Catechins as Model Bioactive Compounds for Biomedical Applications

Author(s): Adriana N. dos Santos, Tatiana R. de L. Nascimento, Brenna L. C. Gondim, Marilia M. A. C. Velo, Renaly I. de A. Rêgo, José R. do C. Neto, Juliana R. Machado, Marcos V. da Silva, Helvia W. C. de Araújo, Maria G. Fonseca, Lúcio R. C. Castellano*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 33 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Research regarding polyphenols has gained prominence over the years because of their potential as pharmacological nutrients. Most polyphenols are flavanols, commonly known as catechins, which are present in high amounts in green tea. Catechins are promising candidates in the field of biomedicine. The health benefits of catechins, notably their antioxidant effects, are related to their chemical structure and the total number of hydroxyl groups. In addition, catechins possess strong activities against several pathogens, including bacteria, viruses, parasites, and fungi. One major limitation of these compounds is low bioavailability. Catechins are poorly absorbed by intestinal barriers. Some protective mechanisms may be required to maintain or even increase the stability and bioavailability of these molecules within living organisms. Moreover, novel delivery systems, such as scaffolds, fibers, sponges, and capsules, have been proposed. This review focuses on the unique structures and bioactive properties of catechins and their role in inflammatory responses as well as provides a perspective on their use in future human health applications.

Keywords: Polyphenols, catechin, therapeutic uses, drug delivery systems, pathologic processes, oral health.

[1]
Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE. Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2010; 2(11): 1106-31.
[http://dx.doi.org/10.3390/nu2111106 ] [PMID: 22254000]
[2]
Cao J, Han J, Xiao H, Qiao J, Han M. Effect of tea polyphenol compounds on anticancer drugs in terms of anti-tumor activity, toxicology, and pharmacokinetics. Nutrients 2016; 8(12): E762.
[http://dx.doi.org/10.3390/nu8120762 ] [PMID: 27983622]
[3]
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81(1)(Suppl.): 230S-42S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S ] [PMID: 15640486]
[4]
Smith TJ. Green Tea Polyphenols in drug discovery - a success or failure? Expert Opin Drug Discov 2011; 6(6): 589-95.
[http://dx.doi.org/10.1517/17460441.2011.570750 ] [PMID: 21731575]
[5]
Mukhtar H, Ahmad N. Tea polyphenols: Prevention of cancer and optimizing health. Am J Clin Nutr vol 71 2000; 711698S-702S.
[http://dx.doi.org/10.1093/ajcn/71.6.1698S]
[6]
Geng CA, Yang TH, Huang XY, Ma YB, Zhang XM, Chen JJ. Antidepressant potential of Uncaria rhynchophylla and its active flavanol, catechin, targeting melatonin receptors. J Ethnopharmacol 2019; 232: 39-46.
[http://dx.doi.org/10.1016/j.jep.2018.12.013 ] [PMID: 30543912]
[7]
Liu J, Fan Y, Kim D, et al. Neuroprotective effect of catechins derivatives isolated from Anhua dark tea on NMDA-induced excitotoxicity in SH-SY5Y cells. Fitoterapia 2019.: 137104240.
[http://dx.doi.org/10.1016/j.fitote.2019.104240 ] [PMID: 31201887]
[8]
Ma Y, Ding S, Fei Y, Liu G, Jang H, Fang J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control 2019.: 106106712.
[http://dx.doi.org/10.1016/j.foodcont.2019.106712]
[9]
Nakano E, Kamei D, Murase R, et al. Anti-inflammatory effects of new catechin derivatives in a hapten-induced mouse contact dermatitis model. Eur J Pharmacol 2019; 845: 40-7.
[http://dx.doi.org/10.1016/j.ejphar.2018.12.036 ] [PMID: 30582907]
[10]
Roychoudhury S, Agarwal A, Virk G, Cho CL. Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod Biomed Online 2017; 34(5): 487-98.
[http://dx.doi.org/10.1016/j.rbmo.2017.02.006 ] [PMID: 28285951]
[11]
Zanwar AA, Badole SL, Shende PS, Hegde MV, Bodhankar SL. Antioxidant Role of Catechin in Health and Disease Polyphenols Hum Heal Dis. Academic Press 2013; Vol. 1: pp. 267-71.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00021-9]
[12]
Kashima M. Effects of catechins on superoxide and hydroxyl radical. Chem Pharm Bull (Tokyo) 1999; 47(2): 279-83.
[http://dx.doi.org/10.1248/cpb.47.279 ] [PMID: 10071858]
[13]
Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I. Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord 2002; 26(11): 1459-64.
[http://dx.doi.org/10.1038/sj.ijo.0802141 ] [PMID: 12439647]
[14]
Maron DJ, Lu GP, Cai NS, et al. Cholesterol-lowering effect of a theaflavin-enriched green tea extract: a randomized controlled trial. Arch Intern Med 2003; 163(12): 1448-53.
[http://dx.doi.org/10.1001/archinte.163.12.1448 ] [PMID: 12824094]
[15]
Shanafelt TD, Call TG, Zent CS, et al. Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer 2013; 119(2): 363-70.
[http://dx.doi.org/10.1002/cncr.27719 ] [PMID: 22760587]
[16]
Anderson RA, Polansky MM. Tea enhances insulin activity. J Agric Food Chem 2002; 50(24): 7182-6.
[http://dx.doi.org/10.1021/jf020514c ] [PMID: 12428980]
[17]
Baer DJ, Novotny JA, Harris GK, Stote K, Clevidence B, Rumpler WV. Oolong tea does not improve glucose metabolism in non-diabetic adults. Eur J Clin Nutr 2011; 65(1): 87-93.
[http://dx.doi.org/10.1038/ejcn.2010.192 ] [PMID: 20959857]
[18]
Cazarolli LH, Zanatta L, Alberton EH, et al. Flavonoids: prospective drug candidates. Mini Rev Med Chem 2008; 8(13): 1429-40.
[http://dx.doi.org/10.2174/138955708786369564 ] [PMID: 18991758]
[19]
Ahmed S, Stepp JR, Orians C, et al. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS One 2014; 9(10): e109126.
[http://dx.doi.org/10.1371/journal.pone.0109126 ] [PMID: 25286362]
[20]
Chen Z, Zhu QY, Tsang D, Huang Y. Degradation of green tea catechins in tea drinks. J Agric Food Chem 2001; 49(1): 477-82.
