Halogenated Flavones and Isoflavones: A State-of-Art on their Synthesis

Author(s): Ricardo Santos, Diana Pinto, Clara Magalhães, Artur Silva*

Journal Name: Current Organic Synthesis

Volume 17 , Issue 6 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Flavonoid is a family of compounds present in the everyday consumption plants and fruits, contributing to a balanced diet and beneficial health effects. Being a scaffold for new drugs and presenting a wide range of applicability in the treatment of illnesses give them also an impact in medicine. Among the several types of flavonoids, flavone and isoflavone derivatives can be highlighted due to their prevalence in nature and biological activities already established. The standard synthetic route to obtain both halogenated flavones and isoflavones is through the use of already halogenated starting materials. Halogenation of the flavone and isoflavone core is less common because it is more complicated and involves some selectivity issues.

Objective: Considering the importance of these flavonoids, we aim to present the main and more recent synthetic approaches towards their halogenation.

Methods: The most prominent methodologies for the synthesis of halogenated flavones and isoflavones were reviewed. A careful survey of the reported data, using mainly the Scopus database and halogenation, flavones and isoflavones as keywords, was conducted.

Results: Herein, a review is provided on the latest and more efficient halogenation protocols of flavones and isoflavones. Selective halogenation and the greener methodologies, including enzymatic and microbial halogenations, were reported. Nevertheless, some interesting protocols that allowed the synthesis of halogenated flavone and isoflavone derivatives in specific positions using halogenated reagents are also summarized.

Conclusion: Halogenated flavones and isoflavones have risen as noticeable structures; however, most of the time, the synthetic procedures involve toxic reagents and harsh reaction conditions. Therefore, the development of new synthetic routes with low environmental impact is desirable.

Keywords: Flavonoids, selective halogenation, enzymatic halogenation, microbial halogenation, substitution reactions, addition reactions, flavones, isoflavones.

Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci.World J., 2013, 162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
Jucá, M.M.; Cysne Filho, F.M.S.; de Almeida, J.C.; Mesquita, D.D.S.; Barriga, J.R.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; Vasconcelos, S.M.M. Flavonoids: Biological activities and therapeutic potential. Nat. Prod. Res., 2020, 34(5), 692-705.
[http://dx.doi.org/10.1080/14786419.2018.1493588] [PMID: 30445839]
Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res., 2019, 10, 1567-1574.
Miadoková, E. Isoflavonoids - An overview of their biological activities and potential health benefits. Interdiscip. Toxicol., 2009, 2(4), 211-218.
[http://dx.doi.org/10.2478/v10102-009-0021-3] [PMID: 21217857]
Verma, A.K.; Pratap, R. The biological potential of flavones. Nat. Prod. Rep., 2010, 27(11), 1571-1593.
[http://dx.doi.org/10.1039/c004698c] [PMID: 20877900]
Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic activity, biological effect and bioavailability. Eur. J. Drug Metab. Pharmacokinet., 2013, 38(1), 15-25.
[http://dx.doi.org/10.1007/s13318-012-0112-y] [PMID: 23161396]
Hussain, H.; Green, I.R. A patent review of the therapeutic potential of isoflavones (2012-2016). Expert Opin. Ther. Pat., 2017, 27(10), 1135-1146.
[http://dx.doi.org/10.1080/13543776.2017.1339791] [PMID: 28586284]
Monograph. Diosmin Altern. Med. Rev., 2004, 9(3), 308-311.
[PMID: 15387721]
Vishnuvathan, V.J.; Lakshmi, K.S.; Srividya, A.R. Medicinal uses of formononetin - A review. J. Ethnobiol. Trad. Med. Photon, 2016, 126, 1197-1209.
Feldo, M.; Woźniak, M.; Wójciak-Kosior, M.; Sowa, I.; Kot-Waśik, A.; Aszyk, J.; Bogucki, J.; Zubilewicz, T.; Bogucka-Kocka, A. Influence of diosmin treatment on the level of oxidative stress markers in patients with chronic venous insufficiency Oxid; Med. Cellul. Long, 2018.
Tay, K-C.; Tan, L.T-H.; Chan, C.K.; Hong, S.L.; Chan, K-G.; Yap, W.H.; Pusparajah, P.; Lee, L-H.; Goh, B-H. Formononetin: A review of its anticancer potentials and mechanisms. Front. Pharmacol., 2019, 10, 820.
[http://dx.doi.org/10.3389/fphar.2019.00820] [PMID: 31402861]
Wiernik, P.H. Alvocidib (flavopiridol) for the treatment of chronic lymphocytic leukemia. Expert Opin. Investig. Drugs, 2016, 25(6), 729-734.
[http://dx.doi.org/10.1517/13543784.2016.1169273] [PMID: 26998706]
Zocchi, L.; Wu, S.C.; Wu, J.; Hayama, K.L.; Benavente, C.A. The cyclin-dependent kinase inhibitor flavopiridol (alvocidib) inhibits metastasis of human osteosarcoma cells. Oncotarget, 2018, 9(34), 23505-23518.
[http://dx.doi.org/10.18632/oncotarget.25239] [PMID: 29805751]
Ilkei, V.; Hazai, L.; Antus, S.; Bölcskei, H. Flavonoid alkaloids: Isolation,bioactivity, and synthesis Stud. Nat. Prod. Chem., 2018, 247-285.
Marder, M.; Estiú, G.; Blanch, L.B.; Viola, H.; Wasowski, C.; Medina, J.H.; Paladini, A.C. Molecular modeling and QSAR analysis of the interaction of flavone derivatives with the benzodiazepine binding site of the GABA(A) receptor complex. Bioorg. Med. Chem., 2001, 9(2), 323-335.
[http://dx.doi.org/10.1016/S0968-0896(00)00250-9] [PMID: 11249125]
