Khadimi RH, Radley-Smith R. Cardiac transplantation--the London experience. Z Kardiol 1985; 74(Suppl. 6): 45-50.
[PMID: 3913179]
[53]
Goldman MH, Barnhart G, Mohanakumar T, et al. Cyclosporine in cardiac transplantation. Surg Clin North Am 1985; 65(3): 637-59.
[http://dx.doi.org/10.1016/S0039-6109(16)43641-8] [PMID: 3898434]
[54]
Barnhart GR, Hastillo A, Goldman MH, et al. A prospective randomized trial of pretransfusion/azathioprine/prednisone versus cyclosporine/prednisone immunosuppression in cardiac transplant recipients: preliminary results. Circulation 1985; 72(3 Pt 2): II227-30.
[PMID: 3896555]
[55]
Seydoux C, Stumpe F, Hurni M, et al. Effects of cyclosporine A monotherapy on the incidence of rejection and infection episodes in heart transplant patients. Transplant Proc 1998; 30(8): 4037-43.
[http://dx.doi.org/10.1016/S0041-1345(98)01331-1] [PMID: 9865288]
[56]
Angermann CE, Störk S, Costard-Jäckle A, et al. Reduction of cyclosporine after introduction of mycophenolate mofetil improves chronic renal dysfunction in heart transplant recipients--the IMPROVED multi-centre study. Eur Heart J 2004; 25(18): 1626-34.
[http://dx.doi.org/10.1016/j.ehj.2004.06.032] [PMID: 15351162]
[57]
Boissonnat P, Gaillard S, Mercier C, et al. Impact of the early reduction of cyclosporine on renal function in heart transplant patients: a French randomised controlled trial. Trials 2012; 13: 231.
[http://dx.doi.org/10.1186/1745-6215-13-231] [PMID: 23206408]
[58]
Bunke M, Sloan R, Brier M, Ganzel B. An improved glomerular filtration rate in cardiac transplant recipients with once-a-day cyclosporine dosing. Transplantation 1995; 59(4): 537-40.
[http://dx.doi.org/10.1097/00007890-199502270-00017] [PMID: 7878758]
[59]
Patel JK, Kobashigawa JA. Tacrolimus in cardiac transplantation. Expert Rev Clin Immunol 2007; 3(2): 131-8.
[http://dx.doi.org/10.1586/1744666X.3.2.131] [PMID: 20477102]
[60]
Meiser BM, Uberfuhr P, Fuchs A, et al. Single-center randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of acute myocardial rejection. J Heart Lung Transplant 1998; 17(8): 782-8.
[PMID: 9730427]
[61]
Alloway R, Vanhaecke J, Yonan N, et al. Pharmacokinetics in stable heart transplant recipients after conversion from twice-daily to once-daily tacrolimus formulations. J Heart Lung Transplant 2011; 30(9): 1003-10.
[http://dx.doi.org/10.1016/j.healun.2011.02.008] [PMID: 21493098]
[62]
Fuchs U, Zittermann A, Ensminger S, et al. Clinical outcome in cardiac transplant recipients receiving tacrolimus retard. Transplant Proc 2013; 45(5): 2000-4.
[http://dx.doi.org/10.1016/j.transproceed.2013.01.044] [PMID: 23769094]
[63]
Doligalski CT, Liu EC, Sammons CM, Silverman A, Logan AT. Sublingual administration of tacrolimus: current trends and available evidence. Pharmacotherapy 2014; 34(11): 1209-19.
[http://dx.doi.org/10.1002/phar.1492] [PMID: 25251980]
[64]
Mancinelli LM, Frassetto L, Floren LC, et al. The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups. Clin Pharmacol Ther 2001; 69(1): 24-31.
[http://dx.doi.org/10.1067/mcp.2001.113183] [PMID: 11180035]
[65]
Masuda S, Inui K. An up-date review on individualized dosage adjustment of calcineurin inhibitors in organ transplant patients. Pharmacol Ther 2006; 112(1): 184-98.
[http://dx.doi.org/10.1016/j.pharmthera.2006.04.006] [PMID: 16759707]
[66]
Rinaldi M, Pellegrini C, Martinelli L, et al. FK506 effectiveness in reducing acute rejection after heart transplantation: a prospective randomized study. J Heart Lung Transplant 1997; 16(10): 1001-10.
[PMID: 9361242]
[67]
Wang CH, Ko WJ, Chou NK, Wang SS. Efficacy and safety of tacrolimus versus cyclosporine microemulsion in primary cardiac transplant recipients: 6-month results in Taiwan. Transplant Proc 2004; 36(8): 2384-5.
[http://dx.doi.org/10.1016/j.transproceed.2004.08.059] [PMID: 15561256]
[68]
Meiser BM, Groetzner J, Kaczmarek I, et al. Tacrolimus or cyclosporine: which is the better partner for mycophenolate mofetil in heart transplant recipients? Transplantation 2004; 78(4): 591-8.
[http://dx.doi.org/10.1097/01.TP.0000129814.52456.25] [PMID: 15446320]
[69]
Kobashigawa JA, Patel J, Furukawa H, et al. Five-year results of a randomized, single-center study of tacrolimus vs microemulsion cyclosporine in heart transplant patients. J Heart Lung Transplant 2006; 25(4): 434-9.
[http://dx.doi.org/10.1016/j.healun.2005.11.452] [PMID: 16563974]
[70]
Penninga L, Møller CH, Gustafsson F, Steinbrüchel DA, Gluud C. Tacrolimus versus cyclosporine as primary immunosuppression after heart transplantation: systematic review with meta-analyses and trial sequential analyses of randomised trials. Eur J Clin Pharmacol 2010; 66(12): 1177-87.
[http://dx.doi.org/10.1007/s00228-010-0902-6] [PMID: 20882273]
[71]
Baran DA, et al. TICTAC 10: Ten year follow-up of the tacrolimus in combination tacrolimus alone compared trial. J Heart Lung Transplant 2018; 37(4): S18-9.
[http://dx.doi.org/10.1016/j.healun.2018.01.023]
[72]
Olivari MT, Kubo SH, Braunlin EA, Bolman RM, Ring WS. Five-year experience with triple-drug immunosuppressive therapy in cardiac transplantation. Circulation 1990; 82(5)(Suppl.): IV276-80.
[PMID: 2225416]
[73]
Lindenfeld J, Miller GG, Shakar SF, et al. Drug therapy in the heart transplant recipient: part II: immunosuppressive drugs. Circulation 2004; 110(25): 3858-65.
[http://dx.doi.org/10.1161/01.CIR.0000150332.42276.69] [PMID: 15611389]
[74]
Na R, Laaksonen MA, Grulich AE, et al. High azathioprine dose and lip cancer risk in liver, heart, and lung transplant recipients: A population-based cohort study. J Am Acad Dermatol 2016; 74(6): 1144-52.e6.
[75]
el-Gamel A, Evans C, Keevil B, et al. Effect of allopurinol on the metabolism of azathioprine in heart transplant patients. Transplant Proc 1998; 30(4): 1127-9.
[http://dx.doi.org/10.1016/S0041-1345(98)00179-1] [PMID: 9636457]
[76]
Ensley RD, Bristow MR, Olsen SL, et al. The use of mycophenolate mofetil (RS-61443) in human heart transplant recipients. Transplantation 1993; 56(1): 75-82.
[http://dx.doi.org/10.1097/00007890-199307000-00013] [PMID: 8333071]
[77]
Kobashigawa JA, Renlund DG, Gerosa G, et al. Similar efficacy and safety of enteric-coated mycophenolate sodium (EC-MPS, myfortic) compared with mycophenolate mofetil (MMF) in de novo heart transplant recipients: results of a 12-month, single-blind, randomized, parallel-group, multicenter study. J Heart Lung Transplant 2006; 25(8): 935-41.
[http://dx.doi.org/10.1016/j.healun.2006.04.005] [PMID: 16890114]
[78]
Dandel M, Jasaityte R, Lehmkuhl H, Knosalla C, Hetzer R. Maintenance immunosuppression with mycophenolate mofetil: long-term efficacy and safety after heart transplantation. Transplant Proc 2009; 41(6): 2585-8.
[http://dx.doi.org/10.1016/j.transproceed.2009.06.031] [PMID: 19715979]
[79]
Kobashigawa JA, Meiser BM. Review of major clinical trials with mycophenolate mofetil in cardiac transplantation. Transplantation 2005; 80(2)(Suppl.): S235-43.
[http://dx.doi.org/10.1097/01.tp.0000186383.22264.b3] [PMID: 16251856]
[80]
O’Neill JO, Edwards LB, Taylor DO. Mycophenolate mofetil and risk of developing malignancy after orthotopic heart transplantation: analysis of the transplant registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2006; 25(10): 1186-91.
[http://dx.doi.org/10.1016/j.healun.2006.06.010] [PMID: 17045930]
[81]
Kobashigawa JA, Tobis JM, Mentzer RM, et al. Mycophenolate mofetil reduces intimal thickness by intravascular ultrasound after heart transplant: reanalysis of the multicenter trial. Am J Transplant 2006; 6(5 Pt 1): 993-7.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01297.x] [PMID: 16611335]
[82]
Zuk DM, Pearson GJ. Monitoring of mycophenolate mofetil in orthotopic heart transplant recipients--a systematic review. Transplant Rev (Orlando) 2009; 23(3): 171-7.
[http://dx.doi.org/10.1016/j.trre.2009.02.002] [PMID: 19345081]
[83]
Figurski MJ, Pawiński T, Goldberg LR, et al. Pharmacokinetic monitoring of mycophenolic acid in heart transplant patients: correlation the side-effects and rejections with pharmacokinetic parameters. Ann Transplant 2012; 17(1): 68-78.
[http://dx.doi.org/10.12659/AOT.882638] [PMID: 22466911]
[84]
Yamani MH, Starling RC, Goormastic M, et al. The impact of routine mycophenolate mofetil drug monitoring on the treatment of cardiac allograft rejection. Transplantation 2000; 69(11): 2326-30.