[http://dx.doi.org/10.1021/jf000877h ] [PMID: 11170614]
[21]
Dube A, Ng K, Nicolazzo JA, Larson I. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chem 2010; 122: 662-7.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.027]
[22]
Lambert JD, Yang CS. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res 2003; 523-524: 201-8.
[http://dx.doi.org/10.1016/S0027-5107(02)00336-6 ] [PMID: 12628518]
[23]
Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (-)-epigallocatechin gallate. Eur J Pharm Sci 2010; 41(2): 219-25.
[http://dx.doi.org/10.1016/j.ejps.2010.06.010 ] [PMID: 20600878]
[24]
Lam WH, Kazi A, Kuhn DJ, et al. A potential prodrug for a green tea polyphenol proteasome inhibitor: evaluation of the peracetate ester of (-)-epigallocatechin gallate [(-)-EGCG]. Bioorg Med Chem 2004; 12(21): 5587-93.[(-)-EGCG].
[http://dx.doi.org/10.1016/j.bmc.2004.08.002 ] [PMID: 15465336]
[25]
Rodrigues CF, Ascenção K, Silva FA, Sarmento B, Oliveira MB, Andrade JC. Drug-delivery systems of green tea catechins for improved stability and bioavailability. Curr Med Chem 2013; 20(37): 4744-57.
[http://dx.doi.org/10.2174/09298673113209990158 ] [PMID: 23834175]
[26]
Moreno-Vega AI, Gómez-Quintero T, Nuñez-Anita RE, Acosta-Torres LS, Castaño V. Polymeric and ceramic nanoparticles in biomedical applications. J Nanotechnol 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/936041]
[27]
Alotaibi A, Bhatnagar P, Najafzadeh M, Gupta KC, Anderson D. Tea phenols in bulk and nanoparticle form modify DNA damage in human lymphocytes from colon cancer patients and healthy individuals treated in vitro with platinum-based chemotherapeutic drugs. Nanomedicine (Lond) 2013; 8(3): 389-401.
[http://dx.doi.org/10.2217/nnm.12.126 ] [PMID: 22943128]
[28]
Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012; 41(7): 2545-61.
[http://dx.doi.org/10.1039/c2cs15327k ] [PMID: 22334259]
[29]
Cai ZY, Li XM, Liang JP, et al. Bioavailability of tea catechins and its improvement. Molecules 2018; 23(9): 10-3.
[http://dx.doi.org/10.3390/molecules23092346 ] [PMID: 30217074]
[30]
Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl 2011; 50(3): 586-621.
[http://dx.doi.org/10.1002/anie.201000044 ] [PMID: 21226137]
[31]
Fan FY, Sang LX, Jiang M, McPhee DJ. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017; 22(3): E484.
[http://dx.doi.org/10.3390/molecules22030484 ] [PMID: 28335502]
[32]
Amawi H, Ashby CR, Samuel T, Peraman R, Tiwari AK. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients 2017; 9(8): E911.
[http://dx.doi.org/10.3390/nu9080911 ] [PMID: 28825675]
[33]
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010; 2(12): 1231-46.
[http://dx.doi.org/10.3390/nu2121231 ] [PMID: 22254006]
[34]
Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res 2010; 27(6): 962-78.
[http://dx.doi.org/10.1007/s11095-010-0089-7 ] [PMID: 20306120]
[35]
Stevens JF, Maier CS. The chemistry of gut microbial metabolism of polyphenols. Phytochem Rev 2016; 15(3): 425-44.
[http://dx.doi.org/10.1007/s11101-016-9459-z ] [PMID: 27274718]
[36]
Botten D, Fugallo G, Fraternali F, Molteni C. Structural Properties of Green Tea Catechins. J Phys Chem B 2015; 119(40): 12860-7.
[http://dx.doi.org/10.1021/acs.jpcb.5b08737 ] [PMID: 26369298]
[37]
Arbenz A, Avérous L. Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem 2015; 17: 2626-46.
[http://dx.doi.org/10.1039/C5GC00282F]
[38]
Gadkari PV, Balaraman M. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod Process 2015; 93: 122-38.
[http://dx.doi.org/10.1016/j.fbp.2013.12.004]
[39]
Bansal S, Vyas S, Bhattacharya S, Sharma M. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat Prod Rep 2013; 30(11): 1438-54.
[http://dx.doi.org/10.1039/c3np70038k ] [PMID: 24056761]
[40]
Kim HS, Quon MJ, Kim JA. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2014; 2: 187-95.
[http://dx.doi.org/10.1016/j.redox.2013.12.022 ] [PMID: 24494192]
[41]
Das Mahapatra A, Bhowmik P, Banerjee A, Das A, Ojha D, Chattopadhyay D. Ethnomedicinal Wisdom New Look to Phytomedicine. Academic Press 2019; pp. 35-61.
[http://dx.doi.org/10.1016/B978-0-12-814619-4.00003-3]
[42]
Shahidi F, Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int J Mol Sci 2018; 19(6): 1-16.
[http://dx.doi.org/10.3390/ijms19061573 ] [PMID: 29799460]
[43]
Sourabh A, Kanwar SS, Sud RG, Ghabru A, Sharma OP. Influence of phenolic compounds of Kangra tea [Camellia sinensis (L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas. Braz J Microbiol 2014; 44(3): 709-15.
[http://dx.doi.org/10.1590/S1517-83822013000300007 ] [PMID: 24516437]
[44]
Lee F, Lim J, Reithofer MR, Lee SS, Chung JE, Hauser CAE, et al. Synthesis and bioactivity of a conjugate composed of green tea catechins and hyaluronic acid. Polym Chem 2015; 6: 4462-72.
[http://dx.doi.org/10.1039/C5PY00495K]
[45]
Ananingsih VK, Sharma A, Zhou W. Green tea catechins during food processing and storage : A review on stability and detection. FRIN 2013; 50: 469-79.
[http://dx.doi.org/10.1016/j.foodres.2011.03.004]
[46]
Shishido S, Miyano R, Nakashima T, et al. A novel pathway for the photooxidation of catechin in relation to its prooxidative activity. Sci Rep 2018; 8(1): 12888.
[http://dx.doi.org/10.1038/s41598-018-31195-x ] [PMID: 30150642]
[47]
Galleano M, Verstraeten SV, Oteiza PI, Fraga CG. Antioxidant actions of flavonoids: thermodynamic and kinetic analysis. Arch Biochem Biophys 2010; 501(1): 23-30.
