Design, Synthesis and Biological Evaluation of Dimethyl Cardamonin (DMC) Derivatives as P-glycoprotein-mediated Multidrug Resistance Reversal Agents

Author(s): Ximeng Shi, Yuyu Zhao, Licheng Zhou, Huanhuan Yin, Jianwen Liu*, Lei Ma*

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: P-glycoprotein (P-gp) has been regarded as an important factor in the multidrug resistance (MDR) of tumor cells within the last decade, which can be solved by inhibiting Pgp to reverse MDR. Thus, it is an effective strategy to develop inhibitor of P-gp.

Objective: In this study, the synthesis of a series of derivatives had been carried out by bioisosterism design on the basis of Dimethyl Cardamonin (DMC). Subsequently, we evaluated their reversal activities as potential P-glycoprotein (P-gp)-mediated Multidrug Resistance (MDR) agents.

Methods: Dimethyl cardamonin derivatives were synthesized from acetophenones and the corresponding benzaldehydes in the presence of 40% KOH by Claisen-Schmidt reaction. Their cytotoxicity and reversal activities in vitro were assessed with MTT. Moreover, the compound B4 was evaluated by Doxorubicin (DOX) accumulation, Western blot and wound-healing assays deeply.

Results and Discussion: The results showed that compounds B2, B4 and B6 had the potency of MDR reversers with little intrinsic cytotoxicity. Meanwhile, these compounds also demonstrated the capability to inhibit MCF-7 and MCF-7/DOX cells migration. Besides, the most compound B4 was selected for further study, which promoted the accumulation of DOX in MCF-7/DOX cells and inhibited the expressionof P-gp at protein levels.

Conclusion: The above findings may provide new insights for the research and development of Pgp- mediated MDR reversal agents.