Pal, M.; Subramanian, V.; Parasuraman, K.; Yeleswarapu, K.R. Palladium catalyzed reaction in aqueous DMF: Synthesis of 3-alkynyl substituted flavones in the presence of prolinol. Tetrahedron, 2003, 59, 9563-9570.
Pal, M.; Parasuraman, K.; Subramanian, V.; Dakarapu, R.; Yeleswarapu, K.R. Palladium mediated stereospecific synthesis of 3-enynyl substituted thioflavones/flavones. Tetrahedron Lett., 2004, 45, 2305-2309.
Sagrera, G.; Bertucci, A.; Vazquez, A.; Seoane, G. Synthesis and antifungal activities of natural and synthetic biflavonoids. Bioorg. Med. Chem., 2011, 19(10), 3060-3073.
[http://dx.doi.org/10.1016/j.bmc.2011.04.010] [PMID: 21530273]
Kónya, K.; Pajtás, D.; Kiss-Szikszai, A.; Patonay, T. Buchwald-Hartwig reactions of monohaloflavones. Eur. J. Org. Chem., 2015, 828-839.
Harborne, J.B.; Baxter., H. The Handbook of Natural Flavonoids. New York; USA, John Wiley Sons , 1999. 1 and 2
Pinto, D.C.G.A.; Silva, A.M.S. Molecular iodine in the synthesis of chromone-type compounds. Curr. Org. Synth., 2012, 9, 561-572.
Rocha, D.H.A.; Vaz, P.A.A.M.; Pinto, D.C.G.A.; Silva, A.M.S. Synthesis of chalcones and their isomerization into flavanones and azaflavanones. Methods Protoc, 2019, 2(3), 70.
[http://dx.doi.org/10.3390/mps2030070] [PMID: 31443245]
Rosa, G.P.; Seca, A.M.L.; Barreto, M.C.; Pinto, D.C.G.A. Chalcone: a valuable scaffold upgrading be green methods. ACS Sustain. Chem.& Eng., 2017, 5, 7467-7480.
Yao, N.; Song, A.; Wang, X.; Dixon, S.; Lam, K.S. Synthesis of flavonoid analogues as scaffolds for natural product-based combinatorial libraries. J. Comb. Chem., 2007, 9(4), 668-676.
[http://dx.doi.org/10.1021/cc070009y] [PMID: 17487987]
Conti, C.; Mastromarino, P.; Goldoni, P.; Portalone, G.; Desideri, N. Synthesis and anti-rhinovirus properties of fluoro-substituted flavonoids. Antivir. Chem. Chemother., 2005, 16(4), 267-276.
[http://dx.doi.org/10.1177/095632020501600406] [PMID: 16130524]
Hayashi, T.; Kawai, S.; Ohno, T.; Iitaka, Y.; Akimoto, T. Fluorometric study on the metal chelates of flavone derivatives. III. Crystal structures of 4′-bromo-3-hydroxyflavone and 4′-bromo-5-hydroxyflavone. Chem. Pharm. Bull. (Tokyo), 1974, 22, 1219-1226.
Shen, X.; Zhou, Q.; Xiong, W.; Pu, W.; Zhang, W.; Zhang, G.; Wang, C. Synthesis of 5-substituted flavonols via Algar-Flynn-Oyamada (AFO) reaction: The mechanistic implication. Tetrahedron, 2017, 73, 4822-4829.
Mavel, S.; Dikic, B.; Palakas, S.; Emond, P.; Greguric, I.; de Gracia, A.G.; Mattner, F.; Garrigos, M.; Guilloteau, D.; Katsifis, A. Synthesis and biological evaluation of a series of flavone derivatives as potential radioligands for imaging the multidrug resistance-associated protein 1 (ABCC1/MRP1). Bioorg. Med. Chem., 2006, 14(5), 1599-1607.
[http://dx.doi.org/10.1016/j.bmc.2005.10.009] [PMID: 16263302]
Pinto, D.C.G.A.; Silva, A.M.S.; Cavaleiro, J.A.S. Synthesis of 6,8-(dibromo or diiodo)-5-hydroxy-2-(phenyl or styryl)chromones. Tetrahedron Lett., 1994, 35, 9459-9460.
Pinto, D.C.G.A.; Silva, A.M.S.; Cavaleiro, J.A.S. Synthesis of 5-hydroxy-2-(phenyl or styryl)chromones and some halo derivatives. J. Heterocycl. Chem., 1996, 33, 1887-1893.
Kshatriya, R.; Jejurkar, V.P.; Saha, S. In memory of Prof. Venkataraman: Recent advances in the synthetic methodologies of flavones. Tetrahedron, 2018, 74, 811-833.