[http://dx.doi.org/10.1016/j.abb.2010.04.005 ] [PMID: 20388486]
[48]
Shahid A, Ali R, Ali N, et al. Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo(a)pyrene in mice. Food Chem Toxicol 2016; 92: 64-74.
[http://dx.doi.org/10.1016/j.fct.2016.03.021 ] [PMID: 27020533]
[49]
Bernatoniene J, Kopustinskiene DM. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018; 23(4): 1-11.
[http://dx.doi.org/10.3390/molecules23040965 ] [PMID: 29677167]
[50]
Wan MLY, Ling KH, Wang MF, El-Nezami H. Green tea polyphenol epigallocatechin-3-gallate improves epithelial barrier function by inducing the production of antimicrobial peptide pBD-1 and pBD-2 in monolayers of porcine intestinal epithelial IPEC-J2 cells. Mol Nutr Food Res 2016; 60(5): 1048-58.
[http://dx.doi.org/10.1002/mnfr.201500992 ] [PMID: 26991948]
[51]
Degrazia FW, Genari B, Leitune VCB, et al. Polymerisation, antibacterial and bioactivity properties of experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes. J Dent 2018; 69: 77-82.
[http://dx.doi.org/10.1016/j.jdent.2017.11.002 ] [PMID: 29126948]
[52]
Mileo AM, Miccadei S. Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies. Oxid Med Cell Longev 2016.: 20166475624.
[http://dx.doi.org/10.1155/2016/6475624 ] [PMID: 26649142]
[53]
Su HF, Lin Q, Wang XY, et al. Absorptive interactions of concurrent oral administration of (+)-catechin and puerarin in rats and the underlying mechanisms. Acta Pharmacol Sin 2016; 37(4): 545-54.
[http://dx.doi.org/10.1038/aps.2015.164 ] [PMID: 26972494]
[54]
Zaveri NT. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci 2006; 782073-80.
[http://dx.doi.org/10.1016/j.lfs.2005.12.006]]
[55]
Wang Q, Wong CH, Chan HYE, Lee WY, Zuo Z. Statistical Design of Experiment (DoE) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int J Pharm 2018; 539(1-2): 50-7.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.032 ] [PMID: 29366939]
[56]
Mahfouz R, Sharma R, Thiyagarajan A, et al. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril 2010; 94(6): 2141-6.
[http://dx.doi.org/10.1016/j.fertnstert.2009.12.030 ] [PMID: 20117780]
[57]
Sang S, Liao CH, Pan MH, Rosen RT, Lin-Shiau SY, Lin JK, et al. Chemical studies on antioxidant mechanism of garcinol: Analysis of radical reaction products of garcinol with peroxyl radicals and their antitumor activities. Tetrahedron 2002; 58: 10095-102.
[http://dx.doi.org/10.1016/S0040-4020(02)01411-4]
[58]
Yang GZ, Wang ZJ, Bai F, et al. Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways. Molecules 2015; 20(4): 6626-39.
[http://dx.doi.org/10.3390/molecules20046626 ] [PMID: 25875041]
[59]
Addepalli V, Suryavanshi SV. Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomed Pharmacother 2018; 108: 1517-23.
[http://dx.doi.org/10.1016/j.biopha.2018.09.179 ] [PMID: 30372853]
[60]
Yee EMH, Brandl MB, Pasquier E, et al. Dextran-Catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cells. Sci Rep 2017; 7(1): 7638.
[http://dx.doi.org/10.1038/s41598-017-07452-w ] [PMID: 28794411]
[61]
Ganeshpurkar A, Saluja AK. Protective effect of catechin on humoral and cell mediated immunity in rat model. Int Immunopharmacol 2018; 54: 261-6.
[http://dx.doi.org/10.1016/j.intimp.2017.11.022 ] [PMID: 29172063]
[62]
Reygaert WC. Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Res Int 2018.: 20189105261.
[http://dx.doi.org/10.1155/2018/9105261 ] [PMID: 30105263]
[63]
Zhang Y, Zhao T, Deng J, et al. Positive effects of the tea catechin (-)-epigallocatechin-3-gallate on gut bacteria and fitness of Ectropis obliqua Prout (Lepidoptera: Geometridae). Sci Rep 2019; 9(1): 5021.
[http://dx.doi.org/10.1038/s41598-019-41637-9 ] [PMID: 30903009]
[64]
Liang W, Fernandes AP, Holmgren A, Li X, Zhong L. Bacterial thioredoxin and thioredoxin reductase as mediators for epigallocatechin 3-gallate-induced antimicrobial action. FEBS J 2016; 283(3): 446-58.
[http://dx.doi.org/10.1111/febs.13587 ] [PMID: 26546231]
[65]
Tsou LK, Yount JS, Hang HC. Epigallocatechin-3-gallate inhibits bacterial virulence and invasion of host cells. Bioorg Med Chem 2017; 25(11): 2883-7.
[http://dx.doi.org/10.1016/j.bmc.2017.03.023 ] [PMID: 28325635]
[66]
Dueñas M, Muñoz-González I, Cueva C, et al. A survey of modulation of gut microbiota by dietary polyphenols. BioMed Res Int 2015.: 2015850902.
[http://dx.doi.org/10.1155/2015/850902 ] [PMID: 25793210]
[67]
Filosa S, Di Meo F, Crispi S. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen Res 2018; 13(12): 2055-9.
[http://dx.doi.org/10.4103/1673-5374.241429 ] [PMID: 30323120]
[68]
Rosenfeld CS. Special section on drug metabolism and the microbiome - Perspective microbiome disturbances and autism spectrum disorders. Drug Metab Dispos 2015; 43(10): 1557-71.
[http://dx.doi.org/10.1124/dmd.115.063826 ] [PMID: 25852213]
[69]
Xiong LG, Chen YJ, Tong JW, et al. Tea polyphenol epigallocatechin gallate inhibits Escherichia coli by increasing endogenous oxidative stress. Food Chem 2017; 217: 196-204.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.098 ] [PMID: 27664626]
[70]
Yang J, Tang CB, Xiao J, Du WF, Li R. Influences of epigallocatechin gallate and citric acid on Escherichia coli O157:H7 toxin gene expression and virulence-associated stress response. Lett Appl Microbiol 2018; 67(5): 435-41.
[http://dx.doi.org/10.1111/lam.13058 ] [PMID: 30066955]
[71]
Serra DO, Mika F, Richter AM, Hengge R. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σ(E) -dependent sRNA RybB. Mol Microbiol 2016; 101(1): 136-51.