[http://dx.doi.org/10.1097/00007890-200006150-00018] [PMID: 10868634]
[85]
Meiser BM, Pfeiffer M, Schmidt D, et al. Combination therapy with tacrolimus and mycophenolate mofetil following cardiac transplantation: importance of mycophenolic acid therapeutic drug monitoring. J Heart Lung Transplant 1999; 18(2): 143-9.
[http://dx.doi.org/10.1016/S1053-2498(98)00002-3] [PMID: 10194038]
[86]
Kuypers DR, Le Meur Y, Cantarovich M, et al. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol 2010; 5(2): 341-58.
[http://dx.doi.org/10.2215/CJN.07111009] [PMID: 20056756]
[87]
Lee S, de Boer WB, Subramaniam K, Kumarasinghe MP. Pointers and pitfalls of mycophenolate-associated colitis. J Clin Pathol 2013; 66(1): 8-11.
[http://dx.doi.org/10.1136/jclinpath-2012-200888] [PMID: 23038687]
[88]
Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28(10): 721-6.
[http://dx.doi.org/10.7164/antibiotics.28.721] [PMID: 1102508]
[89]
Fine NM, Kushwaha SS. Recent advances in mammalian target of rapamycin inhibitor use in heart and lung transplantation. Transplantation 2016; 100(12): 2558-68.
[http://dx.doi.org/10.1097/TP.0000000000001432] [PMID: 27495747]
[90]
Mancini D, Pinney S, Burkhoff D, et al. Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation 2003; 108(1): 48-53.
[http://dx.doi.org/10.1161/01.CIR.0000070421.38604.2B] [PMID: 12742978]
[91]
Keogh A, Richardson M, Ruygrok P, et al. Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation 2004; 110(17): 2694-700.
[http://dx.doi.org/10.1161/01.CIR.0000136812.90177.94] [PMID: 15262845]
[92]
Guethoff S, Stroeh K, Grinninger C, et al. De novo sirolimus with low-dose tacrolimus versus full-dose tacrolimus with mycophenolate mofetil after heart transplantation--8-year results. J Heart Lung Transplant 2015; 34(5): 634-42.
[http://dx.doi.org/10.1016/j.healun.2014.11.025] [PMID: 25701373]
[93]
Gullestad L, Iversen M, Mortensen SA, et al. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial. Transplantation 2010; 89(7): 864-72.
[http://dx.doi.org/10.1097/TP.0b013e3181cbac2d] [PMID: 20061999]
[94]
Gullestad L, Eiskjaer H, Gustafsson F, et al. Long-term outcomes of thoracic transplant recipients following conversion to everolimus with reduced calcineurin inhibitor in a multicenter, open-label, randomized trial. Transpl Int 2016; 29(7): 819-29.
[http://dx.doi.org/10.1111/tri.12783] [PMID: 27067532]
[95]
Gullestad L, Mortensen SA, Eiskjær H, et al. Two-year outcomes in thoracic transplant recipients after conversion to everolimus with reduced calcineurin inhibitor within a multicenter, open-label, randomized trial. Transplantation 2010; 90(12): 1581-9.
[http://dx.doi.org/10.1097/TP.0b013e3181fd01b7] [PMID: 21030905]
[96]
Andreassen AK, Andersson B, Gustafsson F, et al. Everolimus initiation with early calcineurin inhibitor withdrawal in de novo heart transplant recipients: three-year results from the randomized SCHEDULE study. Am J Transplant 2016; 16(4): 1238-47.
[http://dx.doi.org/10.1111/ajt.13588] [PMID: 26820618]
[97]
Thibodeau JT, Mishkin JD, Patel PC, et al. Tolerability of sirolimus: a decade of experience at a single cardiac transplant center. Clin Transplant 2013; 27(6): 945-52.
[http://dx.doi.org/10.1111/ctr.12269] [PMID: 24304376]
[98]
Gonzalez-Vilchez F, Vazquez de Prada JA, Almenar L, et al. Withdrawal of proliferation signal inhibitors due to adverse events in the maintenance phase of heart transplantation. J Heart Lung Transplant 2012; 31(3): 288-95.
[http://dx.doi.org/10.1016/j.healun.2011.10.011] [PMID: 22133787]
[99]
Zucker MJ, Baran DA, Arroyo LH, et al. De novo immunosuppression with sirolimus and tacrolimus in heart transplant recipients compared with cyclosporine and mycophenolate mofetil: a one-year follow-up analysis. Transplant Proc 2005; 37(5): 2231-9.
[http://dx.doi.org/10.1016/j.transproceed.2005.03.086] [PMID: 15964386]
[100]
Kuppahally S, Al-Khaldi A, Weisshaar D, et al. Wound healing complications with de novo sirolimus versus mycophenolate mofetil-based regimen in cardiac transplant recipients. Am J Transplant 2006; 6(5 Pt 1): 986-92.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01282.x] [PMID: 16611334]
[101]
Baraldo M, Gregoraci G, Livi U. Steroid-free and steroid withdrawal protocols in heart transplantation: the review of literature. Transpl Int 2014; 27(6): 515-29.
[http://dx.doi.org/10.1111/tri.12309] [PMID: 24617420]
[102]
Crespo Leiro MG, Bonet LA, Paniagua Martín MJ, et al. Steroid withdrawal during 5 years following heart transplantation, and the relationship between steroid dosage at 1-year follow-up and complications during the next 2 years: results from the RESTCO study. Transplant Proc 2012; 44(9): 2631-4.
[http://dx.doi.org/10.1016/j.transproceed.2012.09.104] [PMID: 23146478]
[103]
Mehra MR, Uber PA, Park MH, Ventura HO, Scott RL. Corticosteroid weaning in the tacrolimus and mycophenolate era in heart transplantation: clinical and neurohormonal benefits. Transplant Proc 2004; 36(10): 3152-5.
[http://dx.doi.org/10.1016/j.transproceed.2004.11.089] [PMID: 15686716]
[104]
Lund LH, Edwards LB, Kucheryavaya AY, et al. The registry of the international society for heart and lung transplantation: thirtieth official adult heart transplant report--2013; focus theme: age. J Heart Lung Transplant 2013; 32(10): 951-64.
[http://dx.doi.org/10.1016/j.healun.2013.08.006] [PMID: 24054804]
[105]
Goldraich LA, Stehlik J, Cherikh WS, et al. Duration of corticosteroid use and long-term outcomes after adult heart transplantation: A contemporary analysis of the International Society for Heart and Lung Transplantation Registry. Clin Transplant 2018; 32(8) e13340
[http://dx.doi.org/10.1111/ctr.13340] [PMID: 29956385]
[106]
Elboudwarej O, Phan D, Patel JK, et al. Corticosteroid wean after heart transplantation-Is there a risk for antibody formation? Clin Transplant 2017; 31(4)
[http://dx.doi.org/10.1111/ctr.12916] [PMID: 28135788]
[107]
Knight SR, Morris PJ. Steroid sparing protocols following nonrenal transplants; the evidence is not there. A systematic review and meta-analysis. Transpl Int 2011; 24(12): 1198-207.
[http://dx.doi.org/10.1111/j.1432-2277.2011.01335.x] [PMID: 21923805]
[108]
Delgado Jiménez J, Almenar Bonet L, Paniagua Martín MJ, et al. Influence of steroid dosage, withdrawal, and reinstatement on survival after heart transplantation: results from the RESTCO study. Transplant Proc 2012; 44(9): 2679-81.
[http://dx.doi.org/10.1016/j.transproceed.2012.09.074] [PMID: 23146492]
[109]
Teuteberg JJ, Shullo M, Zomak R, McNamara D, McCurry K, Kormos RL. Aggressive steroid weaning after cardiac transplantation is possible without the additional risk of significant rejection. Clin Transplant 2008; 22(6): 730-7.
[http://dx.doi.org/10.1111/j.1399-0012.2008.00868.x] [PMID: 18673374]
[110]
Lund LH, Edwards LB, Kucheryavaya AY, et al. The registry of the international society for heart and lung transplantation: thirty second official adult heart transplantation report--2015; focus theme: early graft failure. J Heart Lung Transplant 2015; 34(10): 1244-54.
[http://dx.doi.org/10.1016/j.healun.2015.08.003] [PMID: 26454738]
[111]
Hill DA, Drazner MH, de Lemos JA. Do established biomarkers such as B-type natriuretic peptide and troponin predict rejection? Curr Opin Organ Transplant 2013; 18(5): 581-8.
[http://dx.doi.org/10.1097/MOT.0b013e328364fe23] [PMID: 23995368]
[112]
Pham MX, Teuteberg JJ, Kfoury AG, et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med 2010; 362(20): 1890-900.
[http://dx.doi.org/10.1056/NEJMoa0912965] [PMID: 20413602]
[113]
Kobashigawa J, Patel J, Azarbal B, et al. Randomized pilot trial of gene expression profiling versus heart biopsy in the first year after heart transplant: early invasive monitoring attenuation through gene expression trial. Circ Heart Fail 2015; 8(3): 557-64.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.114.001658] [PMID: 25697852]
[114]
Stewart S, Winters GL, Fishbein MC, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant 2005; 24(11): 1710-20.
[http://dx.doi.org/10.1016/j.healun.2005.03.019] [PMID: 16297770]
[115]
Costanzo MR, Dipchand A, Starling R, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant 2010; 29(8): 914-56.
[http://dx.doi.org/10.1016/j.healun.2010.05.034] [PMID: 20643330]
[116]
Khush KK, Patel J, Pinney S, et al. Noninvasive detection of graft injury after heart transplant using donor-derived cell-free DNA: A prospective multicenter study. Am J Transplant 2019; 19(10): 2889-99.
