Targeting MUC15 Protein in Cancer: Molecular Mechanisms and Therapeutic Perspectives

Author(s): Simei Zhang, Wunai Zhang, Ying Xiao, Tao Qin, Yangyang Yue, Weikun Qian, Xin Shen, Qingyong Ma, Zheng Wang*

Journal Name: Current Cancer Drug Targets

Volume 20 , Issue 9 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

MUC15, a member of the mucin family, is a heavily glycosylated transmembrane protein with the primary functions of lubricating surfaces, establishing a selective molecular barrier at the epithelium and mediating signal transduction. Aberrant expression of MUC15 plays a crucial role in the progression of multiple diseases, including malignant tumors. MUC15 has been identified as a tumor suppressor, but current evidence indicate its function as an oncogene in different types of cancers. MUC15 has been shown to be involved in the development of cancer and influence cellular growth, adhesion, invasion, metastasis and immune immunomodulation. However, the precise role of MUC15 in tumour development has not been thoroughly clarified. Here, we systematically summarize the structure and function of MUC15 in cancer, and discuss its potential role in cancer treatment.

Keywords: MUC15, cancer proliferation, metastasis, tumour therapy, glycosylated transmembrane protein, signal transduction.

[1]
Leal, J.; Smyth, H.D.C.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm., 2017, 532(1), 555-572.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.018] [PMID: 28917986]
[2]
Kufe, D.W. Mucins in cancer: function, prognosis and therapy. Nat. Rev. Cancer, 2009, 9(12), 874-885.
[http://dx.doi.org/10.1038/nrc2761] [PMID: 19935676]
[3]
Linden, S.K.; Sutton, P.; Karlsson, N.G.; Korolik, V.; McGuckin, M.A. Mucins in the mucosal barrier to infection. Mucosal Immunol., 2008, 1(3), 183-197.
[http://dx.doi.org/10.1038/mi.2008.5] [PMID: 19079178]
[4]
Dhanisha, S.S.; Guruvayoorappan, C.; Drishya, S.; Abeesh, P. Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit. Rev. Oncol. Hematol., 2018, 122, 98-122.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.006] [PMID: 29458795]
[5]
McGuckin, M.A.; Lindén, S.K.; Sutton, P.; Florin, T.H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol., 2011, 9(4), 265-278.
[http://dx.doi.org/10.1038/nrmicro2538] [PMID: 21407243]
[6]
Corfield, A.P. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim. Biophys. Acta, 2015, 1850(1), 236-252.
[http://dx.doi.org/10.1016/j.bbagen.2014.05.003] [PMID: 24821013]
[7]
Singh, A.P.; Moniaux, N.; Chauhan, S.C.; Meza, J.L.; Batra, S.K. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res., 2004, 64(2), 622-630.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2636] [PMID: 14744777]
[8]
Hollingsworth, M.A.; Swanson, B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer, 2004, 4(1), 45-60.
[http://dx.doi.org/10.1038/nrc1251] [PMID: 14681689]
[9]
Kasprzak, A.; Adamek, A. Mucins: The old, the new and the promising factors in hepatobiliary carcinogenesis. Int. J. Mol. Sci., 2019, 20(6), 1288-1318.
[http://dx.doi.org/10.3390/ijms20061288] [PMID: 30875782]
[10]
Vermeer, P.D.; Einwalter, L.A.; Moninger, T.O.; Rokhlina, T.; Kern, J.A.; Zabner, J.; Welsh, M.J. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature, 2003, 422(6929), 322-326.
[http://dx.doi.org/10.1038/nature01440] [PMID: 12646923]
[11]
Chen, Z.G.; Wang, Z.N.; Yan, Y.; Liu, J.; He, T.T.; Thong, K.T.; Ong, Y.K.; Chow, V.T.K.; Tan, K.S.; Wang, Y. Upregulation of cell-surface mucin MUC15 in human nasal epithelial cells upon influenza A virus infection. BMC Infect. Dis., 2019, 19(1), 622-632.
[http://dx.doi.org/10.1186/s12879-019-4213-y] [PMID: 31307416]
[12]
Yang, W.B.; Li, C.Y. Correlations of MUC15 overexpression with clinicopathological features and prognosis of glioma. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2014, 34(2), 254-259.