[http://dx.doi.org/10.1111/mmi.13379 ] [PMID: 26992034]
[72]
Alanís AD, Calzada F, Cedillo-Rivera R, Meckes M. Antiprotozoal activity of the constituents of Rubus coriifolius. Phytother Res 2003; 17(6): 681-2.
[http://dx.doi.org/10.1002/ptr.1150 ] [PMID: 12820241]
[73]
Calzada F, Juárez T, García-Hernández N, et al. Antiprotozoal, antibacterial and antidiarrheal properties from the flowers of Chiranthodendron pentadactylon and isolated flavonoids. Pharmacogn Mag 2017; 13(50): 240-4.
[http://dx.doi.org/10.4103/0973-1296.204564 ] [PMID: 28539715]
[74]
Calzada F, Cervantes-Martínez JA, Yépez-Mulia L. In vitro antiprotozoal activity from the roots of Geranium mexicanum and its constituents on Entamoeba histolytica and Giardia lamblia. J Ethnopharmacol 2005; 98(1-2): 191-3.
[http://dx.doi.org/10.1016/j.jep.2005.01.019 ] [PMID: 15763382]
[75]
Calzada F, Meckes M, Cedillo-Rivera R. Antiamoebic and antigiardial activity of plant flavonoids. Planta Med 1999; 65(1): 78-80.
[http://dx.doi.org/10.1055/s-2006-960445 ] [PMID: 10083850]
[76]
Barbosa E, Calzada F, Campos R. In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. J Ethnopharmacol 2007; 109(3): 552-4.
[http://dx.doi.org/10.1016/j.jep.2006.09.009 ] [PMID: 17052875]
[77]
Soto J, Gómez C, Calzada F, Ramírez ME. Ultrastructural changes on Entamoeba histolytica HM1-IMSS caused by the flavan-3-ol, (-)-epicatechin. Planta Med 2010; 76(6): 611-2.
[http://dx.doi.org/10.1055/s-0029-1240599 ] [PMID: 19918717]
[78]
Bolaños V, Díaz-Martínez A, Soto J, et al. The flavonoid (-)-epicatechin affects cytoskeleton proteins and functions in Entamoeba histolytica. J Proteomics 2014; 111: 74-85.
[http://dx.doi.org/10.1016/j.jprot.2014.05.017 ] [PMID: 24887480]
[79]
Orozco E, de la Cruz Hernández F, Rodríguez MA. Isolation and characterization of Entamoeba histolytica mutants resistant to emetine. Mol Biochem Parasitol 1985; 15(1): 49-59.
[http://dx.doi.org/10.1016/0166-6851(85)90028-3 ] [PMID: 2859522]
[80]
Prabhu R, Sehgal R, Chakraborti A, Malla N, Ganguly NK, Mahajan RC. Isolation of emetine resistant clones of Entamoeba histolytica by petri dish agar method. Indian J Med Res 2000; 111: 11-3.
[http://dx.doi.org/10.1002/med.21627] [PMID: 10793488]
[81]
Hanna RM, Dahniya MH, Badr SS, El-Betagy A. Percutaneous catheter drainage in drug-resistant amoebic liver abscess. Trop Med Int Health 2000; 5(8): 578-81.
[http://dx.doi.org/10.1046/j.1365-3156.2000.00586.x ] [PMID: 10995100]
[82]
Aboulaila M, Yokoyama N, Igarashi I. Inhibitory effects of (-)-epigallocatechin-3-gallate from green tea on the growth of Babesia parasites. Parasitology 2010; 137(5): 785-91.
[http://dx.doi.org/10.1017/S0031182009991594 ] [PMID: 20025823]
[83]
Noranate N, Durand R, Tall A, et al. Rapid dissemination of Plasmodium falciparum drug resistance despite strictly controlled antimalarial use. PLoS One 2007; 2(1): e139.
[http://dx.doi.org/10.1371/journal.pone.0000139 ] [PMID: 17206274]
[84]
Vial HJ, Gorenflot A. Chemotherapy against babesiosis. Vet Parasitol 2006; 138(1-2): 147-60.
[http://dx.doi.org/10.1016/j.vetpar.2006.01.048 ] [PMID: 16504402]
[85]
Jovel IT, Mejía RE, Banegas E, et al. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America. Malar J 2011; 10: 376.
[http://dx.doi.org/10.1186/1475-2875-10-376 ] [PMID: 22183028]
[86]
Dormeyer M, Adams Y, Kramer B, et al. Rational design of anticytoadherence inhibitors for Plasmodium falciparum based on the crystal structure of human intercellular adhesion molecule 1. Antimicrob Agents Chemother 2006; 50(2): 724-30.
[http://dx.doi.org/10.1128/AAC.50.2.724-730.2006 ] [PMID: 16436732]
[87]
Sannella AR, Messori L, Casini A, et al. Antimalarial properties of green tea. Biochem Biophys Res Commun 2007; 353(1): 177-81.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.005 ] [PMID: 17174271]
[88]
Sharma SK, Parasuraman P, Kumar G, Surolia N, Surolia A. Green tea catechins potentiate triclosan binding to enoyl-ACP reductase from Plasmodium falciparum (PfENR). J Med Chem 2007; 50(4): 765-75.
[http://dx.doi.org/10.1021/jm061154d ] [PMID: 17263522]
[89]
Banerjee T, Sharma SK, Surolia N, Surolia A. Epigallocatechin gallate is a slow-tight binding inhibitor of enoyl-ACP reductase from Plasmodium falciparum. Biochem Biophys Res Commun 2008; 377(4): 1238-42.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.135 ] [PMID: 18992222]
[90]
Hellmann JK, Münter S, Wink M, Frischknecht F. Synergistic and additive effects of epigallocatechin gallate and digitonin on Plasmodium sporozoite survival and motility. PLoS One 2010; 5(1): e8682.
[http://dx.doi.org/10.1371/journal.pone.0008682 ] [PMID: 20072627]
[91]
Chandrashekaran IR, Adda CG, MacRaild CA, Anders RF, Norton RS. Inhibition by flavonoids of amyloid-like fibril formation by Plasmodium falciparum merozoite surface protein 2. Biochemistry 2010; 49(28): 5899-908.
[http://dx.doi.org/10.1021/bi902197x ] [PMID: 20545323]
[92]
Chandrashekaran IR, Adda CG, Macraild CA, Anders RF, Norton RS. EGCG disaggregates amyloid-like fibrils formed by Plasmodium falciparum merozoite surface protein 2. Arch Biochem Biophys 2011; 513(2): 153-7.