[http://dx.doi.org/10.1111/ajt.15339] [PMID: 30835940]
[117]
Michaels PJ, Espejo ML, Kobashigawa J, et al. Humoral rejection in cardiac transplantation: risk factors, hemodynamic consequences and relationship to transplant coronary artery disease. J Heart Lung Transplant 2003; 22(1): 58-69.
[http://dx.doi.org/10.1016/S1053-2498(02)00472-2] [PMID: 12531414]
[118]
Reed EF, Demetris AJ, Hammond E, et al. Acute antibody mediated rejection of cardiac transplants. J Heart Lung Transplant 2006; 25(2): 153-9.
[http://dx.doi.org/10.1016/j.healun.2005.09.003] [PMID: 16446213]
[119]
Leech SH, Rubin S, Eisen HJ, et al. Cardiac transplantation across a positive prospective lymphocyte cross-match in sensitized recipients. Clin Transplant 2003; 17(Suppl. 9): 17-26.
[http://dx.doi.org/10.1034/j.1399-0012.17.s9.3.x] [PMID: 12795663]
[120]
Hodges AM, Lyster H, McDermott A, et al. Late antibody-mediated rejection after heart transplantation following the development of de novo donor-specific human leukocyte antigen antibody. Transplantation 2012; 93(6): 650-6.
[http://dx.doi.org/10.1097/TP.0b013e318244f7b8] [PMID: 22245878]
[121]
Kobashigawa J, Crespo-Leiro MG, Ensminger SM, et al. Report from a consensus conference on antibody-mediated rejection in heart transplantation. J Heart Lung Transplant 2011; 30(3): 252-69.
[http://dx.doi.org/10.1016/j.healun.2010.11.003] [PMID: 21300295]
[122]
Berry GJ, Burke MM, Andersen C, et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J Heart Lung Transplant 2013; 32(12): 1147-62.
[http://dx.doi.org/10.1016/j.healun.2013.08.011] [PMID: 24263017]
[123]
Kobashigawa J, Colvin M, Potena L, et al. The management of antibodies in heart transplantation: An ISHLT consensus document. J Heart Lung Transplant 2018; 37(5): 537-47.
[http://dx.doi.org/10.1016/j.healun.2018.01.1291] [PMID: 29452978]
[124]
Kfoury AG, Miller DV, Snow GL, et al. Mixed cellular and antibody-mediated rejection in heart transplantation: In-depth pathologic and clinical observations. J Heart Lung Transplant 2016; 35(3): 335-41.
[http://dx.doi.org/10.1016/j.healun.2015.10.016] [PMID: 26586489]
[125]
Colvin MM, Cook JL, Chang P, et al. Antibody-mediated rejection in cardiac transplantation: emerging knowledge in diagnosis and management: a scientific statement from the American Heart Association. Circulation 2015; 131(18): 1608-39.
[http://dx.doi.org/10.1161/CIR.0000000000000093] [PMID: 25838326]
[126]
Kfoury AG, Hammond ME, Snow GL, et al. Cardiovascular mortality among heart transplant recipients with asymptomatic antibody-mediated or stable mixed cellular and antibody-mediated rejection. J Heart Lung Transplant 2009; 28(8): 781-4.
[http://dx.doi.org/10.1016/j.healun.2009.04.035] [PMID: 19632573]
[127]
Wang SS, Chou NK, Ko WJ, et al. Effect of plasmapheresis for acute humoral rejection after heart transplantation. Transplant Proc 2006; 38(10): 3692-4.
[http://dx.doi.org/10.1016/j.transproceed.2006.10.060] [PMID: 17175369]
[128]
Grauhan O, Knosalla C, Ewert R, et al. Plasmapheresis and cyclophosphamide in the treatment of humoral rejection after heart transplantation. J Heart Lung Transplant 2001; 20(3): 316-21.
[http://dx.doi.org/10.1016/S1053-2498(00)00211-4] [PMID: 11257558]
[129]
Crespo-Leiro MG, Veiga-Barreiro A, Doménech N, et al. Humoral heart rejection (severe allograft dysfunction with no signs of cellular rejection or ischemia): incidence, management, and the value of C4d for diagnosis. Am J Transplant 2005; 5(10): 2560-4.
[http://dx.doi.org/10.1111/j.1600-6143.2005.01039.x] [PMID: 16162208]
[130]
Aranda JM Jr, Scornik JC, Normann SJ, et al. Anti-CD20 monoclonal antibody (rituximab) therapy for acute cardiac humoral rejection: a case report. Transplantation 2002; 73(6): 907-10.
[http://dx.doi.org/10.1097/00007890-200203270-00013] [PMID: 11923690]
[131]
Garrett HE Jr, Duvall-Seaman D, Helsley B, Groshart K. Treatment of vascular rejection with rituximab in cardiac transplantation. J Heart Lung Transplant 2005; 24(9): 1337-42.
[http://dx.doi.org/10.1016/j.healun.2004.09.003] [PMID: 16143254]
[132]
Ravichandran AK, Schilling JD, Novak E, Pfeifer J, Ewald GA, Joseph SM. Rituximab is associated with improved survival in cardiac allograft patients with antibody-mediated rejection: a single center review. Clin Transplant 2013; 27(6): 961-7.
[http://dx.doi.org/10.1111/ctr.12277] [PMID: 24304378]
[133]
Balfour IC, Fiore A, Graff RJ, Knutsen AP. Use of rituximab to decrease panel-reactive antibodies. J Heart Lung Transplant 2005; 24(5): 628-30.
[http://dx.doi.org/10.1016/j.healun.2004.01.006] [PMID: 15896765]
[134]
McGee EC Jr, Cotts W, Tambur AR, et al. Successful bridge to transplant in a highly sensitized patient with a complicated pump pocket infection. J Heart Lung Transplant 2008; 27(5): 568-71.
[http://dx.doi.org/10.1016/j.healun.2008.02.006] [PMID: 18442726]
[135]
Perry DK, Burns JM, Pollinger HS, et al. Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production. Am J Transplant 2009; 9(1): 201-9.
[http://dx.doi.org/10.1111/j.1600-6143.2008.02461.x] [PMID: 18976291]
[136]
Sberro-Soussan R, Zuber J, Suberbielle-Boissel C, et al. Bortezomib as the sole post-renal transplantation desensitization agent does not decrease donor-specific anti-HLA antibodies. Am J Transplant 2010; 10(3): 681-6.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02968.x] [PMID: 20121729]
[137]
Eskandary F, Regele H, Baumann L, et al. A randomized trial of bortezomib in late antibody-mediated kidney transplant rejection. J Am Soc Nephrol 2018; 29(2): 591-605.
[http://dx.doi.org/10.1681/ASN.2017070818] [PMID: 29242250]
[138]
Gazdic T, Svobodova E, Kubanek M, et al. Bortezomib-containing regimen for primary treatment of early antibody-mediated cardiac allograft rejection: a case report. Prog Transplant 2015; 25(2): 147-52.
[http://dx.doi.org/10.7182/pit2015934] [PMID: 26107275]
[139]
Almuti K, Haythe J, Dwyer E, et al. The changing pattern of humoral rejection in cardiac transplant recipients. Transplantation 2007; 84(4): 498-503.
[http://dx.doi.org/10.1097/01.tp.0000278094.41131.9f] [PMID: 17713434]
[140]
Wan SS, Ying TD, Wyburn K, Roberts DM, Wyld M, Chadban SJ. The treatment of antibody-mediated rejection in kidney transplantation: an updated systematic review and meta-analysis. Transplantation 2018; 102(4): 557-68.
[http://dx.doi.org/10.1097/TP.0000000000002049] [PMID: 29315141]
[141]
Stegall MD, Diwan T, Raghavaiah S, et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant 2011; 11(11): 2405-13.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03757.x] [PMID: 21942930]
[142]
Kandolin R, Lehtonen J, Airaksinen J, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation 2015; 131(7): 624-32.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.011522] [PMID: 25527698]
[143]
Mehra MR, Canter CE, Hannan MM, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J Heart Lung Transplant 2016; 35(1): 1-23.
[http://dx.doi.org/10.1016/j.healun.2015.10.023] [PMID: 26776864]
[144]
Luk A, Metawee M, Ahn E, Gustafsson F, Ross H, Butany J. Do clinical diagnoses correlate with pathological diagnoses in cardiac transplant patients? The importance of endomyocardial biopsy. Can J Cardiol 2009; 25(2): e48-54.
[http://dx.doi.org/10.1016/S0828-282X(09)70484-2] [PMID: 19214301]
[145]
Roberts WC, Vowels TJ, Ko JM, Capehart JE, Hall SA. Cardiac transplantation for cardiac sarcoidosis with initial diagnosis by examination of the left ventricular apical “core” excised for insertion of a left ventricular assist device for severe chronic heart failure. Am J Cardiol 2009; 103(1): 110-4.
[http://dx.doi.org/10.1016/j.amjcard.2008.08.053] [PMID: 19101239]
[146]
Crawford TC, Okada DR, Magruder JT, et al. A contemporary analysis of heart transplantation and bridge-to-transplant mechanical circulatory support outcomes in cardiac sarcoidosis. J Card Fail 2018; 24(6): 384-91.
[http://dx.doi.org/10.1016/j.cardfail.2018.02.009] [PMID: 29482029]
[147]
Akashi H, Kato TS, Takayama H, et al. Outcome of patients with cardiac sarcoidosis undergoing cardiac transplantation--single center retrospective analysis. J Cardiol 2012; 60(5): 407-10.
[http://dx.doi.org/10.1016/j.jjcc.2012.07.013] [PMID: 22890069]
[148]
Zaidi AR, Zaidi A, Vaitkus PT. Outcome of heart transplantation in patients with sarcoid cardiomyopathy. J Heart Lung Transplant 2007; 26(7): 714-7.
[http://dx.doi.org/10.1016/j.healun.2007.05.006] [PMID: 17613402]
[149]
Bestetti RB. Chagas heart failure in patients from latin America. Card Fail Rev 2016; 2(2): 90-4.