Keywords: MDR reversal agents, P-glycoprotein, DMC derivatives, bioisosterism, drug design, cell migration.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Zhu, J.; Wang, R.; Lou, L.; Li, W.; Tang, G.; Bu, X.; Yin, S. Jatrophane diterpenoids as modulators of p-glycoprotein-dependent multidrug resistance (MDR): Advances of structure-activity relationships and discovery of promising MDR reversal agents. J. Med. Chem., 2016, 59(13), 6353-6369.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00605] [PMID: 27328029]
[3]
Miller, D.S. Regulation of ABC transporters at the blood-brain barrier. Clin. Pharmacol. Ther., 2015, 97(4), 395-403.
[http://dx.doi.org/10.1002/cpt.64] [PMID: 25670036]
[4]
Wong, K.; Ma, J.; Rothnie, A.; Biggin, P.C.; Kerr, I.D. Towards understanding promiscuity in multidrug efflux pumps. Trends Biochem. Sci., 2014, 39(1), 8-16.
[http://dx.doi.org/10.1016/j.tibs.2013.11.002] [PMID: 24316304]
[5]
Chen, Q.; Liu, X.; Luo, Z.; Wang, S.; Lin, J.; Xie, Z.; Li, M.; Li, C.; Cao, H.; Huang, Q.; Mao, J.; Xu, B. Chloride channel-3 mediates multidrug resistance of cancer by upregulating P-glycoprotein expression. J. Cell. Physiol., 2019, 234(5), 6611-6623.
[http://dx.doi.org/10.1002/jcp.27402] [PMID: 30230544]
[6]
Henderson, M.J.; Haber, M.; Porro, A.; Munoz, M.A.; Iraci, N.; Xue, C.; Murray, J.; Flemming, C.L.; Smith, J.; Fletcher, J.I.; Gherardi, S.; Kwek, C.K.; Russell, A.J.; Valli, E.; London, W.B.; Buxton, A.B.; Ashton, L.J.; Sartorelli, A.C.; Cohn, S.L.; Schwab, M.; Marshall, G.M.; Perini, G.; Norris, M.D. ABCC multidrug transporters in childhood neuroblastoma: Clinical and biological effects independent of cytotoxic drug efflux. J. Natl. Cancer Inst., 2011, 103(16), 1236-1251.
[http://dx.doi.org/10.1093/jnci/djr256] [PMID: 21799180]
[7]
Hamed, A.R.; Abdel-Azim, N.S.; Shams, K.A.; Hammouda, F.M. Targeting multidrug resistance in cancer by natural chemosensitizers. Bull. Natl. Res. Cent., 2019, 43(1)
[http://dx.doi.org/10.1186/s42269-019-0043-8]
[8]
Yang, Y.; Guan, D.; Lei, L.; Lu, J.; Liu, J.Q.; Yang, G.; Yan, C.; Zhai, R.; Tian, J.; Bi, Y.; Fu, F.; Wang, H. H6, a novel hederagenin derivative, reverses multidrug resistance in vitro and in vivo. Toxicol. Appl. Pharmacol., 2018, 341, 98-105.
[http://dx.doi.org/10.1016/j.taap.2018.01.015] [PMID: 29408042]
[9]
Robert, J.; Jarry, C. Multidrug resistance reversal agents. J. Med. Chem., 2003, 46(23), 4805-4817.
[http://dx.doi.org/10.1021/jm030183a] [PMID: 14584929]
[10]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[11]
Binkhathlan, Z.; Lavasanifar, A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: Current status and future perspectives. Curr. Cancer Drug Targets, 2013, 13(3), 326-346.
[http://dx.doi.org/10.2174/15680096113139990076] [PMID: 23369096]
[12]
Chan, K.F.; Zhao, Y.; Burkett, B.A.; Wong, I.L.K.; Chow, L.M.C.; Chan, T.H. Flavonoid dimers as bivalent modulators for P-glycoprotein-based multidrug resistance: synthetic apigenin homodimers linked with defined-length poly(ethylene glycol) spacers increase drug retention and enhance chemosensitivity in resistant cancer cells. J. Med. Chem., 2006, 49(23), 6742-6759.
[http://dx.doi.org/10.1021/jm060593+] [PMID: 17154505]
[13]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[14]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: a mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[15]
Ko, H.; Kim, Y.J.; Amor, E.C.; Lee, J.W.; Kim, H.C.; Kim, H.J.; Yang, H.O. Induction of autophagy by dimethyl cardamonin is associated with proliferative arrest in human colorectal carcinoma HCT116 and LOVO cells. J. Cell. Biochem., 2011, 112(9), 2471-2479.
[http://dx.doi.org/10.1002/jcb.23171] [PMID: 21538483]
[16]
Yu, W.G.; He, H.; Qian, J.; Lu, Y.H. Dual role of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone in inhibiting high-mobility group box 1 secretion and blocking its pro-inflammatory activity in hepatic inflammation. J. Agric. Food Chem., 2014, 62(49), 11949-11956.
[http://dx.doi.org/10.1021/jf504527r] [PMID: 25400111]
[17]
Su, M.Y.; Huang, H.Y.; Li, L.; Lu, Y.H. Protective effects of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone to PC12 cells against cytotoxicity induced by hydrogen peroxide. J. Agric. Food Chem., 2011, 59(2), 521-527.
[http://dx.doi.org/10.1021/jf104408d] [PMID: 21186823]
[18]
Choi, J.W.; Kim, M.; Song, H.; Lee, C.S.; Oh, W.K.; Mook-Jung, I.; Chung, S.S.; Park, K.S. DMC (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone) improves glucose tolerance as a potent AMPK activator. Metabolism, 2016, 65(4), 533-542.
[http://dx.doi.org/10.1016/j.metabol.2015.12.010] [PMID: 26975545]
[19]