[http://dx.doi.org/10.1016/j.abb.2011.07.008 ] [PMID: 21784057]
[93]
Patil PR, Gemma S, Campiani G, Craig AG. Broad inhibition of plasmodium falciparum cytoadherence by (+)-epigallocatechin gallate. Malar J 2011; 10: 348.
[http://dx.doi.org/10.1186/1475-2875-10-348 ] [PMID: 22132804]
[94]
Zininga T, Ramatsui L, Makhado PB, et al. (−)-Epigallocatechin-3-gallate inhibits the chaperone activity of Plasmodium falciparum Hsp70 chaperones and abrogates their association with functional partners. Molecules 2017; 22(12): E2139.
[http://dx.doi.org/10.3390/molecules22122139 ] [PMID: 29206141]
[95]
Ramanandraibe V, Grellier P, Martin MT, et al. Antiplasmodial phenolic compounds from Piptadenia pervillei. Planta Med 2008; 74(4): 417-21.
[http://dx.doi.org/10.1055/s-2008-1034328 ] [PMID: 18484535]
[96]
Tasdemir D, Lack G, Brun R, Rüedi P, Scapozza L, Perozzo R. Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. J Med Chem 2006; 49(11): 3345-53.
[http://dx.doi.org/10.1021/jm0600545 ] [PMID: 16722653]
[97]
Gupta AK, Saxena S, Saxena M. Integrated ligand and structure based studies of flavonoids as fatty acid biosynthesis inhibitors of Plasmodium falciparum. Bioorg Med Chem Lett 2010; 20(16): 4779-81.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.120 ] [PMID: 20637612]
[98]
Vigueira PA, Ray SS, Martin BA, Ligon MM, Paul KS. Effects of the green tea catechin (-)-epigallocatechin gallate on Trypanosoma brucei. Int J Parasitol Drugs Drug Resist 2012; 2: 225-9.
[http://dx.doi.org/10.1016/j.ijpddr.2012.09.001 ] [PMID: 24533284]
[99]
Thipubon P, Uthaipibull C, Kamchonwongpaisan S, Tipsuwan W, Srichairatanakool S. Inhibitory effect of novel iron chelator, 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) and green tea extract on growth of Plasmodium falciparum. Malar J 2015; 14: 382.
[http://dx.doi.org/10.1186/s12936-015-0910-1 ] [PMID: 26424148]
[100]
Paveto C, Güida MC, Esteva MI, et al. Anti-Trypanosoma cruzi activity of green tea (Camellia sinensis) catechins. Antimicrob Agents Chemother 2004; 48(1): 69-74.
[http://dx.doi.org/10.1128/AAC.48.1.69-74.2004 ] [PMID: 14693520]
[101]
Güida MC, Esteva MI, Camino A, Flawiá MM, Torres HN, Paveto C. Trypanosoma cruzi: in vitro and in vivo antiproliferative effects of epigallocatechin gallate (EGCg). Exp Parasitol 2007; 117(2): 188-94.
[http://dx.doi.org/10.1016/j.exppara.2007.04.015 ] [PMID: 17673202]
[102]
Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE. In vitro and in vivo effects of (-)-epigallocatechin 3-O-gallate on Leishmania amazonensis. J Nat Prod 2013; 76(10): 1993-6.
[http://dx.doi.org/10.1021/np400624d ] [PMID: 24106750]
[103]
Inacio JDF, Gervazoni L, Canto-Cavalheiro MM, Almeida-Amaral EE. The effect of (-)-epigallocatechin 3-O-gallate in vitro and in vivo in Leishmania braziliensis: involvement of reactive oxygen species as a mechanism of action. PLoS Negl Trop Dis 2014; 8(8): e3093.
[http://dx.doi.org/10.1371/journal.pntd.0003093 ] [PMID: 25144225]
[104]
Ribeiro TG, Nascimento AM, Henriques BO, et al. Antileishmanial activity of standardized fractions of Stryphnodendron obovatum (Barbatimão) extract and constituent compounds. J Ethnopharmacol 2015; 165: 238-42.
[http://dx.doi.org/10.1016/j.jep.2015.02.047 ] [PMID: 25732835]
[105]
Khademvatan S, Eskandari K, Hazrati-Tappeh K, et al. In silico and in vitro comparative activity of green tea components against Leishmania infantum. J Glob Antimicrob Resist 2019; 18: 187-94.
[http://dx.doi.org/10.1016/j.jgar.2019.02.008 ] [PMID: 30797085]
[106]
Mogana R, Adhikari A, Debnath S, et al. The antiacetylcholinesterase and antileishmanial activities of Canarium patentinervium Miq. BioMed Res Int 2014.: 2014903529.
[http://dx.doi.org/10.1155/2014/903529 ] [PMID: 24949478]
[107]
Lin L, Jiao M, Zhao M, Sun W. In vitro gastrointestinal digest of catechin-modified β-conglycinin oxidized by lipoxygenase-catalyzed linoleic acid peroxidation. Food Chem 2019; 280: 154-63.
[http://dx.doi.org/10.1016/j.foodchem.2018.12.067 ] [PMID: 30642482]
[108]
Oliveira-Reis B, Maluly-Proni AT, Fagundes TC, et al. Influence of protease inhibitors on the degradation of sound, sclerotic and caries-affected demineralized dentin. J Mech Behav Biomed Mater 2019; 97: 1-6.
[http://dx.doi.org/10.1016/j.jmbbm.2019.05.003 ] [PMID: 31082714]
[109]
Mankovskaia A, Lévesque CM, Prakki A. Catechin-incorporated dental copolymers inhibit growth of Streptococcus mutans. J Appl Oral Sci 2013; 21(2): 203-7.
[http://dx.doi.org/10.1590/1678-7757201302430 ] [PMID: 23739855]
[110]
Ning Y, Ling J, Wu CD. Synergistic effects of tea catechin epigallocatechin gallate and antimycotics against oral Candida species. Arch Oral Biol 2015; 60(10): 1565-70.
[http://dx.doi.org/10.1016/j.archoralbio.2015.07.001 ] [PMID: 26263544]
[111]
Gungor OE, Kirzioglu Z, Kivanc M. Probiotics: can they be used to improve oral health? Benef Microbes 2015; 6(5): 647-56.