[http://dx.doi.org/10.15420/cfr.2016:14:2] [PMID: 28785459]
[150]
Bocchi EA, Bestetti RB, Scanavacca MI, Cunha Neto E, Issa VS. Chronic chagas heart disease management: from etiology to cardiomyopathy treatment. J Am Coll Cardiol 2017; 70(12): 1510-24.
[http://dx.doi.org/10.1016/j.jacc.2017.08.004] [PMID: 28911515]
[151]
Bern C, Montgomery SP. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 2009; 49(5): e52-4.
[http://dx.doi.org/10.1086/605091] [PMID: 19640226]
[152]
Benatti RD, Al-Kindi SG, Bacal F, Oliveira GH. Heart transplant outcomes in patients with Chagas cardiomyopathy in the United States. Clin Transplant 2018; 32(6) e13279
[http://dx.doi.org/10.1111/ctr.13279] [PMID: 29744939]
[153]
Ayub-Ferreira SM, Mangini S, Issa VS, et al. Mode of death on Chagas heart disease: comparison with other etiologies. a subanalysis of the REMADHE prospective trial. PLoS Negl Trop Dis 2013; 7(4) e2176
[http://dx.doi.org/10.1371/journal.pntd.0002176] [PMID: 23638197]
[154]
Bestetti RB, Theodoropoulos TA. A systematic review of studies on heart transplantation for patients with end-stage Chagas’ heart disease. J Card Fail 2009; 15(3): 249-55.
[http://dx.doi.org/10.1016/j.cardfail.2008.10.023] [PMID: 19327627]
[155]
Fiorelli AI, Santos RH, Oliveira JL Jr, et al. Heart transplantation in 107 cases of Chagas’ disease. Transplant Proc 2011; 43(1): 220-4.
[http://dx.doi.org/10.1016/j.transproceed.2010.12.046] [PMID: 21335192]
[156]
Godoy HL, Guerra CM, Viegas RF, et al. Infections in heart transplant recipients in Brazil: the challenge of Chagas’ disease. J Heart Lung Transplant 2010; 29(3): 286-90.
[http://dx.doi.org/10.1016/j.healun.2009.08.006] [PMID: 19783174]
[157]
Bacal F, Silva CP, Pires PV, et al. Transplantation for Chagas’ disease: an overview of immunosuppression and reactivation in the last two decades. Clin Transplant 2010; 24(2): E29-34.
[http://dx.doi.org/10.1111/j.1399-0012.2009.01202.x] [PMID: 20088914]
[158]
Bestetti RB, Souza TR, Lima MF, Theodoropoulos TA, Cordeiro JA, Burdmann EA. Effects of a mycophenolate mofetil-based immunosuppressive regimen in Chagas’ heart transplant recipients. Transplantation 2007; 84(3): 441-2.
[http://dx.doi.org/10.1097/01.tp.0000277526.68754.02] [PMID: 17700175]
[159]
Bacal F, Silva CP, Bocchi EA, et al. Mychophenolate mofetil increased chagas disease reactivation in heart transplanted patients: comparison between two different protocols. Am J Transplant 2005; 5(8): 2017-21.
[http://dx.doi.org/10.1111/j.1600-6143.2005.00975.x] [PMID: 15996254]
[160]
Bacal F, Marcondes-Braga FG, Rohde LEP, et al. 3ª Diretriz Brasileira de Transplante Cardíaco. Arq Bras Cardiol 2018; 111(2): 230-89.
[PMID: 30335870]
[161]
Yoosabai A, Mehta A, Kang W, et al. Pretransplant malignancy as a risk factor for posttransplant malignancy after heart transplantation. Transplantation 2015; 99(2): 345-50.
[http://dx.doi.org/10.1097/TP.0000000000000563] [PMID: 25606783]
[162]
Youn JC, Stehlik J, Wilk AR, et al. Temporal trends of de novo malignancy development after heart transplantation. J Am Coll Cardiol 2018; 71(1): 40-9.
[http://dx.doi.org/10.1016/j.jacc.2017.10.077] [PMID: 29301626]
[163]
Rivinius R, Helmschrott M, Ruhparwar A, et al. Analysis of malignancies in patients after heart transplantation with subsequent immunosuppressive therapy. Drug Des Devel Ther 2014; 9: 93-102.
[PMID: 25552900]
[164]
Agüero F, Castel MA, Cocchi S, et al. An update on heart transplantation in human immunodeficiency virus-infected patients. Am J Transplant 2016; 16(1): 21-8.
[http://dx.doi.org/10.1111/ajt.13496] [PMID: 26523614]
[165]
Uriel N, Jorde UP, Cotarlan V, et al. Heart transplantation in human immunodeficiency virus-positive patients. J Heart Lung Transplant 2009; 28(7): 667-9.
[http://dx.doi.org/10.1016/j.healun.2009.04.005] [PMID: 19560693]
[166]
Uriel N, Nahumi N, Colombo PC, et al. Advanced heart failure in patients infected with human immunodeficiency virus: is there equal access to care? J Heart Lung Transplant 2014; 33(9): 924-30.
[http://dx.doi.org/10.1016/j.healun.2014.04.015] [PMID: 24929646]
[167]
Shaffer AA, Durand CM. Solid organ transplantation for hiv infected individuals. Curr Treat Options Infect Dis 2018; 10(1): 107-20.
[http://dx.doi.org/10.1007/s40506-018-0144-1] [PMID: 29977166]
[168]
Ciuffreda D, Pantaleo G, Pascual M. Effects of immunosuppressive drugs on HIV infection: implications for solid-organ transplantation. Transpl Int 2007; 20(8): 649-58.
[http://dx.doi.org/10.1111/j.1432-2277.2007.00483.x] [PMID: 17425723]
[169]
Patel SJ, Kuten SA, Musick WL, Gaber AO, Monsour HP, Knight RJ. Combination drug products for HIV-a word of caution for the transplant clinician. Am J Transplant 2016; 16(8): 2479-82.
[http://dx.doi.org/10.1111/ajt.13826] [PMID: 27089541]
[170]
Costanzo-Nordin MR, Hubbell EA, O’Sullivan EJ, et al. Successful treatment of heart transplant rejection with photopheresis. Transplantation 1992; 53(4): 808-15.
[http://dx.doi.org/10.1097/00007890-199204000-00021] [PMID: 1566346]
[171]
Edelson R, Berger C, Gasparro F, et al. Treatment of cutaneous T cell lymphoma by extracorporeal photochemotherapy. Preliminary results. N Engl J Med 1987; 316(6): 297-303.
[http://dx.doi.org/10.1056/NEJM198702053160603] [PMID: 3543674]
[172]
Barr ML, Meiser BM, Eisen HJ, et al. Photopheresis for the prevention of rejection in cardiac transplantation. N Engl J Med 1998; 339(24): 1744-51.
[http://dx.doi.org/10.1056/NEJM199812103392404] [PMID: 9845709]
[173]
Barr ML, Baker CJ, Schenkel FA, et al. Prophylactic photopheresis and chronic rejection: effects on graft intimal hyperplasia in cardiac transplantation. Clin Transplant 2000; 14(2): 162-6.
[http://dx.doi.org/10.1034/j.1399-0012.2000.140211.x] [PMID: 10770423]
[174]
Kirklin JK, Brown RN, Huang ST, et al. Rejection with hemodynamic compromise: objective evidence for efficacy of photopheresis. J Heart Lung Transplant 2006; 25(3): 283-8.
[http://dx.doi.org/10.1016/j.healun.2005.10.004] [PMID: 16507420]
[175]
Azeka E, Jatene MB, Jatene IB, et al. [I Guidelines of heart failure and heart transplantation in the fetus, in children and adults with congenital cardiopathy, The Brazilian Society of Cardiology]. Arq Bras Cardiol 2014; 103(6)(Suppl. 2): 1-126.
[PMID: 25591041]
[176]
Dipchand AI. Current state of pediatric cardiac transplantation. Ann Cardiothorac Surg 2018; 7(1): 31-55.
[http://dx.doi.org/10.21037/acs.2018.01.07] [PMID: 29492382]
[177]
Tambur AR, Campbell P, Claas FH, et al. Sensitization in transplantation: Assessment of Risk (STAR) 2017 working group meeting report. Am J Transplant 2018; 18(7): 1604-14.
[http://dx.doi.org/10.1111/ajt.14752] [PMID: 29603613]
[178]
Fine RN. Growth following solid organ transplantation in childhood. Clinics (São Paulo) 2014; 69(Suppl. 1): 3-7.
[http://dx.doi.org/10.6061/clinics/2014(Sup01)02] [PMID: 24860852]
[179]
Rossano JW, Dipchand AI, Edwards LB, et al. The registry of the international society for heart and lung transplantation: nineteenth pediatric heart transplantation report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant 2016; 35(10): 1185-95.
[http://dx.doi.org/10.1016/j.healun.2016.08.018] [PMID: 27772670]
[180]
Zheng H, Webber S, Zeevi A, et al. The MDR1 polymorphisms at exons 21 and 26 predict steroid weaning in pediatric heart transplant patients. Hum Immunol 2002; 63(9): 765-70.
[http://dx.doi.org/10.1016/S0198-8859(02)00426-3] [PMID: 12175731]
[181]
Auerbach SR, Kukreja M, Gilbert D, et al. Maintenance steroid use at 30 days post-transplant and outcomes of pediatric heart transplantation: A propensity matched analysis of the Pediatric Heart Transplant Study database. J Heart Lung Transplant 2015; 34(8): 1066-72.
[http://dx.doi.org/10.1016/j.healun.2015.03.003] [PMID: 25980572]
[182]
Schumacher KR, Ramon DS, Kamoun M, Caruthers R, Gajarski RJ. HLA desensitization in pediatric heart transplant candidates: efficacy of rituximab and IVIg. J Heart Lung Transplant 2012; 31(9): 1041-2.