Qian, F.; Ye, C.L.; Wei, D.Z.; Lu, Y.H.; Yang, S.L. In vitro and in vivo reversal of cancer cell multidrug resistance by 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone. J. Chemother., 2005, 17(3), 309-314.
[http://dx.doi.org/10.1179/joc.2005.17.3.309] [PMID: 16038525]
[20]
Yin, H.; Dong, J.; Cai, Y.; Shi, X.; Wang, H.; Liu, G.; Tang, Y.; Liu, J.; Ma, L. Design, synthesis and biological evaluation of chalcones as reversers of P-glycoprotein-mediated multidrug resistance. Eur. J. Med. Chem., 2019, 180, 350-366.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.053] [PMID: 31325783]
[21]
Dei, S.; Romanelli, M.N.; Manetti, D.; Chiaramonte, N.; Coronnello, M.; Salerno, M.; Teodori, E. Design and synthesis of aminoester heterodimers containing flavone or chromone moieties as modulators of P-glycoprotein-based multidrug resistance (MDR). Bioorg. Med. Chem., 2018, 26(1), 50-64.
[http://dx.doi.org/10.1016/j.bmc.2017.11.016] [PMID: 29162309]
[22]
Cai, A.Q.; Landman, K.A.; Hughes, B.D. Multi-scale modeling of a wound-healing cell migration assay. J. Theor. Biol., 2007, 245(3), 576-594.
[http://dx.doi.org/10.1016/j.jtbi.2006.10.024] [PMID: 17188306]
[23]
Qi, J.; Wang, S.; Liu, G.; Peng, H.; Wang, J.; Zhu, Z.; Yang, C. Pyronaridine, a novel modulator of P-glycoprotein-mediated multidrug resistance in tumor cells in vitro and in vivo. Biochem. Biophys. Res. Commun., 2004, 319(4), 1124-1131.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.099] [PMID: 15194484]
[24]
Seelig, A. A general pattern for substrate recognition by P-glycoprotein. Eur. J. Biochem., 1998, 251(1-2), 252-261.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2510252.x] [PMID: 9492291]
[25]
Luwor, R.B.; Hakmana, D.; Iaria, J.; Nheu, T.V.; Simpson, R.J.; Zhu, H.J. Single live cell TGF-β signalling imaging: Breast cancer cell motility and migration is driven by sub-populations of cells with dynamic TGF-β-Smad3 activity. Mol. Cancer, 2015, 14, 50.
[http://dx.doi.org/10.1186/s12943-015-0309-1] [PMID: 25744371]
[26]
Ghaleb, H.; Li, H.; Kairuki, M.; Qiu, Q.; Bi, X.; Liu, C.; Liao, C.; Li, J.; Hezam, K.; Huang, W.; Qian, H. Design, synthesis and evaluation of a novel series of inhibitors reversing P-glycoprotein-mediated multidrug resistance. Chem. Biol. Drug Des., 2018, 92(3), 1708-1716.
[http://dx.doi.org/10.1111/cbdd.13338] [PMID: 29786944]
[27]
Ji, B.S.; He, L.; Liu, G.Q. CJZ3, a lomerizine derivative, reverses P-glycoprotein-mediated multidrug-resistance in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Drug Dev. Res., 2006, 67(11), 862-869.
[http://dx.doi.org/10.1002/ddr.20154]
[28]
Kairuki, M.; Qiu, Q.; Pan, M.; Li, Q.; Zhou, J.; Ghaleb, H.; Huang, W.; Qian, H.; Jiang, C. Designed P-glycoprotein inhibitors with triazol-tetrahydroisoquinoline-core increase doxorubicin-induced mortality in multidrug resistant K562/A02 cells. Bioorg. Med. Chem., 2019, 27(15), 3347-3357.
[http://dx.doi.org/10.1016/j.bmc.2019.06.013] [PMID: 31202598]
[29]
Yan, T.L.; Bai, L.F.; Zhu, H.L.; Zhang, W.M.; Lv, P.C. Synthesis and biological evaluation of glycyrrhetic acid derivatives as potential VEGFR2 inhibitors. ChemMedChem, 2017, 12(13), 1087-1096.
[http://dx.doi.org/10.1002/cmdc.201700271] [PMID: 28599090]
[30]
Komoto, T.T.; Bernardes, T.M.; Mesquita, T.B.; Bortolotto, L.F.B.; Silva, G.; Bitencourt, T.A.; Baek, S.J.; Marins, M.; Fachin, A.L. Chalcones repressed the AURKA and MDR proteins involved in metastasis and multiple drug resistance in breast cancer cell lines. Molecules, 2018, 23(8), E2018
[http://dx.doi.org/10.3390/molecules23082018] [PMID: 30104527]
[31]
Riaz, S.; Iqbal, M.; Ullah, R.; Zahra, R.; Chotana, G.A.; Faisal, A.; Saleem, R.S.Z. Synthesis and evaluation of novel α-substituted chalcones with potent anti-cancer activities and ability to overcome multidrug resistance. Bioorg. Chem., 2019, 87, 123-135.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.014] [PMID: 30884306]
[32]
Silbermann, K.; Shah, C.P.; Sahu, N.U.; Juvale, K.; Stefan, S.M.; Kharkar, P.S.; Wiese, M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur. J. Med. Chem., 2019, 164, 193-213.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.019] [PMID: 30594677]
[33]
Guo, M.; Ren, Q.; Wang, B.; Ji, W.; Ni, J.; Feng, Y.; Bi, Y.; Tian, J.; Wang, H. Discovery and synthesis of 3- and 21-substituted fusidic acid derivatives as reversal agents of P-glycoprotein-mediated multidrug resistance. Eur. J. Med. Chem., 2019., 182111668
[http://dx.doi.org/10.1016/j.ejmech.2019.111668] [PMID: 31505451]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 10
Year: 2020
Published on: 11 October, 2020
Page: [1270 - 1282]
Pages: 13
DOI: 10.2174/1570180817999200531162015
Price: $65

Article Metrics

PDF: 14
HTML: 1