[http://dx.doi.org/10.3920/BM2014.0167 ] [PMID: 26123783]
[112]
Higuchi T, Suzuki N, Nakaya S, et al. Effects of Lactobacillus salivarius WB21 combined with green tea catechins on dental caries, periodontitis, and oral malodor. Arch Oral Biol 2019; 98: 243-7.
[http://dx.doi.org/10.1016/j.archoralbio.2018.11.027 ] [PMID: 30530235]
[113]
Santiago SL, Osorio R, Neri JR, Carvalho RM, Toledano M. Effect of the flavonoid epigallocatechin-3-gallate on resin-dentin bond strength. J Adhes Dent 2013; 15(6): 535-40.
[http://dx.doi.org/10.3290/j.jad.a29532 ] [PMID: 23560257]
[114]
Prakki A, Xiong Y, Bortolatto J, et al. Functionalized epigallocatechin gallate copolymer inhibit dentin matrices degradation: Mechanical, solubilized telopeptide and proteomic assays. Dent Mater 2018; 34(11): 1625-33.
[http://dx.doi.org/10.1016/j.dental.2018.08.297 ] [PMID: 30201286]
[115]
Pallan S, Furtado Araujo MV, Cilli R, Prakki A. Mechanical properties and characteristics of developmental copolymers incorporating catechin or chlorhexidine. Dent Mater 2012; 28(6): 687-94.
[http://dx.doi.org/10.1016/j.dental.2012.03.003 ] [PMID: 22460187]
[116]
Wang YL, Chang HH, Chiang YC, Lu YC, Lin CP. Effects of fluoride and epigallocatechin gallate on soft-drink-induced dental erosion of enamel and root dentin. J Formos Med Assoc 2018; 117(4): 276-82.
[http://dx.doi.org/10.1016/j.jfma.2018.01.020 ] [PMID: 29449065]
[117]
Yu H, Oho T, Xu LX. Effects of several tea components on acid resistance of human tooth enamel. J Dent 1995; 23(2): 101-5.
[http://dx.doi.org/10.1016/0300-5712(95)98975-9 ] [PMID: 7738265]
[118]
Gotti VB, Feitosa VP, Sauro S, et al. Effect of antioxidants on the dentin interface bond stability of adhesives exposed to hydrolytic degradation. J Adhes Dent 2015; 17(1): 35-44.
[http://dx.doi.org/10.3290/j.jad.a33515 ] [PMID: 25625137]
[119]
Zarella BL, Buzalaf MAR, Kato MT, et al. Cytotoxicity and effect on protease activity of copolymer extracts containing catechin. Arch Oral Biol 2016; 65: 66-71.
[http://dx.doi.org/10.1016/j.archoralbio.2016.01.017 ] [PMID: 26867224]
[120]
Stavroullakis AT, Carrilho MR, Levesque CM, Prakki A. Profiling cytokine levels in chlorhexidine and EGCG-treated odontoblast-like cells. Dent Mater 2018; 34(6): e107-14.
[http://dx.doi.org/10.1016/j.dental.2018.01.025 ] [PMID: 29428678]
[121]
Lopes RG, Oliveira-Reis B, Maluly-Proni AT, Silva MHT, Briso ALF, Dos Santos PH. Influence of green tea extract in the color of composite resin restorations. J Mech Behav Biomed Mater 2019.: 100103408.
[http://dx.doi.org/10.1016/j.jmbbm.2019.103408 ] [PMID: 31476552]
[122]
Pheomphun P, Treesubsuntorn C, Thiravetyan P. Effect of exogenous catechin on alleviating O3 stress: The role of catechin-quinone in lipid peroxidation, salicylic acid, chlorophyll content, and antioxidant enzymes of Zamioculcas zamiifolia. Ecotoxicol Environ Saf 2019; 180: 374-83.
[http://dx.doi.org/10.1016/j.ecoenv.2019.05.002 ] [PMID: 31102845]
[123]
Shim W, Kim CE, Lee M, et al. Catechin solubilization by spontaneous hydrogen bonding with poly(ethylene glycol) for dry eye therapeutics. J Control Release 2019; 307: 413-22.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.016 ] [PMID: 31121276]
[124]
Chebil L, Humeau C, Anthony J, Dehez F, Engasser JM, Ghoul M. Solubility of flavonoids in organic solvents. J Chem Eng Data 2007; 52: 1552-6.
[http://dx.doi.org/10.1021/je7001094]
[125]
Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Enhanced dissolution and bioavailability of grapefruit flavonoid Naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev Ind Pharm 2015; 41(5): 772-9.
[http://dx.doi.org/10.3109/03639045.2014.902466 ] [PMID: 24669978]
[126]
Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr 2000; 130(8S)(Suppl.): 2073S-85S.
[http://dx.doi.org/10.1093/jn/130.8.2073S ] [PMID: 10917926]
[127]
Siddiqui IA, Adhami VM, Bharali DJ, et al. Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 2009; 69(5): 1712-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3978 ] [PMID: 19223530]
[128]
Ramesh N, Mandal AKA. Encapsulation of epigallocatechin-3- gallate into albumin nanoparticles improves pharmacokinetic and bioavailability in rat model 3 Biotech 2019; 91-14.
[http://dx.doi.org/10.1007/s13205-019-1772-y]
[129]
Gondim BLC, Oshiro-Júnior JA, Fernanandes FHA, Nóbrega FP, Castellano LRC, Medeiros ACD. Plant Extracts Loaded in Nanostructured Drug Delivery Systems for Treating Parasitic and Antimicrobial Diseases. Curr Pharm Des 2019; 25(14): 1604-15.
[http://dx.doi.org/10.2174/1381612825666190628153755 ] [PMID: 31264539]
[130]
Takanashi K, Suda M, Matsumoto K, et al. Epicatechin oligomers longer than trimers have anti-cancer activities, but not the catechin counterparts. Sci Rep 2017; 7(1): 7791.
[http://dx.doi.org/10.1038/s41598-017-08059-x ] [PMID: 28798415]
[131]
Lee JS, Lee JS, Lee MS, An S, Yang K, Lee K, et al. Plant Flavonoid-Mediated Multifunctional Surface Modification Chemistry: Catechin Coating for Enhanced Osteogenesis of Human Stem Cells. Chem Mater 2017; 29: 4375-84.
[http://dx.doi.org/10.1021/acs.chemmater.7b00802]
[132]
Senthil Muthu Kumar T, Senthil Kumar K, Rajini N, Siengchin S, Ayrilmis N, Varada Rajulu A. A comprehensive review of electrospun nanofibers: Food and packaging perspective. Compos, Part B Eng 2019.: 175107074.