[http://dx.doi.org/10.1007/s11596-014-1267-3] [PMID: 24710941]
[13]
Choi, C.; Thi Thao Tran, N.; Van Ngu, T.; Park, S.W.; Song, M.S.; Kim, S.H.; Bae, Y.U.; Ayudthaya, P.D.N.; Munir, J.; Kim, E.; Baek, M.J.; Song, S.; Ryu, S.; Nam, K.H. Promotion of tumor progression and cancer stemness by MUC15 in thyroid cancer via the GPCR/ERK and integrin-FAK signaling pathways. Oncogenesis, 2018, 7(11), 85-98.
[http://dx.doi.org/10.1038/s41389-018-0094-y] [PMID: 30420637]
[14]
Huang, J.; Che, M.I.; Huang, Y.T.; Shyu, M.K.; Huang, Y.M.; Wu, Y.M.; Lin, W.C.; Huang, P.H.; Liang, J.T.; Lee, P.H.; Huang, M.C. Overexpression of MUC15 activates extracellular signal-regulated kinase 1/2 and promotes the oncogenic potential of human colon cancer cells. Carcinogenesis, 2009, 30(8), 1452-1458.
[http://dx.doi.org/10.1093/carcin/bgp137] [PMID: 19520792]
[15]
Wang, R.Y.; Chen, L.; Chen, H.Y.; Hu, L.; Li, L.; Sun, H.Y.; Jiang, F.; Zhao, J.; Liu, G.M.; Tang, J.; Chen, C.Y.; Yang, Y.C.; Chang, Y.X.; Liu, H.; Zhang, J.; Yang, Y.; Huang, G.; Shen, F.; Wu, M.C.; Zhou, W.P.; Wang, H.Y. MUC15 inhibits dimerization of EGFR and PI3K-AKT signaling and is associated with aggressive hepatocellular carcinomas in patients. Gastroenterology, 2013, 145(6), 1436-1448.
[http://dx.doi.org/10.1053/j.gastro.2013.08.009] [PMID: 23933603]
[16]
Oh, H.R.; An, C.H.; Yoo, N.J.; Lee, S.H. Frameshift mutations of MUC15 gene in gastric and its regional heterogeneity in gastric and colorectal cancers. Pathol. Oncol. Res., 2015, 21(3), 713-718.
[http://dx.doi.org/10.1007/s12253-014-9878-3] [PMID: 25573589]
[17]
Pallesen, L.T.; Berglund, L.; Rasmussen, L.K.; Petersen, T.E.; Rasmussen, J.T. Isolation and characterization of MUC15, a novel cell membrane-associated mucin. Eur. J. Biochem., 2002, 269(11), 2755-2763.
[http://dx.doi.org/10.1046/j.1432-1033.2002.02949.x] [PMID: 12047385]
[18]
Hansen, J.E.; Lund, O.; Tolstrup, N.; Gooley, A.A.; Williams, K.L.; Brunak, S. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj. J., 1998, 15(2), 115-130.
[http://dx.doi.org/10.1023/A:1006960004440] [PMID: 9557871]
[19]
Hanisch, F.G.; Müller, S. MUC1: the polymorphic appearance of a human mucin. Glycobiology, 2000, 10(5), 439-449.
[http://dx.doi.org/10.1093/glycob/10.5.439] [PMID: 10764832]
[20]
McDermott, K.M.; Crocker, P.R.; Harris, A.; Burdick, M.D.; Hinoda, Y.; Hayashi, T.; Imai, K.; Hollingsworth, M.A. Overexpression of MUC1 reconfigures the binding properties of tumor cells. Int. J. Cancer, 2001, 94(6), 783-791.
[http://dx.doi.org/10.1002/ijc.1554] [PMID: 11745478]
[21]
Corfield, T. Mucus glycoproteins, super glycoforms: How to solve a sticky problem? Glycoconj. J., 1992, 9(5), 217-221.
[PMID: 1490100]
[22]
Kerschner, J.E. Mucin gene expression in human middle ear epithelium. Laryngoscope, 2007, 117(9), 1666-1676.
[http://dx.doi.org/10.1097/MLG.0b013e31806db531] [PMID: 17667140]
[23]
Pallesen, L.T.; Pedersen, L.R.; Petersen, T.E.; Knudsen, C.R.; Rasmussen, J.T. Characterization of human mucin (MUC15) and identification of ovine and caprine orthologs. J. Dairy Sci., 2008, 91(12), 4477-4483.