Ameen, D.; Snape, T.J. Mechanism and application of Baker-Venkataraman O C acyl migration reactions. Synthesis, 2014, 46. [A-R.].
Ares, J.J.; Outt, P.E.; Randall, J.L.; Murray, P.D.; Weisshaar, P.S.; O’Brien, L.M.; Ems, B.L.; Kakodkar, S.V.; Kelm, G.R.; Kershaw, W.C.; Werchowski, K.M.; Parkinson, A. Synthesis and biological evaluation of substituted flavones as gastroprotective agents. J. Med. Chem., 1995, 38(25), 4937-4943.
[http://dx.doi.org/10.1021/jm00025a011] [PMID: 8523407]
Lee, J.I.; Son, H.S.; Jung, M.G. A novel synthesis of flavones from 2-methoxybenzoic acids. Bull. Korean Chem. Soc., 2005, 26, 1461-1463.
Kucukislamoglu, M.; Nebioglu, M.; Zengin, M.; Arslan, M.; Yayli, N. An environmentally benign synthesis of flavones from 1,3-diketones using silica gel supported NaHSO4 catalyst. J. Chem. Res., 2005, 2005(9), 556-557.
Bennardi, D.; Ruiz, D.; Romanelli, G.; Baronetti, G.; Thomas, H.; Autino, J. Efficient microwave solvent-free synthesis of flavones, chromones, coumarins and dihydrocoumarins. Lett. Org. Chem., 2008, 5, 607-615.
Lévai, A. Synthesis of isoflavones. J. Heterocycl. Chem., 2004, 41, 449-460.
Mineno, T.; Stanford, K.M.; Walker, L.A.; Avery, M.A. Solution-phase parallel synthesis of an isoflavone library for the discovery of novel antigiardial agents. Comb. Chem. High Throughput Screen., 2002, 5(6), 481-487.
[http://dx.doi.org/10.2174/1386207023330138] [PMID: 12470277]
Yeap, G.; Yam, W.; Takeuchi, D.; Osakada, K.; Gorecka, E.; Mahmood, W.A.K.; Boey, P.; Hamid, S.A. Synthesis, thermal stabilities, and anisotropic properties of some new isoflavone-based esters 7-decanoyloxy-3-(4′-substitutedphenyl)-4H-1-benzopyran-4-ones. Liq. Cryst., 2008, 35, 315-323.
Liu, L.; Wang, Q.; Zhang, Z.; Zhang, Q.; Du, Z.; Xue, D.; Wang, T. An efficient strategy to syntheses of isoflavones. Mol. Divers., 2014, 18(4), 777-785.
[http://dx.doi.org/10.1007/s11030-014-9537-3] [PMID: 25086575]
Sydnes, M.O. One-pot reactions: A step towards greener chemistry. Curr. Green Chem., 2014, 1, 216-226.
Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. (Camb.), 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
Rocha, D.H.A.; Pinto, D.C.G.A.; Silva, A.M.S.; Patonay, T.; Cavaleiro, J.A.S. A new synthesis of 5-arylbenzo[c]xanthones from photoinduced electrocyclisation and oxidation of (E)-3-styrylflavones. Synlett, 2012, 23, 559-564.
Likhar, P.R.; Subhas, M.S.; Roy, M.; Roy, S.; Kantam, M.L. Copper-free sonogashira coupling of acid chlorides with terminal alkynes in the presence of a reusable palladium catalyst: an improved synthesis of 3-iodochromones (=3-iodo-4H-1-benzopyran-4-ones). Helv. Chim. Acta, 2008, 91, 259-264.
Zhou, C.; Dubrovsky, A.V.; Larock, R.C. Diversity-oriented synthesis of 3-iodochromones and heteroatom analogues via ICl-induced cyclization. J. Org. Chem., 2006, 71(4), 1626-1632.
[http://dx.doi.org/10.1021/jo0523722] [PMID: 16468816]
Wang, R.; Han, J.; Li, C.; Zhang, J.; Liang, Y.; Wang, T.; Zhang, Z. One-pot synthesis of 3-fluoroflavones via 1-(2-hydroxyphenyl)-3-phenylpropane-1,3-diones and selectfluor at room temperature. Org. Biomol. Chem., 2018, 16(14), 2479-2488.