[http://dx.doi.org/10.1016/j.compositesb.2019.107074]
[133]
Haratifar S, Meckling KA, Corredig M. Bioefficacy of tea catechins encapsulated in casein micelles tested on a normal mouse cell line (4D/WT) and its cancerous counterpart (D/v-src) before and after in vitro digestion. Food Funct 2014; 5(6): 1160-6.
[http://dx.doi.org/10.1039/c3fo60343a ] [PMID: 24686838]
[134]
Wu Q, Li SY, Yang T, Xiao J, Chu QM, Li T, et al. Inhibitory effect of lotus seedpod oligomeric procyanidins on advanced glycation end product formation in a lactose-lysine model system. Electron J Biotechnol 2015; 18: 68-76.
[http://dx.doi.org/10.1016/j.ejbt.2014.10.005]
[135]
Haratifar S, Meckling KA, Corredig M. Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. J Dairy Sci 2014; 97(2): 672-8.
[http://dx.doi.org/10.3168/jds.2013-7263 ] [PMID: 24359816]
[136]
Liu Y, Shi J. Antioxidative nanomaterials and biomedical applications. Nano Today 2019; 27: 146-77.
[http://dx.doi.org/10.1016/j.nantod.2019.05.008]
[137]
Ishii S, Kitazawa H, Mori T, et al. Identification of the Catechin Uptake Transporter Responsible for Intestinal Absorption of Epigallocatechin Gallate in Mice. Sci Rep 2019; 9(1): 11014.
[http://dx.doi.org/10.1038/s41598-019-47214-4 ] [PMID: 31358798]
[138]
Liang K, Ng S, Lee F, et al. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomater 2016; 33: 142-52.
[http://dx.doi.org/10.1016/j.actbio.2016.01.011 ] [PMID: 26785145]
[139]
Kawalkar A. A Comprehensive Review on Osteoporosis. J Trauma 2015; 10: 3-12.
[140]
Tang XZ, Kumar P, Alavi S, Sandeep KP. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 2012; 52(5): 426-42.
[http://dx.doi.org/10.1080/10408398.2010.500508 ] [PMID: 22369261]
[141]
Dag D, Guner S, Oztop MH. Physicochemical mechanisms of different biopolymers’ (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. Int J Biol Macromol 2019; 138: 473-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.106 ] [PMID: 31325502]
[142]
Ahmad M, Mudgil P, Gani A, Hamed F, Masoodi FA, Maqsood S. Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem 2019; 270: 95-104.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.024 ] [PMID: 30174096]
[143]
Arrieta MP, Díez García A, López D, Fiori S, Peponi L. Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials (Basel) 2019; 9(3): 346.
[http://dx.doi.org/10.3390/nano9030346 ] [PMID: 30832425]
[144]
Elabbadi A, Jeckelmann N, Haefliger O, Ouali L, Erni P. Selective coprecipitation of polyphenols in bioactive/inorganic complexes. ACS Appl Mater Interfaces 2011; 3(7): 2764-71.
[http://dx.doi.org/10.1021/am2005515 ] [PMID: 21736351]
[145]
Liu J, Meng CG, Yan YH, Shan YN, Kan J, Jin CH. Structure, physical property and antioxidant activity of catechin grafted Tremella fuciformis polysaccharide. Int J Biol Macromol 2016; 82: 719-24.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.027 ] [PMID: 26589582]
[146]
Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine (Lond) 2011; 7(1): 22-39.
[http://dx.doi.org/10.1016/j.nano.2010.10.005 ] [PMID: 21050895]
[147]
Przystupski D, Michel O, Rossowska J, Kwiatkowski S, Saczko J, Kulbacka J. The modulatory effect of green tea catechin on drug resistance in human ovarian cancer cells. Med Chem Res 2019; 28: 657-67.
[http://dx.doi.org/10.1007/s00044-019-02324-6]
[148]
Khan S, Ullah MW, Siddique R, et al. Catechins-modified selenium-doped hydroxyapatite nanomaterials for improved osteosarcoma therapy through generation of reactive oxygen species. Front Oncol 2019; 9: 499.
[http://dx.doi.org/10.3389/fonc.2019.00499 ] [PMID: 31263675]
[149]
Li P, Liu A, Xiong W, Lin H, et al. Catechins enhance skeletal muscle performance. Crit Rev Food Sci Nutr 2020; 60(3): 1-14.
[http://dx.doi.org/10.1080/10408398.2018.1549534 ] [PMID: 30633538]
[150]
Manikkam R, Pitchai D. Catechin loaded chitosan nanoparticles as a novel drug delivery system for cancer - synthesis and in vitro and in vivo characterization. World J Pharm Pharm Sci 2014; 3: 1553-77.
[151]
Liao R, Tang Z, Lei Y, Guo B. Polyphenol-reduced graphene oxide: Mechanism and derivatization. J Phys Chem C 2011; 115: 20740-6.
[http://dx.doi.org/10.1021/jp2068683]
[152]
Sun J, He Y, Wang L. Enzyme-free fluorescence sensing of catechins in green tea using bifunctional graphene quantum dots. Anal Methods 2017; 9: 3525-30.
[http://dx.doi.org/10.1039/C7AY00973A]
[153]
Francesko A, Soares da Costa D, Reis RL, Pashkuleva I, Tzanov T. Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomater 2013; 9(2): 5216-25.
[http://dx.doi.org/10.1016/j.actbio.2012.10.014 ] [PMID: 23072830]
[154]
Sayed Abdelgeliel A, Ferraris S, Cochis A, Vitalini S, Iriti M, Mohammed H, et al. Surface Functionalization of Bioactive Glasses with Polyphenols from Padina pavonica Algae and In Situ Reduction of Silver Ions: Physico-Chemical Characterization and Biological Response. Coatings 2019; 9: 394.
[http://dx.doi.org/10.3390/coatings9060394]
[155]
Ribeiro GAC, da Rocha CQ, Veloso WB, Fernandes RN, da Silva IS, Tanaka AA. Determination of the catechin contents of bioactive plant extracts using disposable screen-printed carbon electrodes in a batch injection analysis (BIA) system. Microchem J 2019; 146: 1249-54.