[http://dx.doi.org/10.1016/j.healun.2012.05.009] [PMID: 22748817]
[183]
Webber S, Zeevi A, Mason K, et al. Pediatric heart transplantation across a positive crossmatch: First year results from the CTOTC-04 multi-institutional study. Am J Transplant 2018; 18(9): 2148-62.
[http://dx.doi.org/10.1111/ajt.14876] [PMID: 29673058]
[184]
Henderson HT, Canter CE, Mahle WT, et al. ABO-incompatible heart transplantation: analysis of the Pediatric Heart Transplant Study (PHTS) database. J Heart Lung Transplant 2012; 31(2): 173-9.
[http://dx.doi.org/10.1016/j.healun.2011.11.013] [PMID: 22305379]
[185]
Page RL II, Miller GG, Lindenfeld J. Drug therapy in the heart transplant recipient: part IV: drug-drug interactions. Circulation 2005; 111(2): 230-9.
[http://dx.doi.org/10.1161/01.CIR.0000151805.86933.35] [PMID: 15657387]
[186]
Chambers DC, Yusen RD, Cherikh WS, et al. The registry of the international society for heart and lung transplantation: thirty-fourth adult lung and heart-lung transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant 2017; 36(10): 1047-59.
[http://dx.doi.org/10.1016/j.healun.2017.07.016] [PMID: 28784324]
[187]
Shepard PW, St Louis EK. Seizure treatment in transplant patients. Curr Treat Options Neurol 2012; 14(4): 332-47.
[http://dx.doi.org/10.1007/s11940-012-0180-y] [PMID: 22660960]
[188]
Mignat C. Clinically significant drug interactions with new immunosuppressive agents. Drug Saf 1997; 16(4): 267-78.
[http://dx.doi.org/10.2165/00002018-199716040-00004] [PMID: 9113494]
[189]
Chabolla DR, Wszolek ZK. Pharmacologic management of seizures in organ transplant. Neurology 2006; 67(12)(Suppl. 4): S34-8.
[http://dx.doi.org/10.1212/WNL.67.12_suppl_4.S34] [PMID: 17190920]
[190]
Lempers VJ, Martial LC, Schreuder MF, et al. Drug-interactions of azole antifungals with selected immunosuppressants in transplant patients: strategies for optimal management in clinical practice. Curr Opin Pharmacol 2015; 24: 38-44.
[http://dx.doi.org/10.1016/j.coph.2015.07.002] [PMID: 26218924]
[191]
Dodds-Ashley E. Management of drug and food interactions with azole antifungal agents in transplant recipients. Pharmacotherapy 2010; 30(8): 842-54.
[http://dx.doi.org/10.1592/phco.30.8.842] [PMID: 20653361]
[192]
Saad AH, DePestel DD, Carver PL. Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy 2006; 26(12): 1730-44.
[http://dx.doi.org/10.1592/phco.26.12.1730] [PMID: 17125435]
[193]
Campana C, Regazzi MB, Buggia I, Molinaro M. Clinically significant drug interactions with cyclosporin. An update. Clin Pharmacokinet 1996; 30(2): 141-79.
[http://dx.doi.org/10.2165/00003088-199630020-00004] [PMID: 8906896]
[194]
Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995; 29(6): 404-30.
[http://dx.doi.org/10.2165/00003088-199529060-00003] [PMID: 8787947]
[195]
Leucuta SE, Vlase L. Pharmacokinetics and metabolic drug interactions. Curr Clin Pharmacol 2006; 1(1): 5-20.
[http://dx.doi.org/10.2174/157488406775268183] [PMID: 18666374]
[196]
Ozdogan E, Banner N, Fitzgerald M, Musumeci F, Khaghani A, Yacoub M. Factors influencing the development of hypertension after heart transplantation. J Heart Transplant 1990; 9(5): 548-53.
[PMID: 2231094]
[197]
Bennett AL, Ventura HO. Hypertension in patients with cardiac transplantation. Med Clin North Am 2017; 101(1): 53-64.
[http://dx.doi.org/10.1016/j.mcna.2016.08.011] [PMID: 27884235]
[198]
Weir MR, Burgess ED, Cooper JE, et al. Assessment and management of hypertension in transplant patients. J Am Soc Nephrol 2015; 26(6): 1248-60.
[http://dx.doi.org/10.1681/ASN.2014080834] [PMID: 25653099]
[199]
Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 2013; 7: 27-34.
[http://dx.doi.org/10.4137/DTI.S12519] [PMID: 24023511]
[200]
Madsen JK, Jensen JD, Jensen LW, Pedersen EB. Pharmacokinetic interaction between cyclosporine and the dihydropyridine calcium antagonist felodipine. Eur J Clin Pharmacol 1996; 50(3): 203-8.
[http://dx.doi.org/10.1007/s002280050093] [PMID: 8737760]
[201]
von Vigier RO, Fossali E, Edefonti A, Vogt B, Bianchetti MG. Cyclosporin enhances the tendency towards oedema and flushing noted on dihydropyridine calcium channel blockers. Br J Clin Pharmacol 2002; 54(3): 334-5.
[http://dx.doi.org/10.1046/j.1365-2125.2002.01622.x] [PMID: 12236856]
[202]
Thomason JM, Seymour RA, Rice N. The prevalence and severity of cyclosporin and nifedipine-induced gingival overgrowth. J Clin Periodontol 1993; 20(1): 37-40.
[http://dx.doi.org/10.1111/j.1600-051X.1993.tb01757.x] [PMID: 8421114]
[203]
Kovarik JM, Beyer D, Bizot MN, Jiang Q, Allison MJ, Schmouder RL. Pharmacokinetic interaction between verapamil and everolimus in healthy subjects. Br J Clin Pharmacol 2005; 60(4): 434-7.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02434.x] [PMID: 16187976]
[204]
Böttiger Y, Säwe J, Brattström C, et al. Pharmacokinetic interaction between single oral doses of diltiazem and sirolimus in healthy volunteers. Clin Pharmacol Ther 2001; 69(1): 32-40.
[http://dx.doi.org/10.1067/mcp.2001.112513] [PMID: 11180036]
[205]
Bader FM, Hagan ME, Crompton JA, Gilbert EM. The effect of beta-blocker use on cyclosporine level in cardiac transplant recipients. J Heart Lung Transplant 2005; 24(12): 2144-7.
[http://dx.doi.org/10.1016/j.healun.2005.05.002] [PMID: 16364863]
[206]
Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein. Fundam Clin Pharmacol 2006; 20(3): 273-82.
[http://dx.doi.org/10.1111/j.1472-8206.2006.00408.x] [PMID: 16671962]
[207]
Gossmann J, Kachel HG, Schoeppe W, Scheuermann EH. Anemia in renal transplant recipients caused by concomitant therapy with azathioprine and angiotensin-converting enzyme inhibitors. Transplantation 1993; 56(3): 585-9.
[http://dx.doi.org/10.1097/00007890-199309000-00018] [PMID: 8212154]
[208]
Bertocchio JP, Barbe C, Lavaud S, et al. Safety of eplerenone for kidney-transplant recipients with impaired renal function and receiving cyclosporine A. PLoS One 2016; 11(4) e0153635
[http://dx.doi.org/10.1371/journal.pone.0153635] [PMID: 27088859]
[209]
Stojanovic I, Vrtovec B, Radovancevic B, et al. Survival, graft atherosclerosis, and rejection incidence in heart transplant recipients treated with statins: 5-year follow-up. J Heart Lung Transplant 2005; 24(9): 1235-8.
[http://dx.doi.org/10.1016/j.healun.2004.08.014] [PMID: 16143239]
[210]
Kobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995; 333(10): 621-7.
[http://dx.doi.org/10.1056/NEJM199509073331003] [PMID: 7637722]
[211]
Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006; 80(6): 565-81.
[http://dx.doi.org/10.1016/j.clpt.2006.09.003] [PMID: 17178259]
[212]
Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 2009; 158(3): 693-705.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00430.x] [PMID: 19785645]
[213]
Ballantyne CM, Corsini A, Davidson MH, et al. Risk for myopathy with statin therapy in high-risk patients. Arch Intern Med 2003; 163(5): 553-64.
[http://dx.doi.org/10.1001/archinte.163.5.553] [PMID: 12622602]
[214]
Jamal SM, Eisenberg MJ, Christopoulos S. Rhabdomyolysis associated with hydroxymethylglutaryl-coenzyme A reductase inhibitors. Am Heart J 2004; 147(6): 956-65.
[http://dx.doi.org/10.1016/j.ahj.2003.12.037] [PMID: 15199341]
[215]
Omar MA, Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother 2002; 36(2): 288-95.
[http://dx.doi.org/10.1345/aph.1A289] [PMID: 11847951]
[216]
Lemahieu WP, Hermann M, Asberg A, et al. Combined therapy with atorvastatin and calcineurin inhibitors: no interactions with tacrolimus. Am J Transplant 2005; 5(9): 2236-43.
[http://dx.doi.org/10.1111/j.1600-6143.2005.01005.x] [PMID: 16095503]
[217]
Yoshimura N, Ohmori Y, Tsuji T, Oka T. Effect of pravastatin on renal transplant recipients treated with cyclosporine--4-year follow-up. Transplant Proc 1994; 26(5): 2632-3.
[PMID: 7940820]
[218]
Launay-Vacher V, Izzedine H, Deray G. Statins’ dosage in patients with renal failure and cyclosporine drug-drug interactions in transplant recipient patients. Int J Cardiol 2005; 101(1): 9-17.
[http://dx.doi.org/10.1016/j.ijcard.2004.04.005] [PMID: 15860377]
[219]
Wiggins BS, Saseen JJ, Page RL II, et al. Recommendations for management of clinically significant drug-drug interactions with statins and select agents used in patients with cardiovascular disease: a scientific statement from the american heart association. Circulation 2016; 134(21): e468-95.