[http://dx.doi.org/10.1039/C8OB00135A] [PMID: 29561054]
Park, H.; Dao, T.T.; Kim, H.P. Synthesis and inhibition of PGE2 production of 6,8-disubstituted chrysin derivatives. Eur. J. Med. Chem., 2005, 40(9), 943-948.
[http://dx.doi.org/10.1016/j.ejmech.2005.04.013] [PMID: 15963606]
Lu, K.; Chu, J.; Wang, H.; Fu, X.; Quan, D.; Ding, H.; Yao, Q.; Yu, P. Regioselective iodination of flavonoids by N-iodosuccinimide under neutral conditions. Tetrahedron Lett., 2013, 54, 6345-6348.
Quintin, J.; Lewin, G. Regioselective 6-iodination of 5,7-dioxygenated flavones by benzyltrimethylammonium dichloroiodate. Tetrahedron Lett., 2004, 45, 3635-3638.
Bovicelli, P.; Bernini, R.; Antonioletti, R.; Mincione, E. Selective halogenation of flavanones. Tetrahedron Lett., 2002, 43, 5563-5567.
Gurung, S.K.; Kim, H.P.; Park, H. Inhibition of prostaglandin E2 production by synthetic wogonin analogs. Arch. Pharm. Res., 2009, 32(11), 1503-1508.
[http://dx.doi.org/10.1007/s12272-009-2101-5] [PMID: 20091262]
Bernini, R.; Pasqualetti, M.; Provenzano, G.; Tempesta, S. Ecofriendly synthesis of halogenated flavonoids and evaluation of their antifungal activity. New J. Chem., 2015, 39, 2980-2987.
Joo, Y.H.; Kim, J.K. A facile synthetic method of 3-bromoflavones. Synth. Commun., 1998, 28, 4287-4293.
Joo, Y.H.; Kim, J.K.; Kang, S.H. A convenient synthesis of 3-bromoflavones. Synth. Commun., 2002, 32, 1653-1658.
Rho, H.S.; Ko, B.S.; Kim, H.K.; Ju, Y.S. Synthesis of 3-bromo derivatives of flavones. Synth. Commun., 2002, 32, 1303-1310.
Zhou, Z.; Zhao, P.; Huang, W.; Yang, G. A selective transformation of flavanones to 3-bromoflavones and flavones under microwave irradiation. Adv. Synth. Catal., 2006, 348, 63-67.
Rho, H.S.; Ko, B.S.; Ju, Y.S. A facile preparation of 3-haloflavones using hypervalent iodine chemistry. Synth. Commun., 2001, 31, 2101-2106.
Sosnovskikh, V.Y. Synthesis and reactions of halogen-containing chromones. Russ. Chem. Rev., 2003, 72, 489-516.
Dike, S.Y.; Mahalingam, M. Efficient and improved procedure for the synthesis of 3-chloro derivatives of flavones, chromones and their sulfur analogues. Synth. Commun., 1989, 19, 3443-3451.
Vints, I.; Rozen, S. Fluorination of flavones and chromones using elemental fluorine. J. Org. Chem., 2014, 79(16), 7261-7265.
[http://dx.doi.org/10.1021/jo5009542] [PMID: 24885634]
Hou, Y.; Higashiya, S.; Fuchigami, T. Electrolytic partial fluorination of organic compounds. 32. Regioselective anodic mono- and difluorination of flavones. J. Org. Chem., 1999, 64(9), 3346-3349.
[http://dx.doi.org/10.1021/jo981979y] [PMID: 11674443]
Zhang, F.J.; Li, Y.L. Synthesis of 3-iodo derivatives of flavones, thioflavones and thiochromones. Synthesis, 1993, 6, 565-567.
Kuruto-Niwa, R.; Ito, T.; Goto, H.; Nakamura, H.; Nozawa, R.; Terao, Y. Estrogenic activity of the chlorinated derivatives of estrogens and flavonoids using a GFP expression system. Environ. Toxicol. Pharmacol., 2007, 23(1), 121-128.
[http://dx.doi.org/10.1016/j.etap.2006.07.011] [PMID: 21783746]
Soidinsalo, O.; Wähälä, K. Aromatic chlorination with thionyl chloride. Applications in the synthesis of chlorinated isoflavones. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182, 2761-2767.