[http://dx.doi.org/10.3168/jds.2008-1204] [PMID: 19038922]
[24]
Fini, M.E.; Jeong, S.; Gong, H.; Martinez-Carrasco, R.; Laver, N.M.V.; Hijikata, M.; Keicho, N.; Argüeso, P. Membrane-associated mucins of the ocular surface: New genes, new protein functions and new biological roles in human and mouse. Prog. Retin. Eye Res., 2020, 75(75) 100777
[http://dx.doi.org/10.1016/j.preteyeres.2019.100777] [PMID: 31493487]
[25]
Nam, K.H.; Noh, T.W.; Chung, S.H.; Lee, S.H.; Lee, M.K.; Hong, S.W.; Chung, W.Y.; Lee, E.J.; Park, C.S. Expression of the membrane mucins MUC4 and MUC15, potential markers of malignancy and prognosis, in papillary thyroid carcinoma. Thyroid, 2011, 21(7), 745-750.
[http://dx.doi.org/10.1089/thy.2010.0339] [PMID: 21615302]
[26]
Alqahtani, H.; Gopal, K.; Gupta, N.; Jung, K.; Alshareef, A.; Ye, X.; Wu, F.; Li, L.; Lai, R. DDX17 (P72), a Sox2 binding partner, promotes stem-like features conferred by Sox2 in a small cell population in estrogen receptor-positive breast cancer. Cell. Signal., 2016, 28(2), 42-50.
[http://dx.doi.org/10.1016/j.cellsig.2015.11.004] [PMID: 26569340]
[27]
Jung, K.; Wang, P.; Gupta, N.; Gopal, K.; Wu, F.; Ye, X.; Alshareef, A.; Bigras, G.; McMullen, T.P.; Abdulkarim, B.S.; Lai, R. Profiling gene promoter occupancy of Sox2 in two phenotypically distinct breast cancer cell subsets using chromatin immunoprecipitation and genome-wide promoter microarrays. Breast Cancer Res., 2014, 16(6), 470-483.
[http://dx.doi.org/10.1186/s13058-014-0470-2] [PMID: 25380620]
[28]
Riker, A.I.; Enkemann, S.A.; Fodstad, O.; Liu, S.; Ren, S.; Morris, C.; Xi, Y.; Howell, P.; Metge, B.; Samant, R.S.; Shevde, L.A.; Li, W.; Eschrich, S.; Daud, A.; Ju, J.; Matta, J. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med. Genomics, 2008, 1, 13.
[http://dx.doi.org/10.1186/1755-8794-1-13] [PMID: 18442402]
[29]
Byrd, J.C.; Bresalier, R.S. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev., 2004, 23(1-2), 77-99.
[http://dx.doi.org/10.1023/A:1025815113599] [PMID: 15000151]
[30]
Shyu, M.K.; Lin, M.C.; Shih, J.C.; Lee, C.N.; Huang, J.; Liao, C.H.; Huang, I.F.; Chen, H.Y.; Huang, M.C.; Hsieh, F.J. Mucin 15 is expressed in human placenta and suppresses invasion of trophoblast-like cells in vitro. Hum. Reprod., 2007, 22(10), 2723-2732.
[http://dx.doi.org/10.1093/humrep/dem249] [PMID: 17720698]
[31]
Assou, S.; Boumela, I.; Haouzi, D.; Monzo, C.; Dechaud, H.; Kadoch, I.J.; Hamamah, S. Transcriptome analysis during human trophectoderm specification suggests new roles of metabolic and epigenetic genes. PLoS One, 2012, 7(6) e39306
[http://dx.doi.org/10.1371/journal.pone.0039306] [PMID: 22761758]
[32]
Khan, A.Q.; Ahmed, E.I.; Elareer, N.; Fathima, H.; Prabhu, K.S.; Siveen, K.S.; Kulinski, M.; Azizi, F.; Dermime, S.; Ahmad, A.; Steinhoff, M.; Uddin, S. Curcumin-mediated apoptotic cell death in papillary thyroid cancer and cancer stem-like cells through targeting of the JAK/STAT3 signaling pathway. Int. J. Mol. Sci., 2020, 21(2), 438-461.