[http://dx.doi.org/10.1161/CIR.0000000000000456] [PMID: 27754879]
[220]
Kobashigawa JA, Moriguchi JD, Laks H, et al. Ten-year follow-up of a randomized trial of pravastatin in heart transplant patients. J Heart Lung Transplant 2005; 24(11): 1736-40.
[http://dx.doi.org/10.1016/j.healun.2005.02.009] [PMID: 16297773]
[221]
Wenke K, Meiser B, Thiery J, et al. Simvastatin initiated early after heart transplantation: 8-year prospective experience. Circulation 2003; 107(1): 93-7.
[http://dx.doi.org/10.1161/01.CIR.0000043241.32523.EE] [PMID: 12515749]
[222]
Le VV, Racine N, Pelletier GB, Carrier M, Cossette M, White M. Impact of ezetimibe on cholesterol subfractions in dyslipidemic cardiac transplant recipients receiving statin therapy. Clin Transplant 2009; 23(2): 249-55.
[http://dx.doi.org/10.1111/j.1399-0012.2008.00920.x] [PMID: 19402219]
[223]
Shaw SM, Chaggar P, Ritchie J, et al. The efficacy and tolerability of ezetimibe in cardiac transplant recipients taking cyclosporin. Transplantation 2009; 87(5): 771-5.
[http://dx.doi.org/10.1097/TP.0b013e318198d7d0] [PMID: 19295325]
[224]
Riella LV, Gabardi S, Chandraker A. Dyslipidemia and its therapeutic challenges in renal transplantation. Am J Transplant 2012; 12(8): 1975-82.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04084.x] [PMID: 22578270]
[225]
Pavri BB, O’Nunain SS, Newell JB, Ruskin JN, William G. Prevalence and prognostic significance of atrial arrhythmias after orthotopic cardiac transplantation. J Am Coll Cardiol 1995; 25(7): 1673-80.
[http://dx.doi.org/10.1016/0735-1097(95)00047-8] [PMID: 7759722]
[226]
Thajudeen A, Stecker EC, Shehata M, et al. Arrhythmias after heart transplantation: mechanisms and management. J Am Heart Assoc 2012; 1(2) e001461
[http://dx.doi.org/10.1161/JAHA.112.001461] [PMID: 23130132]
[227]
McDonald MG, Au NT, Rettie AE. P450-Based drug-drug interactions of amiodarone and its metabolites: diversity of inhibitory mechanisms. Drug Metab Dispos 2015; 43(11): 1661-9.
[http://dx.doi.org/10.1124/dmd.115.065623] [PMID: 26296708]
[228]
Katoh M, Nakajima M, Yamazaki H, Yokoi T. Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport. Eur J Pharm Sci 2001; 12(4): 505-13.
[http://dx.doi.org/10.1016/S0928-0987(00)00215-3] [PMID: 11231118]
[229]
Mamprin F, Mullins P, Graham T, et al. Amiodarone-cyclosporine interaction in cardiac transplantation. Am Heart J 1992; 123(6): 1725-6.
[http://dx.doi.org/10.1016/0002-8703(92)90848-P] [PMID: 1595566]
[230]
Chitwood KK, Abdul-Haqq AJ, Heim-Duthoy KL. Cyclosporine-amiodarone interaction. Ann Pharmacother 1993; 27(5): 569-71.
[http://dx.doi.org/10.1177/106002809302700506] [PMID: 8347904]
[231]
Nicolau DP, Uber WE, Crumbley AJ III, Strange C. Amiodarone-cyclosporine interaction in a heart transplant patient. J Heart Lung Transplant 1992; 11(3 Pt 1): 564-8.
[PMID: 1610865]
[232]
Preuner JG, Lehle K, Keyser A, Merk J, Rupprecht L, Goebels R. Development of severe adverse effects after discontinuing amiodarone therapy in human heart transplant recipients. Transplant Proc 1998; 30(8): 3943-4.
[http://dx.doi.org/10.1016/S0041-1345(98)01296-2] [PMID: 9865253]
[233]
Kannankeril P, Roden DM, Darbar D. Drug-induced long QT syndrome. Pharmacol Rev 2010; 62(4): 760-81.
[http://dx.doi.org/10.1124/pr.110.003723] [PMID: 21079043]
[234]
Burger CI, Clase CM, Gangji AS. Case report: drug interaction between tacrolimus and amiodarone with QT prolongation. Transplantation 2010; 89(9): 1166-7.
[http://dx.doi.org/10.1097/TP.0b013e3181d2fed7] [PMID: 20440199]
[235]
Robieux I, Dorian P, Klein J, et al. The effects of cardiac transplantation and cyclosporine therapy on digoxin pharmacokinetics. J Clin Pharmacol 1992; 32(4): 338-43.
[http://dx.doi.org/10.1002/j.1552-4604.1992.tb03845.x] [PMID: 1569236]
[236]
Okamura N, Hirai M, Tanigawara Y, et al. Digoxin-cyclosporin A interaction: modulation of the multidrug transporter P-glycoprotein in the kidney. J Pharmacol Exp Ther 1993; 266(3): 1614-9.
[PMID: 8103797]
[237]
Rose AJ, Hylek EM, Ozonoff A, Ash AS, Reisman JI, Berlowitz DR. Risk-adjusted percent time in therapeutic range as a quality indicator for outpatient oral anticoagulation: results of the Veterans Affairs Study to Improve Anticoagulation (VARIA). Circ Cardiovasc Qual Outcomes 2011; 4(1): 22-9.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.110.957738] [PMID: 21098779]
[238]
Shameem R, Ansell J. Disadvantages of VKA and requirements for novel anticoagulants. Best Pract Res Clin Haematol 2013; 26(2): 103-14.
[http://dx.doi.org/10.1016/j.beha.2013.07.009] [PMID: 23953899]
[239]
Salerno DM, Tsapepas D, Papachristos A, et al. Direct oral anticoagulant considerations in solid organ transplantation: A review. Clin Transplant 2017; 31(1)
[http://dx.doi.org/10.1111/ctr.12873] [PMID: 27859621]
[240]
Heidbuchel H, Verhamme P, Alings M, et al. European Heart Rhythm Association Practical Guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation. Europace 2013; 15(5): 625-51.
[http://dx.doi.org/10.1093/europace/eut083] [PMID: 23625942]
[241]
Hellwig T, Gulseth M. Pharmacokinetic and pharmacodynamic drug interactions with new oral anticoagulants: what do they mean for patients with atrial fibrillation? Ann Pharmacother 2013; 47(11): 1478-87.
[http://dx.doi.org/10.1177/1060028013504741] [PMID: 24259602]
[242]
Feriozzi S, Massimetti C, Ancarani E. Treatment with ticlopidine is associated with reduction of cyclosporin a blood levels. Nephron 2002; 92(1): 249-50.
[http://dx.doi.org/10.1159/000064474] [PMID: 12187118]
[243]
Verdejo A, de Cos MA, Zubimendi JA, López-Lázaro L. Drug points. Probable interaction between cyclosporin A and low dose ticlopidine. BMJ 2000; 320(7241): 1037.
[http://dx.doi.org/10.1136/bmj.320.7241.1037] [PMID: 10764363]
[244]
de Lorgeril M, Boissonnat P, Dureau G, Guidollet J, Renaud S. Evaluation of ticlopidine, a novel inhibitor of platelet aggregation, in heart transplant recipients. Transplantation 1993; 55(5): 1195-6.
[http://dx.doi.org/10.1097/00007890-199305000-00050] [PMID: 8497902]
[245]
Boissonnat P, de Lorgeril M, Perroux V, et al. A drug interaction study between ticlopidine and cyclosporin in heart transplant recipients. Eur J Clin Pharmacol 1997; 53(1): 39-45.
[http://dx.doi.org/10.1007/s002280050334] [PMID: 9349928]
[246]
Zhang C, Shen L, Cui M, Liu X, Gu Z. Ticagrelor-induced life-threatening bleeding via the cyclosporine-mediated drug interaction: A case report. Medicine (Baltimore) 2017; 96(37) e8065
[http://dx.doi.org/10.1097/MD.0000000000008065] [PMID: 28906404]
[247]
Johnson JA. Pharmacogenetics in clinical practice: how far have we come and where are we going? Pharmacogenomics 2013; 14(7): 835-43.
[http://dx.doi.org/10.2217/pgs.13.52] [PMID: 23651030]
[248]
Undre NA, van Hooff J, Christiaans M, et al. Low systemic exposure to tacrolimus correlates with acute rejection. Transplant Proc 1999; 31(1-2): 296-8.
[http://dx.doi.org/10.1016/S0041-1345(98)01633-9] [PMID: 10083114]
[249]
Clase CM, Mahalati K, Kiberd BA, et al. Adequate early cyclosporin exposure is critical to prevent renal allograft rejection: patients monitored by absorption profiling. Am J Transplant 2002; 2(8): 789-95.
[http://dx.doi.org/10.1034/j.1600-6143.2002.20814.x] [PMID: 12243501]
[250]
van Gelder T, Silva HT, de Fijter JW, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation 2008; 86(8): 1043-51.
[http://dx.doi.org/10.1097/TP.0b013e318186f98a] [PMID: 18946341]
[251]
Evans WE, McLeod HL. Pharmacogenomics--drug disposition, drug targets, and side effects. N Engl J Med 2003; 348(6): 538-49.
[http://dx.doi.org/10.1056/NEJMra020526] [PMID: 12571262]
[252]
Macphee IA. Use of pharmacogenetics to optimize immunosuppressive therapy. Ther Drug Monit 2010; 32(3): 261-4.
[http://dx.doi.org/10.1097/FTD.0b013e3181dca995] [PMID: 20431509]
[253]
MacPhee IA, Fredericks S, Tai T, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 2004; 4(6): 914-9.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00435.x] [PMID: 15147425]
[254]
Thervet E, Loriot MA, Barbier S, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther 2010; 87(6): 721-6.
[http://dx.doi.org/10.1038/clpt.2010.17] [PMID: 20393454]
[255]
Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97(7): 3473-8.