[http://dx.doi.org/10.1016/j.microc.2019.02.058]
[156]
Sun Z, Chen X, Ma X, Cui X, Yi Z, Li X. Cellulose/keratin-catechin nanocomposite hydrogel for wound hemostasis. J Mater Chem B Mater Biol Med 2018; 6(38): 6133-41.
[http://dx.doi.org/10.1039/C8TB01109E ] [PMID: 32254823]
[157]
Kulakowski D, Leme-Kraus AA, Nam JW, et al. Oligomeric proanthocyanidins released from dentin induce regenerative dental pulp cell response. Acta Biomater 2017; 55: 262-70.
[http://dx.doi.org/10.1016/j.actbio.2017.03.051 ] [PMID: 28365481]
[158]
Horie N, Hirabayashi N, Takahashi Y, Miyauchi Y, Taguchi H, Takeishi K. Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biol Pharm Bull 2005; 28(4): 574-9.
[http://dx.doi.org/10.1248/bpb.28.574 ] [PMID: 15802789]
[159]
Koch W, Kukula-Koch W, Komsta Ł, Marzec Z, Szwerc W, Głowniak K. Green tea quality evaluation based on its catechins and metals composition in combination with chemometric analysis. Molecules 2018; 23(7): 1-19.
[http://dx.doi.org/10.3390/molecules23071689 ] [PMID: 29997337]
[160]
Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med Microbiol 2015; 64(Pt 5): 471-97.
[http://dx.doi.org/10.1099/jmm.0.023036-0 ] [PMID: 25418738]
[161]
Turner RJ. Metal-based antimicrobial strategies. Microb Biotechnol 2017; 10(5): 1062-5.
[http://dx.doi.org/10.1111/1751-7915.12785 ] [PMID: 28745454]
[162]
Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2010; 2(5): 763-70.
[http://dx.doi.org/10.1039/c0nr00046a ] [PMID: 20648322]
[163]
Zhang L, McClements DJ, Wei Z, Wang G, Liu X, Liu F. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Crit Rev Food Sci Nutr 2019; 60(12): 1-15.
[http://dx.doi.org/10.1080/10408398.2019.1630358 ] [PMID: 31257900]
[164]
Khan-Salma. Saeed K-T, Hussain-Fazal, Majid-Abdul. Green synthesis of Brassica campestris mediated silver nanoparticles, their antibacterial and antioxidant activities Green synthesis of Brassica campestris mediated silver nanoparticles, their antibacterial and antioxidant activities. Int J Chem Stud 2018; 6: 1943-9.
[http://dx.doi.org/10.24966/AMR-694X/100010]]
[165]
Alavi M, Karimi N. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif Cells Nanomed Biotechnol 2018; 46(8): 2066-81.
[http://dx.doi.org/10.1080/21691401.2017.1408121 ] [PMID: 29233039]
[166]
Rolim WR, Pelegrino MT, de Araújo Lima B, et al. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci 2019; 463: 66-74.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.203]
[167]
Rafat Husain S, Cillard J, Cillard P. Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 1987; 26: 2489-91.
[http://dx.doi.org/10.1016/S0031-9422(00)83860-1]
[168]
Yuan J-M, Sun C, Butler LM. Tea and cancer prevention: epidemiological studies. Pharmacol Res 2011; 64(2): 123-35.
[http://dx.doi.org/10.1016/j.phrs.2011.03.002 ] [PMID: 21419224]
[169]
Stoner GD, Mukhtar H. Polyphenols as cancer chemopreventive agents. J Cell Biochem Suppl 1995; 22: 169-80.
[http://dx.doi.org/10.1002/jcb.240590822 ] [PMID: 8538195]
[170]
Hou Z, Lambert JD, Chin K-V, Yang CS. Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat Res 2004; 555(1-2): 3-19.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.06.040 ] [PMID: 15476848]
[171]
Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res Int 2014.: 2014761264.
[http://dx.doi.org/10.1155/2014/761264 ] [PMID: 24587990]
[172]
Yang GY, Liao J, Kim K, Yurkow EJ, Yang CS. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis 1998; 19(4): 611-6.
[http://dx.doi.org/10.1093/carcin/19.4.611 ] [PMID: 9600345]
[173]
Perletti G, Magri V, Vral A, Stamatiou K, Trinchieri A. Green tea catechins for chemoprevention of prostate cancer in patients with histologically-proven HG-PIN or ASAP. Concise review and meta-analysis. Arch Ital Urol Androl 2019; 91(3)
[http://dx.doi.org/10.4081/aiua.2019.3.153 ] [PMID: 31577096]
[174]
Li M, Tse LA, Chan WC, et al. Evaluation of breast cancer risk associated with tea consumption by menopausal and estrogen receptor status among Chinese women in Hong Kong. Cancer Epidemiol 2016; 40: 73-8.
[http://dx.doi.org/10.1016/j.canep.2015.11.013 ] [PMID: 26680603]
[175]
Zhang M, Holman CDJ, Huang JP, Xie X. Green tea and the prevention of breast cancer: a case-control study in Southeast China. Carcinogenesis 2007; 28(5): 1074-8.
[http://dx.doi.org/10.1093/carcin/bgl252 ] [PMID: 17183063]
[176]
Kumar N, Titus-Ernstoff L, Newcomb PA, Trentham-Dietz A, Anic G, Egan KM. Tea consumption and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2009; 18(1): 341-5.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0819 ] [PMID: 19124518]
[177]
Ruch RJ, Cheng SJ, Klaunig JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989; 10(6): 1003-8.
[http://dx.doi.org/10.1093/carcin/10.6.1003 ] [PMID: 2470525]
[178]
Kaur S, Greaves P, Cooke DN, et al. Breast cancer prevention by green tea catechins and black tea theaflavins in the C3(1) SV40 T,t antigen transgenic mouse model is accompanied by increased apoptosis and a decrease in oxidative DNA adducts. J Agric Food Chem 2007; 55(9): 3378-85.
[http://dx.doi.org/10.1021/jf0633342 ] [PMID: 17407311]
[179]
Mak JC. Potential role of green tea catechins in various disease therapies: progress and promise. Clin Exp Pharmacol Physiol 2012; 39(3): 265-73.
[http://dx.doi.org/10.1111/j.1440-1681.2012.05673.x ] [PMID: 22229384]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 33
Year: 2020
Published on: 23 September, 2020
Page: [4032 - 4047]
Pages: 16
DOI: 10.2174/1381612826666200603124418
Price: $65

Article Metrics

PDF: 23
HTML: 2
EPUB: 1
PRC: 1