[http://dx.doi.org/10.3390/ijms21020438] [PMID: 31936675]
[33]
Schroeder, J.A.; Adriance, M.C.; Thompson, M.C.; Camenisch, T.D.; Gendler, S.J. MUC1 alters beta-catenin-dependent tumor formation and promotes cellular invasion. Oncogene, 2003, 22(9), 1324-1332.
[http://dx.doi.org/10.1038/sj.onc.1206291] [PMID: 12618757]
[34]
Thompson, E.J.; Shanmugam, K.; Hattrup, C.L.; Kotlarczyk, K.L.; Gutierrez, A.; Bradley, J.M.; Mukherjee, P.; Gendler, S.J. Tyrosines in the MUC1 cytoplasmic tail modulate transcription via the extracellular signal-regulated kinase 1/2 and nuclear factor-kappaB pathways. Mol. Cancer Res., 2006, 4(7), 489-497.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0038] [PMID: 16849524]
[35]
Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2002, 2(6), 442-454.
[http://dx.doi.org/10.1038/nrc822] [PMID: 12189386]
[36]
Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer, 2009, 9(4), 265-273.
[http://dx.doi.org/10.1038/nrc2620] [PMID: 19262571]
[37]
Lan, J.; Sun, L.; Xu, F.; Liu, L.; Hu, F.; Song, D.; Hou, Z.; Wu, W.; Luo, X.; Wang, J.; Yuan, X.; Hu, J.; Wang, G. m2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res., 2019, 79(1), 146-158.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0014] [PMID: 30401711]
[38]
Wang, X.; Luo, G.; Zhang, K.; Cao, J.; Huang, C.; Jiang, T.; Liu, B.; Su, L.; Qiu, Z. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res., 2018, 78(16), 4586-4598.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3841] [PMID: 29880482]
[39]
Agrawal, B.; Krantz, M.J.; Reddish, M.A.; Longenecker, B.M. Rapid induction of primary human CD4+ and CD8+ T cell responses against cancer-associated MUC1 peptide epitopes. Int. Immunol., 1998, 10(12), 1907-1916.
[http://dx.doi.org/10.1093/intimm/10.12.1907] [PMID: 9885912]
[40]
Agrawal, B.; Krantz, M.J.; Reddish, M.A.; Longenecker, B.M. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat. Med., 1998, 4(1), 43-49.
[http://dx.doi.org/10.1038/nm0198-043] [PMID: 9427605]
[41]
Komatsu, M.; Yee, L.; Carraway, K.L. Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Res., 1999, 59(9), 2229-2236.
[PMID: 10232613]
[42]
Baños, Lara Mdel. R.; Piao, B.; Guerrero, Plata A. Differential mucin expression by respiratory syncytial virus and human metapneumovirus infection in human epithelial cells. Mediators Inflamm., 2015, ••• 2015347292
[http://dx.doi.org/10.1155/2015/347292] [PMID: 25977598]
[43]
Bafna, S.; Kaur, S.; Batra, S.K. Membrane-bound mucins: The mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 2010, 29(20), 2893-2904.
[http://dx.doi.org/10.1038/onc.2010.87] [PMID: 20348949]
[44]
Bafna, S.; Kaur, S.; Momi, N.; Batra, S.K. Pancreatic cancer cells resistance to gemcitabine: The role of MUC4 mucin. Br. J. Cancer, 2009, 101(7), 1155-1161.
[http://dx.doi.org/10.1038/sj.bjc.6605285] [PMID: 19738614]
[45]
van Putten, J.P.M.; Strijbis, K. Transmembrane Mucins: Signaling receptors at the intersection of inflammation and cancer. J. Innate Immun., 2017, 9(3), 281-299.
[http://dx.doi.org/10.1159/000453594] [PMID: 28052300]
[46]
Rajabi, H.; Kufe, D. MUC1-C Oncoprotein integrates a program of emt, epigenetic reprogramming and immune evasion in human carcinomas. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 117-122.
[http://dx.doi.org/10.1016/j.bbcan.2017.03.003] [PMID: 28302417]
[47]
Kimura, T.; McKolanis, J.R.; Dzubinski, L.A.; Islam, K.; Potter, D.M.; Salazar, A.M.; Schoen, R.E.; Finn, O.J. MUC1 vaccine for individuals with advanced adenoma of the colon: A cancer immunoprevention feasibility study. Cancer Prev. Res. (Phila.), 2013, 6(1), 18-26.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0275] [PMID: 23248097]
[48]
Duraisamy, S.; Ramasamy, S.; Kharbanda, S.; Kufe, D. Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 AND MUC16. Gene, 2006, 373, 28-34.