[http://dx.doi.org/10.1073/pnas.97.7.3473] [PMID: 10716719]
[256]
Zheng H, Webber S, Zeevi A, et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant 2003; 3(4): 477-83.
[http://dx.doi.org/10.1034/j.1600-6143.2003.00077.x] [PMID: 12694072]
[257]
Hesselink DA, van Gelder T, van Schaik RH, et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin Pharmacol Ther 2004; 76(6): 545-56.
[http://dx.doi.org/10.1016/j.clpt.2004.08.022] [PMID: 15592326]
[258]
Rivory LP, Qin H, Clarke SJ, et al. Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur J Clin Pharmacol 2000; 56(5): 395-8.
[http://dx.doi.org/10.1007/s002280000166] [PMID: 11009048]
[259]
von Ahsen N, Richter M, Grupp C, Ringe B, Oellerich M, Armstrong VW. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem 2001; 47(6): 1048-52.
[http://dx.doi.org/10.1093/clinchem/47.6.1048] [PMID: 11375290]
[260]
Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 2008; 8(1): 24-36.
[http://dx.doi.org/10.1038/nrc2292] [PMID: 18097462]
[261]
Wang L, Pelleymounter L, Weinshilboum R, et al. Very important pharmacogene summary: thiopurine S-methyltransferase. Pharmacogenet Genomics 2010; 20(6): 401-5.
[http://dx.doi.org/10.1097/FPC.0b013e3283352860] [PMID: 20154640]
[262]
Liang JJ, Geske JR, Boilson BA, et al. TPMT genetic variants are associated with increased rejection with azathioprine use in heart transplantation. Pharmacogenet Genomics 2013; 23(12): 658-65.
[http://dx.doi.org/10.1097/FPC.0000000000000005] [PMID: 24121523]
[263]
Evans WE. Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 2004; 26(2): 186-91.
[http://dx.doi.org/10.1097/00007691-200404000-00018] [PMID: 15228163]
[264]
Yates CR, Krynetski EY, Loennechen T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997; 126(8): 608-14.
[http://dx.doi.org/10.7326/0003-4819-126-8-199704150-00003] [PMID: 9103127]
[265]
Otterness D, Szumlanski C, Lennard L, et al. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther 1997; 62(1): 60-73.
[http://dx.doi.org/10.1016/S0009-9236(97)90152-1] [PMID: 9246020]
[266]
Ameyaw MM, Collie-Duguid ES, Powrie RH, Ofori-Adjei D, McLeod HL. Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum Mol Genet 1999; 8(2): 367-70.
[http://dx.doi.org/10.1093/hmg/8.2.367] [PMID: 9931345]
[267]
Collie-Duguid ES, Pritchard SC, Powrie RH, et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999; 9(1): 37-42.
[http://dx.doi.org/10.1097/00008571-199902000-00006] [PMID: 10208641]
[268]
Hon YY, Fessing MY, Pui CH, Relling MV, Krynetski EY, Evans WE. Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet 1999; 8(2): 371-6.
[http://dx.doi.org/10.1093/hmg/8.2.371] [PMID: 9931346]
[269]
Kaufman DB, Shapiro R, Lucey MR, Cherikh WS. T Bustami R, Dyke DB. Immunosuppression: practice and trends. Am J Transplant 2004; 4(Suppl. 9): 38-53.
[http://dx.doi.org/10.1111/j.1600-6135.2004.00397.x] [PMID: 15113354]
[270]
Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus 2005; 14(Suppl. 1): s2-8.
[http://dx.doi.org/10.1177/096120330501400102] [PMID: 15803924]
[271]
Lee WA, Gu L, Miksztal AR, Chu N, Leung K, Nelson PH. Bioavailability improvement of mycophenolic acid through amino ester derivatization. Pharm Res 1990; 7(2): 161-6.
[http://dx.doi.org/10.1023/A:1015828802490] [PMID: 2308896]
[272]
Picard N, Ratanasavanh D, Prémaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 2005; 33(1): 139-46.
[http://dx.doi.org/10.1124/dmd.104.001651] [PMID: 15470161]
[273]
Bowalgaha K, Miners JO. The glucuronidation of mycophenolic acid by human liver, kidney and jejunum microsomes. Br J Clin Pharmacol 2001; 52(5): 605-9.
[http://dx.doi.org/10.1046/j.0306-5251.2001.01487.x] [PMID: 11736871]
[274]
Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998; 34(6): 429-55.
[http://dx.doi.org/10.2165/00003088-199834060-00002] [PMID: 9646007]
[275]
Kuypers DR, Naesens M, Vermeire S, Vanrenterghem Y. The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther 2005; 78(4): 351-61.
[http://dx.doi.org/10.1016/j.clpt.2005.06.007] [PMID: 16198654]
[276]
Girard H, Court MH, Bernard O, et al. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 2004; 14(8): 501-15.
[http://dx.doi.org/10.1097/01.fpc.0000114754.08559.27] [PMID: 15284532]
[277]
Villeneuve L, Girard H, Fortier LC, Gagné JF, Guillemette C. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther 2003; 307(1): 117-28.
[http://dx.doi.org/10.1124/jpet.103.054072] [PMID: 12944498]
[278]
Jinno H, Saeki M, Saito Y, et al. Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J Pharmacol Exp Ther 2003; 306(2): 688-93.
[http://dx.doi.org/10.1124/jpet.103.051250] [PMID: 12730278]
[279]
Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA. The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab Rev 2001; 33(3-4): 273-97.
[http://dx.doi.org/10.1081/DMR-120000653] [PMID: 11768770]
[280]
Paine MF, Leung LY, Watkins PB. New insights into drug absorption: studies with sirolimus. Ther Drug Monit 2004; 26(5): 463-7.
[http://dx.doi.org/10.1097/00007691-200410000-00001] [PMID: 15385826]
[281]
Jacobsen W, Serkova N, Hausen B, Morris RE, Benet LZ, Christians U. Comparison of the in vitro metabolism of the macrolide immunosuppressants sirolimus and RAD. Transplant Proc 2001; 33(1-2): 514-5.
[http://dx.doi.org/10.1016/S0041-1345(00)02116-3] [PMID: 11266932]
[282]
Cummins CL, Jacobsen W, Christians U, Benet LZ. CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam. J Pharmacol Exp Ther 2004; 308(1): 143-55.
[http://dx.doi.org/10.1124/jpet.103.058065] [PMID: 14569063]
[283]
Paine MF, Leung LY, Lim HK, et al. Identification of a novel route of extraction of sirolimus in human small intestine: roles of metabolism and secretion. J Pharmacol Exp Ther 2002; 301(1): 174-86.
[http://dx.doi.org/10.1124/jpet.301.1.174] [PMID: 11907172]
[284]
Anglicheau D, Le Corre D, Lechaton S, et al. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am J Transplant 2005; 5(3): 595-603.
[http://dx.doi.org/10.1111/j.1600-6143.2005.00745.x] [PMID: 15707415]
[285]
Kniepeiss D, Wagner D, Wasler A, Tscheliessnigg KH, Renner W. The role of CYP2C8 genotypes in dose requirement and levels of everolimus after heart transplantation. Wien Klin Wochenschr 2013; 125(13-14): 393-5.
[http://dx.doi.org/10.1007/s00508-013-0387-2] [PMID: 23797529]
[286]
Sam WJ, Chamberlain CE, Lee SJ, et al. Associations of ABCB1 3435C>T and IL-10-1082G>A polymorphisms with long-term sirolimus dose requirements in renal transplant patients. Transplantation 2011; 92(12): 1342-7.
[http://dx.doi.org/10.1097/TP.0b013e3182384ae2] [PMID: 22094953]
[287]
Li Y, Yan L, Shi Y, Bai Y, Tang J, Wang L. CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients. Springerplus 2015; 4: 637.
[http://dx.doi.org/10.1186/s40064-015-1425-5] [PMID: 26543771]
[288]
Miao LY, Huang CR, Hou JQ, Qian MY. Association study of ABCB1 and CYP3A5 gene polymorphisms with sirolimus trough concentration and dose requirements in Chinese renal transplant recipients. Biopharm Drug Dispos 2008; 29(1): 1-5.
[http://dx.doi.org/10.1002/bdd.577] [PMID: 17941052]
[289]
Ghisdal L, Baron C, Le Meur Y, et al. TCF7L2 polymorphism associates with new-onset diabetes after transplantation. J Am Soc Nephrol 2009; 20(11): 2459-67.
[http://dx.doi.org/10.1681/ASN.2008121314] [PMID: 19713311]
[290]
Helgason A, Pálsson S, Thorleifsson G, et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 2007; 39(2): 218-25.
[http://dx.doi.org/10.1038/ng1960] [PMID: 17206141]
[291]
Jin T, Liu L. The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol 2008; 22(11): 2383-92.
[http://dx.doi.org/10.1210/me.2008-0135] [PMID: 18599616]
[292]
Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 2006; 355(3): 241-50.
[http://dx.doi.org/10.1056/NEJMoa062418] [PMID: 16855264]
[293]
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007; 450(7170): 736-40.
[http://dx.doi.org/10.1038/nature06322] [PMID: 18046414]
[294]
He Y, Dupree J, Wang J, et al. The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 2007; 55(2): 217-30.
[http://dx.doi.org/10.1016/j.neuron.2007.06.029] [PMID: 17640524]
[295]
Tyler WA, Gangoli N, Gokina P, et al. Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J Neurosci 2009; 29(19): 6367-78.
[http://dx.doi.org/10.1523/JNEUROSCI.0234-09.2009] [PMID: 19439614]
[296]
Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007; 117(8): 2155-63.
[http://dx.doi.org/10.1172/JCI30706] [PMID: 17671651]
[297]
Deng MC, Eisen HJ, Mehra MR, et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant 2006; 6(1): 150-60.