Merchant, J.R.; Martyres, G. Halogenation of isoflavones using thionyl and sulphuryl chlorides. J. Heterocycl. Chem., 1980, 17, 1331-1332.
Carvalho, M.G.D.E.; Silva, V.C.D.A.; Silva, T.M.S.D.A.; Camara, C.A.; Braz-Filho, R. New iodine derivatives of flavonol and isoflavone. An. Acad. Bras. Cienc., 2009, 81(1), 21-28.
[http://dx.doi.org/10.1590/S0001-37652009000100004]] [PMID: 19274328]
Schnepel, C.; Sewald, N. Enzymatic halogenation: A timely strategy for regioselective C-H activation. Chemistry, 2017, 23(50), 12064-12086.
[http://dx.doi.org/10.1002/chem.201701209] [PMID: 28464370]
Atashgahi, S.; Liebensteiner, M.G.; Janssen, D.B.; Smidt, H.; Stams, A.J.M.; Sipkema, D. Microbial synthesis and transformationof inorganic and organic chlorine compounds. Front. Microbiol., 2018, 9, 3079.
[http://dx.doi.org/10.3389/fmicb.2018.03079] [PMID: 30619161]
Latham, J.; Brandenburger, E.; Shepherd, S.A.; Menon, B.R.K.; Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev., 2018, 118(1), 232-269.
[http://dx.doi.org/10.1021/acs.chemrev.7b00032] [PMID: 28466644]
Fejzagić, A.V.; Gebauer, J.; Huwa, N.; Classen, T. Halogenating enzymes for active agent synthesis: First steps are done and many have to follow. Molecules, 2019, 24(21), 4008.
[http://dx.doi.org/10.3390/molecules24214008] [PMID: 31694313]
Höfler, G.T.; But, A.; Hollmann, F. Haloperoxidases as catalysts in organic synthesis. Org. Biomol. Chem., 2019, 17(42), 9267-9274.
[http://dx.doi.org/10.1039/C9OB01884K] [PMID: 31599911]
Das, S.; Rosazza, J.P.N. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod., 2006, 69(3), 499-508.
[http://dx.doi.org/10.1021/np0504659] [PMID: 16562863]
Cao, H.; Chen, X.; Jassbi, A.R.; Xiao, J. Microbial biotransformation of bioactive flavonoids. Biotechnol. Adv., 2015, 33(1), 214-223.
[http://dx.doi.org/10.1016/j.biotechadv.2014.10.012] [PMID: 25447420]
Yaipakdee, P.; Robertson, L.W. Enzymatic halogenation of flavanones and flavones. Phytochemistry, 2001, 57(3), 341-347.
[http://dx.doi.org/10.1016/S0031-9422(01)00075-9] [PMID: 11393512]
Xiang, W-S.; Zhang, J.; Wang, J-D.; Jiang, L.; Jiang, B.; Xiang, Z-D.; Wang, X-J. Isolation and identification of chlorinated genistein from Actinoplanes sp. HBDN08 with antioxidant and antitumor activities. J. Agric. Food Chem., 2010, 58(3), 1933-1938.
[http://dx.doi.org/10.1021/jf9035194] [PMID: 20028010]
Menon, B.R.K.; Brandenburger, E.; Sharif, H.H.; Klemstein, U.; Shepherd, S.A.; Greaney, M.F.; Micklefield, J.; Rad, H. A versatil halogenase for integration into synthetic pathways. Angew. Chem. Int. Ed. Engl., 2017, 56(39), 11841-11845.
[http://dx.doi.org/10.1002/anie.201706342] [PMID: 28722773]
Fisher, B.F.; Snodgrass, H.M.; Jones, K.A.; Andorfer, M.C.; Lewis, J.C. Site-selective C-H halogenation using flavin-dependent halogenases identified via family-wide activity profiling. ACS Cent. Sci., 2019, 5(11), 1844-1856.
[http://dx.doi.org/10.1021/acscentsci.9b00835] [PMID: 31807686]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 24 September, 2020
Page: [415 - 425]
Pages: 11
DOI: 10.2174/1570179417666200530213737
Price: $65

Article Metrics

PDF: 41
PRC: 1