[http://dx.doi.org/10.1016/j.gene.2005.12.021] [PMID: 16500040]
[49]
Liu, L.; Wang, Y.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther., 2018, 26(1), 45-55.
[http://dx.doi.org/10.1016/j.ymthe.2017.10.020] [PMID: 29258739]
[50]
Nath, S.; Mukherjee, P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med., 2014, 20(6), 332-342.
[http://dx.doi.org/10.1016/j.molmed.2014.02.007] [PMID: 24667139]
[51]
Jain, M.; Venkatraman, G.; Moniaux, N.; Kaur, S.; Kumar, S.; Chakraborty, S.; Varshney, G.C.; Batra, S.K. Monoclonal antibodies recognizing the non-tandem repeat regions of the human mucin MUC4 in pancreatic cancer. PLoS One, 2011, 6(8) e23344
[http://dx.doi.org/10.1371/journal.pone.0023344] [PMID: 21886786]
[52]
Gautam, S.K.; Kumar, S.; Cannon, A.; Hall, B.; Bhatia, R.; Nasser, M.W.; Mahapatra, S.; Batra, S.K.; Jain, M. MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opin. Ther. Targets, 2017, 21(7), 657-669.
[http://dx.doi.org/10.1080/14728222.2017.1323880] [PMID: 28460571]
[53]
Rao, T.D.; Fernández-Tejada, A.; Axelrod, A.; Rosales, N.; Yan, X.; Thapi, S.; Wang, A.; Park, K.J.; Nemieboka, B.; Xiang, J.; Lewis, J.S.; Olvera, N.; Levine, D.A.; Danishefsky, S.J.; Spriggs, D.R. Antibodies against specific MUC16 glycosylation sites inhibit ovarian cancer growth. ACS Chem. Biol., 2017, 12(8), 2085-2096.
[http://dx.doi.org/10.1021/acschembio.7b00305] [PMID: 28617578]
[54]
Felder, M.; Kapur, A.; Gonzalez-Bosquet, J.; Horibata, S.; Heintz, J.; Albrecht, R.; Fass, L.; Kaur, J.; Hu, K.; Shojaei, H.; Whelan, R.J.; Patankar, M.S. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol. Cancer, 2014, 13, 129-144.
[http://dx.doi.org/10.1186/1476-4598-13-129] [PMID: 24886523]
[55]
Fortner, R.T.; Schock, H.; Le Cornet, C.; Hüsing, A.; Vitonis, A.F.; Johnson, T.S.; Fichorova, R.N.; Fashemi, T.; Yamamoto, H.S.; Tjønneland, A.; Hansen, L.; Overvad, K.; Boutron-Ruault, M.C.; Kvaskoff, M.; Severi, G.; Boeing, H.; Trichopoulou, A.; Papatesta, E.M.; La Vecchia, C.; Palli, D.; Sieri, S.; Tumino, R.; Sacerdote, C.; Mattiello, A.; Onland-Moret, N.C.; Peeters, P.H.; Bueno-de-Mesquita, H.B.A.; Weiderpass, E.; Quirós, J.R.; Duell, E.J.; Sánchez, M.J.; Navarro, C.; Ardanaz, E.; Larrañaga, N.; Nodin, B.; Jirström, K.; Idahl, A.; Lundin, E.; Khaw, K.T.; Travis, R.C.; Gunter, M.; Johansson, M.; Dossus, L.; Merritt, M.A.; Riboli, E.; Terry, K.L.; Cramer, D.W.; Kaaks, R. Ovarian cancer early detection by circulating CA125 in the context of anti-CA125 autoantibody levels: Results from the EPIC cohort. Int. J. Cancer, 2018, 142(7), 1355-1360.
[http://dx.doi.org/10.1002/ijc.31164] [PMID: 29159934]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2020
Page: [647 - 653]
Pages: 7
DOI: 10.2174/1568009620666200601140639
Price: $65

Article Metrics

PDF: 27
HTML: 2