[http://dx.doi.org/10.1111/j.1600-6143.2005.01175.x] [PMID: 16433769]
[298]
Roedder S, Vitalone M, Khatri P, Sarwal MM. Biomarkers in solid organ transplantation: establishing personalized transplantation medicine. Genome Med 2011; 3(6): 37.
[http://dx.doi.org/10.1186/gm253] [PMID: 21658299]
[299]
Holweg CT, Potena L, Luikart H, et al. Identification and classification of acute cardiac rejection by intragraft transcriptional profiling. Circulation 2011; 123(20): 2236-43.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.913921] [PMID: 21555702]
[300]
Sarwal MM, Benjamin J, Butte AJ, Davis MM, Wood K, Chapman J. Transplantomics and biomarkers in organ transplantation: a report from the first international conference. Transplantation 2011; 91(4): 379-82.
[http://dx.doi.org/10.1097/TP.0b013e3182105fb8] [PMID: 21278631]
[301]
Shen-Orr SS, Tibshirani R, Khatri P, et al. Cell type-specific gene expression differences in complex tissues. Nat Methods 2010; 7(4): 287-9.
[http://dx.doi.org/10.1038/nmeth.1439] [PMID: 20208531]
[302]
Zhang Q, Reed EF. Non-MHC antigenic targets of the humoral immune response in transplantation. Curr Opin Immunol 2010; 22(5): 682-8.
[http://dx.doi.org/10.1016/j.coi.2010.08.009] [PMID: 20833523]
[303]
Patel MR, Chang YF, Chen IY, et al. Longitudinal, noninvasive imaging of T-cell effector function and proliferation in living subjects. Cancer Res 2010; 70(24): 10141-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1843] [PMID: 21159636]
[304]
Newell KA, Asare A, Kirk AD, et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest 2010; 120(6): 1836-47.
[http://dx.doi.org/10.1172/JCI39933] [PMID: 20501946]
[305]
Sagoo P, Perucha E, Sawitzki B, et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest 2010; 120(6): 1848-61.
[http://dx.doi.org/10.1172/JCI39922] [PMID: 20501943]
[306]
Kokko KE, et al. Enhanced immunosuppression induced by targeted mutation of cytotoxic T lymphocyte antigen 4-immunoglobulin. Curr Opin Organ Transplant 2005; 10(4): 265-9.
[http://dx.doi.org/10.1097/01.mot.0000186082.47623.76]
[307]
Larsen CP, Knechtle SJ, Adams A, Pearson T, Kirk AD. A new look at blockade of T-cell costimulation: a therapeutic strategy for long-term maintenance immunosuppression. Am J Transplant 2006; 6(5 Pt 1): 876-83.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01259.x] [PMID: 16611323]
[308]
Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med 2005; 353(8): 770-81.
[http://dx.doi.org/10.1056/NEJMoa050085] [PMID: 16120857]
[309]
Grinyó J, Charpentier B, Pestana JM, et al. An integrated safety profile analysis of belatacept in kidney transplant recipients. Transplantation 2010; 90(12): 1521-7.
[http://dx.doi.org/10.1097/TP.0b013e3182007b95] [PMID: 21088650]
[310]
Enderby CY, Habib P, Patel PC, Yip DS, Orum S, Hosenpud JD. Belatacept maintenance in a heart transplant recipient. Transplantation 2014; 98(7): e74-5.
[http://dx.doi.org/10.1097/TP.0000000000000404] [PMID: 25285956]
[311]
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4(4): 330-6.
[http://dx.doi.org/10.1038/ni904] [PMID: 12612578]
[312]
Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3(3): 199-210.
[http://dx.doi.org/10.1038/nri1027] [PMID: 12658268]
[313]
Hamano K, Rawsthorne MA, Bushell AR, Morris PJ, Wood KJ. Evidence that the continued presence of the organ graft and not peripheral donor microchimerism is essential for maintenance of tolerance to alloantigen in vivo in anti-CD4 treated recipients. Transplantation 1996; 62(6): 856-60.
[http://dx.doi.org/10.1097/00007890-199609270-00026] [PMID: 8824489]
[314]
Tarlinton DM, Batista F, Smith KG. The B-cell response to protein antigens in immunity and transplantation. Transplantation 2008; 85(12): 1698-704.
[http://dx.doi.org/10.1097/TP.0b013e3181777a39] [PMID: 18580459]
[315]
Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol 2004; 5(10): 981-6.
[http://dx.doi.org/10.1038/ni1113] [PMID: 15454921]
[316]
Le Texier L, Thebault P, Lavault A, et al. Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile. Am J Transplant 2011; 11(3): 429-38.
[http://dx.doi.org/10.1111/j.1600-6143.2010.03336.x] [PMID: 21114655]
[317]
Carter NA, Vasconcellos R, Rosser EC, et al. Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J Immunol 2011; 186(10): 5569-79.
[http://dx.doi.org/10.4049/jimmunol.1100284] [PMID: 21464089]
[318]
Blair PA, Noreña LY, Flores-Borja F, et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010; 32(1): 129-40.
[http://dx.doi.org/10.1016/j.immuni.2009.11.009] [PMID: 20079667]
[319]
Kim IK, Bedi DS, Denecke C, Ge X, Tullius SG. Impact of innate and adaptive immunity on rejection and tolerance. Transplantation 2008; 86(7): 889-94.
[http://dx.doi.org/10.1097/TP.0b013e318186ac4a] [PMID: 18852649]
[320]
Karam S, Wali RK. Current state of immunosuppression: past, present, and future. Crit Rev Eukaryot Gene Expr 2015; 25(2): 113-34.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2015011421] [PMID: 26080606]
[321]
Fehr T, Sykes M. Clinical experience with mixed chimerism to induce transplantation tolerance. Transpl Int 2008; 21(12): 1118-35.
[http://dx.doi.org/10.1111/j.1432-2277.2008.00783.x] [PMID: 18954364]
[322]
Leventhal J, Abecassis M, Miller J, et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci Transl Med 2012; 4(124) 124ra28
[http://dx.doi.org/10.1126/scitranslmed.3003509] [PMID: 22399264]
[323]
Clinical Trials Bone marrow transplant to induce tolerance in heart transplant recipients. 2018.Available from. https://clinicaltrials.gov/ct2/show/study/NCT00497757
[324]
Montgomery RA, Locke JE, King KE, et al. ABO incompatible renal transplantation: a paradigm ready for broad implementation. Transplantation 2009; 87(8): 1246-55.
[http://dx.doi.org/10.1097/TP.0b013e31819f2024] [PMID: 19384174]
[325]
Roche SL, Burch M, O’Sullivan J, et al. Multicenter experience of ABO-incompatible pediatric cardiac transplantation. Am J Transplant 2008; 8(1): 208-15.
[PMID: 18021280]
[326]
Shin M, Kim SJ. ABO Incompatible kidney transplantation-current status and uncertainties. J Transplant 2011; 2011, 970421
[http://dx.doi.org/10.1155/2011/970421] [PMID: 22174989]
[327]
Saczkowski R, Dacey C, Bernier PL. Does ABO-incompatible and ABO-compatible neonatal heart transplant have equivalent survival? Interact Cardiovasc Thorac Surg 2010; 10(6): 1026-33.
[http://dx.doi.org/10.1510/icvts.2009.229757] [PMID: 20308266]
[328]
Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002; 295(5557): 1089-92.
[http://dx.doi.org/10.1126/science.1068228] [PMID: 11778012]
[329]
Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 2003; 299(5605): 411-4.
[http://dx.doi.org/10.1126/science.1078942] [PMID: 12493821]
[330]
Cowan PJ, Aminian A, Barlow H, et al. Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons. Transplantation 2000; 69(12): 2504-15.
[http://dx.doi.org/10.1097/00007890-200006270-00008] [PMID: 10910270]
[331]
Miyagawa S, Yamamoto A, Matsunami K, et al. Complement regulation in the GalT KO era. Xenotransplantation 2010; 17(1): 11-25.
[http://dx.doi.org/10.1111/j.1399-3089.2010.00569.x] [PMID: 20149185]
[332]
McGregor CG, Davies WR, Oi K, et al. Cardiac xenotransplantation: recent preclinical progress with 3-month median survival. J Thorac Cardiovasc Surg 2005; 130(3): 844-51.
[http://dx.doi.org/10.1016/j.jtcvs.2005.04.017] [PMID: 16153938]
[333]
Knosalla C, Yazawa K, Behdad A, et al. Renal and cardiac endothelial heterogeneity impact acute vascular rejection in pig-to-baboon xenotransplantation. Am J Transplant 2009; 9(5): 1006-16.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02602.x] [PMID: 19422330]
[334]
Ekser B, Ezzelarab M, Hara H, et al. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379(9816): 672-83.
[http://dx.doi.org/10.1016/S0140-6736(11)61091-X] [PMID: 22019026]
[335]
Lee KF, Salvaris EJ, Roussel JC, Robson SC, d’Apice AJ, Cowan PJ. Recombinant pig TFPI efficiently regulates human tissue factor pathways. Xenotransplantation 2008; 15(3): 191-7.
[http://dx.doi.org/10.1111/j.1399-3089.2008.00476.x] [PMID: 18611227]
[336]
Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d’Apice AJ, Cowan PJ. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant 2008; 8(6): 1101-12.
[http://dx.doi.org/10.1111/j.1600-6143.2008.02210.x] [PMID: 18444940]
[337]
Xu XC, Goodman J, Sasaki H, Lowell J, Mohanakumar T. Activation of natural killer cells and macrophages by porcine endothelial cells augments specific T-cell xenoresponse. Am J Transplant 2002; 2(4): 314-22.
[http://dx.doi.org/10.1034/j.1600-6143.2002.20405.x] [PMID: 12118852]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 28
Year: 2020
Published on: 03 June, 2020
Page: [3351 - 3384]
Pages: 34
DOI: 10.2174/1381612826666200603130232
Price: $65

Article Metrics

PDF: 63
HTML: 6
EPUB: 1